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Preface

This text evolved, as have so many others, from notes used to teach partial differ-
ential equations to advanced undergraduate mathematics and physics students and
graduate engineering students. Major emphasis is placed on techniques for solving
partial differential equations found in physics and engineering, but discussions on
existence and uniqueness of solutions are also included. Every opportunity is taken
to show that there may be more than one way to solve a particular problem and to
discuss the advantages of each solution relative to the others. In addition, physical
interpretations of mathematical solutions are stressed whenever possible.

In Chapter 1, we use the method of characteristics to solve first-order quasi-
linear and general nonlinear equations. Applications included are the one-dimen-
sional wave equation, the eikonal equation from geometric optics, and traffic flow
problems.

Section 2.1 introduces second-order equations and describes how initial bound-
ary value problems are associated with such equations. To distinguish between
physical assumptions leading to various models of heat conduction, vibration, and
potential problems, and the mathematical techniques to solve these problems, mod-
els are developed in Sections 2.2–2.6 with no attempt at solutions. At this stage,
the reader concentrates only on how mathematics describes physical phenomena.
Once these ideas are firmly entrenched, it is then reasonable to proceed to various
solution techniques. It has been our experience that confusion often arises when new
mathematical techniques are prematurely applied to unfamiliar problems. In this
chapter, we also classify second-order PDEs in two variables as being hyperbolic,
parabolic, or elliptic, with the wave equation, the heat conduction equation, and
Laplace’s equation being their canonical forms. The wave equation, together with
d’Alembert’s solution and its extension to nonhomogenoues problems, is given spe-
cial consideration. We are careful to point out, however, that such representations
of solutions of initial boundary value problems are not possible for parabolic and
elliptic equations.

One of the most fundamental classical techniques for solving partial differential
equations is that of separation of variables, which leads, in the simplest of exam-
ples to trigonometric Fourier series. Chapter 3 develops the theory of Fourier series
to the point where it is easily accessible to separation of variables in Chapter 4.
The method of variation of constants is introduced in order to deal with nonho-
mogeneities. The examples in Chapter 4 also suggest the possibility of expansions
other than trigonometric Fourier series, and these are discussed in detail through
Sturm-Liouville systems in Chapter 5. They are then used in Chapter 6 to solve
homogeneous problems in one, two, and three space variables. In this chapter,
we also illustrate how to verify series solutions of initial boundary value problems,
and we discuss distinguishing properties of parabolic, elliptic, and hyperbolic par-
tial differential equations. In Chapter 7, finite Fourier transforms are presented as
an alternative to variation of constants for nonhomogeneous problems. They are
particularly useful for multi-dimensional problems.

Chapters 8 and 9 essentially repeat material in Chapters 5 and 6, but in polar,
cylindrical, and spherical coordinates.

In Chapters 10 and 11, we introduce three further transforms for solving partial



differential equations, Laplace, Fourier and Hankel. Chapter 10 contains a thorough
presentation of the theory of Laplace transforms, particularly as it pertains to solv-
ing ordinary and partial differential equations. The transform is applied to PDEs
on finite and infinite spatial domains. Fourier transforms, and Fourier sine and
cosine transforms, in Chapter 11 are developed from Fourier integrals. They are
then applied to problems on infinite and semi-infinite domains. Hankel transforms
are applied to problems in polar and cylindrical coordinates.

Green’s functions for ordinary differential equations and partial differential
equations are discussed in Chapters 12 and 13. Chapter 13 utilizes separation
techniques from Chapter 6, Section 9.1, and Chapter 12.

Chapters 14, 15, and 16 provide an introduction to numerical techniques for
approximating solutions to PDEs, namely finite differences, weighted residuals, and
finite elements.

To work through most sections of the book, students require a first course in
ordinary differential equations and an introduction to advanced calculus. Sections
10.3–10.5, and Chapter 11 assume a working knowledge of the theory of complex
functions.

There are six appendices of material. Appendices A and B give proofs of
convergence theorems for Fourier series and Fourier integrals. Appendix C reviews
ever so briefly those aspects of vector integral calculus that are used throughout the
book. Appendix D contains discussions on parts of the theory of complex functions
necessary in the chapters on Laplace and Fourier transforms. Appendix E contains
numerical answers to all exercises. Appendix F is a reference to examples and
exercises in Chapters 2-13 that contain physical applications of PDEs. Hopefully,
it will help readers locate a problem in which they have a particular interest.

