Chapter 4 Objectives

4.0 Simplifying Complex Numbers

I can use the complex conjugate of a number to simplify

Da) Simplify $\frac{2+3 i}{1-2 i}\left(\frac{1+2 i}{1+2 i}\right)$ $\frac{2+7 i+6 i 2-6}{1-4 i-4+4}=\frac{-4+7 i}{4}$
I can simplify complex numbers
Ob) Simplify i^{37}

4.1 Polynomial Functions

I can determine if an expression is a polynomial
1a) Determine if the following are polynomials:

$$
\begin{gathered}
3 x^{2}+4 x-7: 4 p+p^{-2} \cdot \frac{4}{y}=4 y 1 \\
\text { yes No }
\end{gathered}
$$

I know the definition of a root of a polynomial function

I can state the number of complex roots of a polynomial function
I can determine whether or not a given value is a root of a polynomial

Given roots, I can write the equation of this function in the lowest degree

1b) State the number of complex roots of
$6 a^{4}+a^{3}-2 a$ and $3 p^{2}-7 p^{5}-2 p^{3}+5$
1c) Determine whether 1 is a root of $3 x-5=0$

$$
f(1)=3-5=-2 \text { NO }
$$

1d) Determine whether -5 is a root of
$x^{3}+2 x^{2}-15 x=0 \quad f(-J)=125+50+75+0=0$
ie) Write a polynomial equation of least degree $y=2$ with roots $2 i,-2 i, 3,-3$. $(x-2 i)(x+2 i(x-3)(x+3)$

$$
\left(x^{2}+4\right)\left(x^{2}-9\right)
$$

$$
x^{4}-5 x^{2}-36
$$

4.2 Quadratic Equations

I can find the discriminant and determine the type of root based on the value of the discriminant

2a) Find the discriminant of $4 x^{2}-4 x-15=0$ and describe the nature of the roots of the equation

$$
\begin{aligned}
& 6^{2}-4 a c \\
& 16-4(-13) 4) \\
& 16+240 \\
& 256 \quad 2 \text { Rโ4C }
\end{aligned}
$$

bb) Find the discriminant of $3 x^{2}+2 x+5=0$ and describe the nature of the roots of the equation.

$$
\begin{aligned}
4 & -4(5)(3) \\
& -56 \quad 2 \quad \text { imaliwary }
\end{aligned}
$$

I can solve a quadratic equation by completing the square

I can solve a quadratic equation by using the quadratic formula

2c) Solve $-4 x^{2}-11 x=7$ by completing the square $-4 \quad-y \quad-y$

$$
\begin{aligned}
& x^{2}+\frac{11}{4} x+\left(\frac{11}{8}\right)^{2}=\frac{-1}{4}+\frac{121}{64} \\
& \left.\left(x+\frac{11}{8}\right)^{2}=\frac{-112}{64}+\frac{121}{64} / \begin{array}{l}
x+\frac{11}{8}= \pm \frac{3}{8} \\
\left(x+\frac{11}{8}=\frac{3}{8}\right.
\end{array}\right)^{2}=\sqrt{\frac{9}{84}}=-1 \\
& x+\frac{11}{8}=-\frac{3}{8}
\end{aligned}
$$

2d) Solve $5 x^{2}-14 x+11=0$ by the using the $x=\frac{-14}{0}$ quadratic equation

$$
\begin{aligned}
& \frac{14 \pm \sqrt{14^{2}-4(5)(11}}{2(5)} \\
& \frac{14 \pm \sqrt{-24}}{10} \\
& \frac{14 \pm 2 i \sqrt{6}}{10} \\
& \frac{7 \sqrt{6}}{5}
\end{aligned}
$$

4.3 Remainder and Factor Theorems

I can find the factors of a polynomial equation by using long division

3a) Divide $\left(2 x^{3}+3 x^{2}-8 x+3\right) \div(x+3)$ using long division $x + 3 \longdiv { 2 x ^ { 2 } - 3 x + 1 }$
$\frac{-2 x^{3}+6 x^{2}}{-3 x^{2}-8 x}$
$\frac{+3 x^{2}+9 x}{x+3}$ $\begin{array}{r}x+3 \\ x+3 \\ \hline 0\end{array}$

I can find the factors of a polynomial equation by using synthetic division

3b) Divide using synthetic division

$$
\begin{aligned}
& \text { i. }\left(3 x^{2}+4 x-12\right) \div(x+5) \\
& \text { ii. }\left(x^{4}-3 x^{2}+12\right) \div(x+1) \\
& \text { 1) } 54-12 \\
& \frac{3-15 \quad 55}{3-1143}
\end{aligned}
$$

2) -1

$$
\begin{array}{cccc}
1 & 0 & -3 & 12 \\
& -1 & 1 & 2 \\
\hline 1 & -1 & -2 & 14)
\end{array}
$$

I can use the Remainder Theorem to find the remainder and determine whether the binomial is a factor of the polynomial

I can find a missing coefficient of a polynomial given a factor

Given a double root, I can completely factor a polynomial.

