Chapter 4 Objectives

4.0 Simplifying Complex Numbers

I can use the complex conjugate of a number to simplify

I can simplify complex numbers

Oa) Simplify
$$\frac{2+3i}{1-2i} \left(\frac{1+2i}{1+2i} \right)$$

$$\frac{2+7i+6i^2-6}{1-4i^2+4} = \sqrt{\frac{-4+7i}{4}}$$

Ob) Simplify i^{37} (1) i' = i'

4.1 Polynomial Functions

I can determine if an expression is a polynomial

1a) Determine if the following are polynomials:

I know the definition of a root of a polynomial function

I can state the number of complex roots of a polynomial function

I can determine whether or not a given value is a root of a polynomial

Given roots, I can write the equation of this function in the lowest degree

1b) State the number of complex roots of

$$6a^4 + a^3 - 2a$$
 and $3p^2 \sqrt{7p^5} - 2p^3 + 5$

1c) Determine whether 1 is a root of 3x - 5 = 0f(1) = 3 - 5 = -2

1d) Determine whether -5 is a root of

$$x^3 + 2x^2 - 15x = 0$$
 $f(-5) = \sqrt{25} + 50 + 75 + 0 = 0$

1e) Write a polynomial equation of least degree with roots 2i, -2i, 3, -3. $(\times_2;)(\times_2;)(\times_2;)$ $(\times_2;)$ $(\times_2;$

4.2 Quadratic Equations

I can find the discriminant and determine the type of root based on the value of the discriminant

2a) Find the discriminant of $4x^2 - 4x - 15 = 0$ and describe the nature of the roots of the equation $6x^2 - 4x = 0$

2b) Find the discriminant of $3x^2 + 2x + 5 = 0$ and describe the nature of the roots of the equation.

I can solve a quadratic equation by completing the square

2c) Solve
$$-\frac{4x^2}{7} - \frac{11x}{7} = \frac{7}{7}$$
 by completing the square

I can solve a quadratic equation by using the quadratic formula

2d) Solve $5x^2 - 14x + 11 = 0$ by the using the $\frac{x = -\frac{14}{8}}{8}$ quadratic equation

$$\frac{14 \pm (14^{2} - 4(5)(1))}{2(5)}$$

$$\frac{14 \pm (-24)}{14 \pm 2i(4)}$$

$$\frac{7 \pm i(4)}{5}$$

4.3 Remainder and Factor Theorems

I can find the factors of a polynomial equation by using long division

3a) Divide
$$(2x^3 + 3x^2 - 8x + 3) \div (x + 3)$$
 using long division $x+3$

$$\begin{array}{r}
2x^2 - 3x + 1 \\
2x^3 + 3x^2 - 8x + 3
\end{array}$$

$$\begin{array}{r}
-3x^2 - 8x \\
+3x^2 + 9x
\end{array}$$

$$\begin{array}{r}
x + 3 \\
x + 3
\end{array}$$

I can find the factors of a polynomial equation by using synthetic division

i.
$$(3x^2 + 4x - 12) \div (x + 5)$$

ii.
$$(x^4 - 3x^2 + 12) \div (x + 1)$$

I can use the Remainder Theorem to find the remainder and determine whether the binomial is a factor of the polynomial

3c) Find the remainder and state whether the binomial is a factor

I can find a missing coefficient of a polynomial given a factor

3d) Find k if (x-2) is a factor of

Given a double root, I can completely factor a polynomial.

3e) Given 2 is a double root of $2x^3 - 7x^2 + 4x + 4$ factor completely.

4.4 Rational Root Theorem

I can list out all possible rational roots

4a) List the possible rational roots of

$$x^3 + 3x^2 - 6x - 8 = 0$$

 $\pm (1/2/4/5)$

I can use my calculator to guess and check the correct rational roots of a polynomial

I can find all the rational roots of a polynomial

4b) Guess and check the rational roots of 4a

4c) Find the rational roots of the polynomial in 4a

I can find all real and imaginary roots of a polynomial

4d) Determine all the complex roots of $f(x) = x^3 - 2x^2 - 19x + 20$ Poss Ranio A. ($\pm 1/2, 4/5/3, 25$) ACNAL -4/1, 5

4.6 Rational Equations and Partial Equations

I can identify the excluded values of an equation or inequality

I can solve rational equations

6a) Solve
$$\frac{3x}{2x+1} - \frac{4}{2x-1} = 1.$$
 What are the excluded values?
$$3 \times (2x-1) - 4(2x+1) = 4x^2 - 1$$
$$6x^2 - 3x - 4x - 4 = 4x^2 - 1$$
$$2x^2 - 7x - 5 = 3$$

I can decompose a fraction into partial fractions

6b) Decompose $\frac{-3x-29}{x^2-4x-21}$ in partial fractions.

$$\frac{-3\times-29}{x^2-9\times-21} = \frac{A}{(x-7)} + \frac{B}{x+3}$$

$$\frac{-5}{x-7} + \frac{2}{x+3}$$

$$-3\times-29 = A(x+3) + B(x-7)$$

4.7 Radical Equations and Inequalities

I can solve radical equations

$$x-2 = 36$$
 $x = 38$
 $\sqrt{26-2} = 6$
 $6 = 6$

7a) Solve
$$\sqrt{x-2} = 6$$
 and $\sqrt{6x+12} - \sqrt{4x+9} = 1$

$$(6x+12)^{2} = (1+6y+1)^{2}$$

$$6x+12 = 1+2(4y+4) + 4y+1$$

$$2x+2 = 2(4y+4)$$

$$(x+1)^{2} = (4x+5)^{2}$$

$$x^{2}+2x+1 = 4x+9$$

$$(x+1)^{2} = (4x+5)^{2}$$

$$x^{2}-2y-8=0$$

$$(x+1)^{2} = (4x+5)^{2}$$

I can solve radical inequalities

I can determine extraneous solutions to radical equations and inequalities

7b) Solve
$$\sqrt{3r+5} > 1$$
 and $\sqrt{2t-3} < 5$