We believe that exercises are of the utmost importance to a student’s learning.
There must be straightforward problems to reinforce fundamentals and more difficult
problems to challenge enterprising students. We have attempted to provide more
than enough of each type. Problems in each set of exercises are graded from easy
to difficult, and numerical answers to all exercises are provided in Appendix E.
Exercise sets in sixteen sections (4.2, 4.3, 6.2, 6.3, 6.4, 7.2, 7.3, 9.1, 9.2, 10.2, 10.4,
10.5, 11.4, 11.6, 11.7, and 12.4) stress applications. They have been divided into
four parts:
Part A — Heat Conduction
Part B — Vibrations
Part C — Potential, Steady-state Heat Conduction, Static Deflections of Mem-

branes
Part D — General Results
Students interested in heat conduction could concentrate on problems from Part
A. Students interested in mechanical vibrations will find problems in Part B par-
ticularly appropriate. All students can profit from problems in Part C, since every
problem therein, although stated in terms of one of the three applications, is easily
interpretable in terms of the other two. We recommend the exercises in Part D to
all students.

A solutions manual containing solutions to all exercises is available.



SECTION 1.1 1

CHAPTER 1 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

§1.1 Quasilinear First-order Partial Differential Equations

A partial differential equation (PDE) is an equation that must be solved for
an unknown function of at least two independent variables when the equation con-
tains partial derivatives of the unknown function. The order of a PDE is the
highest-order partial derivative contained therein. In this chapter we discuss first-
order partial differential equations, equations that contain only first-order partial
derivatives of the unknown function. We use the method of characteristics to solve
quasilinear equations in this section and general nonlinear equations in Section 1.2.
Some physical applications of first-order equations are discussed in Section 1.3. In
many respects, first-order PDEs are different from second and higher order equa-
tions which arise in the many physical problems developed in the remainder of this
text. If the reader is interested in only these particular applications, he/she can,
without too much difficulty, omit this chapter and proceed directly to Chapter 2.
(The one major exception is the derivation of a general solution of the wave equation
in Section 2.7.) In addition, a number of concepts introduced in later chapters have
their origin in first-order equations, and it can therefore be beneficial to at least
give this chapter a cursory reading.

In the method of characteristics, integration of the initial-value problem asso-
ciated with a first-order PDE is reduced to integration of the initial value problem
for a system of ordinary differential equations. For simplicity in calculations and for
geometric visualizations, we consider problems in two independent variables, but
extensions to higher numbers of independent variables are algebraically straightfor-
ward. We begin with the quasilinear PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (1.1)

for u as a function of x and y. We assume that coefficient functions a(x, y, u),
b(x, y, u), and c(x, y, u) are continuous in some region of xyu-space, and we seek
solutions of the PDE that have continuous first partial derivatives ux and uy. If
c(x, y, u) is of the form c(x, y)u+d(x, y), and a(x, y, u) and b(x, y, u) are independent
of u, the equation is said to be linear. Quasilinear equations are linear in ux and
uy , but not in u itself. Theory for linear equations is the same as that given here
for more general quasilinear equations, but simplifications in calculations occur in
the linear case. This is illustrated in some of our examples and in a short discussion
at the end of this section.

If u(x, y) is a solution of PDE 1.1, a normal to the surface u = u(x, y) is
∇[u(x, y) − u] = 〈ux, uy ,−1〉. Since the PDE can be expressed in the form

0 = aux + buy − c = 〈ux, uy ,−1〉 · 〈a, b, c〉,

the PDE demands that at each point on a solution surface, the vector 〈a, b, c〉 must
be normal to the vector 〈ux, uy ,−1〉, and hence lie in the tangent plane to the surface
at that point. Thus, the PDE defines a direction field 〈a(x, y, u), b(x, y, u), c(x, y, u)〉,
called the characteristic directions, such that u = u(x, y) is a solution surface
if, and only if, at each point (x, y, u(x, y)) on the surface, the tangent plane to the
surface contains the characteristic direction (Figure 1.1). In Figure 1.2, we have
shown a number of these tangent vectors at various points on the solution surface.