3c) Find the remainder and state whether the binomial is a factor

$$
\left.\begin{array}{cccc}
& \left.\begin{array}{c}
\left(2 x^{4}+4 x^{3}\right.
\end{array} x^{2}+9\right) \div(x+1) \\
2 & 4 & -1 & 9 \\
-2 & -2 & 3 \\
\hline 2 & 2 & -3 & 12
\end{array}\right)=0
$$

3d) Find k if $(x-2)$ is a factor of $\left(x^{4}+k x^{3}-14 x^{2}\right)+0 x+0$ $21 /$| $1 k$ | -14 | $0 x$ |
| :---: | :---: | :---: |
| 2 | $4+2 k$ | $-20+4 k$ |
| 1 | $2+k$ | $-10+2 k$ |$\frac{-20+4 k}{} \frac{-40+8 k}{-40+8 k}$ $-40+F k=0$

$k=+5$
3e) Given 2 is a double root of $2 x^{3}-7 x^{2}+4 x+4$ factor completely.

4.4 Rational Root Theorem

I can list out all possible rational roots
4a) List the possible rational roots of

$$
\begin{gathered}
x^{3}+3 x^{2}-6 x-8=0 \\
\pm(1,2,4,8)
\end{gathered}
$$

4b) Guess and check the rational roots of $4 a$

$$
-4,-1,2
$$

$4 c$) Find the rational roots of the polynomial in $4 a$

$$
-4,-1,2
$$

I can find all real and imaginary roots of a polynomial

4d) Determine all the complex roots of

$$
f(x)=x^{3}-2 x^{2}-19 x+20
$$

Poss $r_{\text {atlo~ac }}(\pm 1,2,4,5,10,20)$
ACNAC $-4,1,5$

4.6 Rational Equations and Partial Equations

I can identify the excluded values of an equation or inequality
I can solve rational equations
ba) Solve $\left(\frac{3 x}{2 x+1}-\frac{4}{2 x-1}=1\right)\left(\begin{array}{l}(2 x+1)(2 x-1) \\ \text { What are the }\end{array}\right.$
excluded values?

$$
\begin{aligned}
& 3 x(2 x-1)-4(2 x+1)=4 x^{2}-1 \\
& 6 x^{2}-3 x-4 x-4=4 x^{2}-1 \\
& 2 x^{2}-7 x-5=0 \\
& (2 x-5)(x-1)=0 \\
& x=\frac{5}{2} \quad x=1
\end{aligned}
$$

I can decompose a fraction into partial fractions

$$
\begin{array}{cl}
\frac{B}{x=7} & \frac{B}{x=-3} \\
-50=10 A & -20=-10 B \\
-5=A & 2=B
\end{array}
$$

6b) Decompose $\frac{-3 x-29}{x^{2}-4 x-21}$ in partial fractions.

$$
\begin{aligned}
& \frac{-3 x-29}{x^{2}-4 x-21}=\frac{A}{(x-7)}+\frac{B}{x+3} \sqrt{\frac{-5}{x-7}+\frac{2}{x+3}} \\
& -3 x-29=A(x+3)+B(x-7)
\end{aligned}
$$

4.7 Radical Equations and Inequalities

I can solve radical equations
(6) $\begin{gathered}x-2=36 \\ x=38 \\ \sqrt{38-2}=6 \\ 6=6-\end{gathered}$

7a) Solve $\sqrt{x-2}=6$ and $\sqrt{6 x+12}-\sqrt{4 x+9}=1$

$$
\begin{aligned}
& (6 x+12)^{2}=(1+\sqrt{4 x+5})^{2} \\
& 6 x+12=1+2 \sqrt{4 x+9}-4 x+9 \\
& 2 x+2=2 \sqrt{4 x+9} \\
& (x+1)^{2}=(\sqrt{4 x+9})^{2} \\
& x^{2}+2 x+1=4 x+9 \\
& x^{2}-2 y-8=0 \\
& (x-4)(x+2)=0 \quad x=4 x=21
\end{aligned}
$$

I can solve radical inequalities

I can determine extraneous solutions to radical equations and inequalities

7b) Solve $\sqrt{3 r+5}>1$ and $\sqrt{2 t-3}<5$