2 SECTION 1.1

A curve that begins at a point on the surface, lies in the surface, and remains tangent
to the characteristic direction at every point is called a characteristic curve (C-
curve, for short). The solution surface can be thought of as being comprised of
C-curves; in fact a one-parameter family of C-curves.

x y

u ux -1, ,uy

a b c,,
Tangent Plane

x y

u

Figure 1.1 Figure 1.2

This suggests that solution surfaces to PDE 1.1 can be obtained by finding all C-
curves and extracting from them one-parameter families. C-curves are defined by
the ordinary differential equations

dx

a
=
dy

b
=
du

c
, (1.2)

called the characteristic equations. Solving these equations gives a two-parame-
ter family of C-curves that can be expressed in the form

F (x, y, u, α, β) = 0, G(x, y, u, α, β) = 0. (1.3)

Through each point (x, y, u) in space
there is a unique C-curve and a tangent
vector to a C-curve at every such point
is 〈a, b, c〉 (Figure 1.3). Any smooth sur-
face composed of C-curves is a solution of
PDE 1.1. Such surfaces can be found
analytically by specifying β as a function
of α, β = β(α). This creates a one-para- x y

u a,b,c

( )x,y,u

meter family of C-curves, a surface, Figure 1.3

F [x, y, u, α, β(α)] = 0, G[x, y, u, α, β(α)] = 0. (1.4)

The equation of the surface is found implicitly or explicitly by eliminating α between
these equations. Here is an example to illustrate these ideas.

Example 1.1 Find a solution surface for the quasilinear first-order partial differential equation

xux + yuy = xyu2.

Solution The C-equations are

dx

x
=
dy

y
=

du

xyu2
.

Left and middle terms integrate to y = αx. Substitution of this into the first and
third terms gives

du

u2
= αxdx, from which − 1

u
=
αx2

2
+ β.
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Thus,

y = αx, − 1
u

=
αx2

2
+ β

is a 2-parameter family of C-curves. Specifying β as a function of α defines a 1-
parameter family of C-curves, a solution surface. Suppose we set β = α + 3, in
which case

y = αx, − 1
u

=
αx2

2
+ α+ 3.

The solution surface for this particular choice of β(α) can be obtained implicitly by
eliminating α between these equations,

− 1
u

=
x2

2

(y
x

)
+
y

x
+ 3 =

xy

2
+
y

x
+ 3 =

x2y + 2y + 6x
2x

.

An explicit definition of this surface is

u = u(x, y) =
−2x

x2y + 2y + 6x
.•

We summarize these ideas in the following theorem.

Theorem 1.1 Every one-parameter family of characteristic curves generates a solution surface to
PDE 1.1. Conversely, every solution surface may be considered as a one-parameter
family of characteristic curves.

Seldom are PDEs solved in isolation. Usually we must find the solution surface
to PDE 1.1 that also contains some specified initial curve. This is called an initial-
value problem or Cauchy problem. In view of Theorem 1.1, we can solve the
Cauchy problem by finding all C-curves that pass though the initial curve; together
they constitute the solution surface. Specification of the initial curve can be thought
of in two equivalent ways. First, we can think of the initial curve C being given in
xyu-space as shown in Figure 1.4a. In this case we seek a function u(x, y) satisfying
PDE 1.1 so that the surface u = u(x, y) contains the initial curve C. Alternatively,
we can think of values of u being specified along some curve C ′ in the xy-plane
(Figure 1.4b). We now seek a function u(x, y) satisfying PDE 1.1 that takes on the
prescribed values along C ′. From either point of view, the solution surface is the
surface containing all C-curves passing though C.

x

u

y

Initial curve C-curves

Solution surface
u u x,y= ( )

C

x

u

y

Initial curve C-curves

Solution surface
u u x,y= ( )

C

C

Figure 1.4a Figure 1.4b

To solve Cauchy’s problem associated with PDE 1.1, we must determine the
function β(α) in equations 1.4 so that the solution surface contains the initial curve.
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To do this, suppose equations specifying the initial curve are written in the form

y = y(x), u = u(x).

(Other forms may be more convenient in some problems.) If C-curves are to pass
through the initial curve for some particular choice of α, then

F [x, y(x), u(x), α, β(α)] = 0, G[x, y(x), u(x), α, β(α)] = 0. (1.5)

When x is eliminated between these equations, the function β(α) is determined,
in which case equations 1.4 determine the one-parameter family of C-curves that
constitutes the solution surface. If α can be eliminated between the equations, an
implicit or explicit definition of the solution surface is obtained.

The above procedure is called the method of characteristics for solving
initial-value problems associated with quasilinear first-order PDEs. To review it
quickly, we solve the C-equations for a two-parameter family of C-curves. From
this two-parameter family of C-curves, we determine the one-parameter family that
passes through the initial curve. These C-curves constitute the solution surface for
the Cauchy problem.

Not only can the method of characteristics be used to solve Cauchy problems,
it can also be used to show which Cauchy problems have solutions, and which
have unique solutions. In these discussions, we deal with base C-curves; they are
the projections of C-curves in the xy-plane. Theory will show that existence and
uniqueness of solutions to Cauchy problems is intimately connected to whether the
projection of the initial curve is a base C-curve. We illustrate this in the following
examples before stating general results. It is perhaps worthwhile to note at this
juncture that if functions a and b in PDE 1.1 are independent of u (and this would
be the case for a linear PDE), then the equation dx/a = dy/b can be integrated for
a one-parameter family of base C-curves (as opposed to a two-parameter family).

Example 1.2 Find the solution surface for the linear PDE 3ux + 4uy = 10 that contains the
line 2x = y = 5u. Show that the projection of the initial curve in the xy-plane is
nowhere tangent to a base C-curve.

Solution Characteristic equations 1.2 for the PDE are

dx

3
=
dy

4
=
du

10
.

Integration of these gives C-curves

y =
4x
3

+ α, u =
10x
3

+ β.

Specifying β as a function of α gives a 1-parameter family of C-curves, a solution
surface,

y =
4x
3

+ α, u =
10x
3

+ β(α).

To find β(α) so that the solution surface contains the initial curve, we substitute
the initial curve into these equations,

2x =
4x
3

+ α,
2x
5

=
10x
3

+ β(α).
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These imply that β(α) = −22α/5. C-curves generating the solution surface are
therefore

y =
4x
3

+ α, u =
10x
3

− 22α
5
.

When α is eliminated between these equations, the result is

u =
138x
15

− 22y
5
.

The solution surface is a plane defined for all x and y. Base C-curves are straight
lines y = 4x/3 + α with slope 4/3. Since the projection of the initial curve in the
xy-plane is the line y = 2x with slope 2, it is nowhere tangent to a base C-curve.•

Example 1.3 Find the solution surface for the linear PDE y2(x−y)ux +x2(y−x)uy = (x2 +y2)u
that contains the hyperbola xu = 1, y = 0, (x > 0). Show that the projection of
the initial curve in the xy-plane is nowhere tangent to a base C-curve.

Solution Characteristic equations 1.2 for the PDE are

dx

y2(x− y)
=

dy

x2(y − x)
=

du

u(x2 + y2)
.

The first two terms give

y2 dy = −x2 dx =⇒ x3 + y3 = α.

On the other hand, when we subtract the following equations

dx

du
=

y2(x− y)
u(x2 + y2)

,
dy

du
=

x2(y − x)
u(x2 + y2)

,

we obtain

dx

du
− dy

du
=
x− y

u
=⇒ dx− dy

x− y
=
du

u
=⇒ x− y = βu.

By specifying β as a function of α, we obtain a one-parameter family of C-curves,

x3 + y3 = α, x− y = β(α)u.

For the solution surface defined by these C-curves to pass through the initial curve,
we set

x3 = α, x = β(α)
1
x
.

These give β(α) = α2/3, and therefore the one-parameter family of C-curves gener-
ating the solution surface is

x3 + y3 = α, x− y = α2/3u.

When we eliminate α, we obtain an explicit definition of the solution

x− y = (x3 + y3)2/3u =⇒ u =
x− y

(x3 + y3)2/3
.
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Base C-curves x3 + y3 = α that arise from
C-curves passing through the initial curve
are shown in Figure 1.5. They intersect the
projection of the initial curve, namely the
positive x-axis, at right-angles. The solution
is only defined for y > −x and becomes un-
bounded as (x, y) approaches this line. This
is a consequence of the fact that u becomes
unbounded as x→ 0 along the initial curve

y

x

y x=-

Base C-curves

Projection of
initial curve

and the base C-curve through the origin is Figure 1.5
y = −x.•

Example 1.4 Discuss the solution for the PDE in Example 1.3 if the initial curve is x + y = 2,
u = 1.

Solution Integration of the C-equations as in Example 1.3 leads to the one-
parameter family of C-curves x3 + y3 = α, x− y = β(α)u. For the solution to pass
through the initial curve, we set

x3 + (2 − x)3 = α, x− (2− x) = β(α).

The first of these can be written in the form 6x2 − 12x + (8 − α) = 0, and when
it is solved for x, the result is x = (6 ±

√
6α− 12)/6. Substitution of this into the

second equation gives β(α) = ±(1/3)
√

6α− 12. Consequently, the one-parameter
family of C-curves generating the solution surface is

x3 + y3 = α, x− y =
±
√

6α− 12
3

u.

When α is eliminated between these equations, the explicit solution is

u(x, y) =

√
3(x− y)2

2(x3 + y3 − 2)
.

This solution becomes unbounded as (x, y) approaches any point on the base C-
curve x3 + y3 = 2 through (1, 1). Coincidentally, notice that the projection of the
initial curve in the xy-plane is tangent to the base curve at (1, 1).•

The following theorem describes conditions that guarantee a unique solution of
the Cauchy problem.

Theorem 1.2 When curve C ′ in Figure 1.4b is nowhere tangent to a base C-curve, the Cauchy
problem associated with PDE 1.1 has a unique solution. When C ′ is a base C-curve,
PDE 1.1 does not have a solution unless the initial curve is a C-curve, in which case
there is an infinity of solutions.

We shall not prove this result, but we can see it geometrically. When C ′ is
nowhere tangent to a base C-curve, we have the situation in Figure 1.4b. The
solution surface consists of the C-curves through the initial curve C, and as such,
it is unique. When C ′ is a base C-curve (Figure 1.6a), there is at least one C-curve
projecting onto C ′. If C is not a C-curve, itself, then it is impossible to have a
surface u = u(x, y) that contains both C and the C-curve. On the other hand, if
C is a C-curve, take any other curve C ′′ intersecting C in a unique point (Figure
1.6b). The solution of the PDE containing C ′′ contains the point of intersection
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of C and C ′′, and therefore the C-curve through that point, namely C. In other
words, there is an infinity of solutions of the PDE containing C.

x

u

y

Initial curve C

C

projecting onto C

C-curve projecting
onto C

x

u

y

Initial curve C
C

which is a C-curve

C

Figure 1.6a Figure 1.6b

Theorem 1.2 does not discuss ramifications when the projection of the initial
curve is tangent to a base C-curve at isolated points. We saw one such situation in
Example 1.4; we shall see others.

Example 1.5 Find, if possible, a solution surface for the quasilinear PDE uux + uy = 1 that also
contains each of the following curves:

(a) C : x = y = u (b) C : x = y2/2, u = y (c) C : 4x = y2, u = y/2

Solution Characteristic equations for the PDE are

dx

u
= dy = du.

Integration of these gives C-curves

u = y + α, x =
u2

2
+ β.

Specifying β as a function of α gives a 1-parameter family of C-curves, a solution
surface,

u = y + α, x =
u2

2
+ β(α).

(a) For C-curves to pass through the initial curve C: x = y = u, we set

u = u+ α, u =
u2

2
+ β(α).

These do not determine β(α), but
notice that the first equation suggests
that α = 0, in which case u = y. This
is a solution surface that contains the
initial curve. Base C-curves are parabolas

x =
1
2
(y + α)2 + β,

y

x
y x

t
t

t=-1

=0
=1

-3/2 1/2

=

a 2-parameter family of them, some of
which are shown in Figure 1.7. This is Figure 1.7
due to the fact that the PDE is quasi-
linear, not linear as in the last three examples. When the PDE is linear, the first
two terms in C-equations 1.2 are independent of u, and can be integrated for a 1-
parameter family of base C-curves. When functions a and b in equations 1.2 depend
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on u (as in this example), this cannot be done. Base C-curves depend not only on x
and y, but also on u, and a 2-parameter family of base C-curves results. The same
solution u = y results for any noncharacteristic initial curve in the plane u = y.

(b) Since this initial curve is once again in the plane u = y, we can conclude that
the function u = y is a solution of the PDE containing the initial curve. In this case,
however, the initial curve is a C-curve. Consequently, u = y is one of an infinite
number of solutions of the PDE containing C. For instance, suppose we find the
solution surface that contains the initial curve C ′: x = y = 2u (which intersects the
original curve C: x = y2/2, u = y at the origin), but does not lie in the plane u = y.
For the 1-parameter family of C-curves u = y + α, x = u2/2 + β(α) to contain this
curve, we set

u = 2u+ α, 2u =
u2

2
+ β(α).

These imply that β(α) = −2α − α2/2, and therefore the 1-parameter family of
C-curve defining the solution surface is

u = y + α, x =
u2

2
− 2α− α2

2
.

Elimination of α leads to the explicit solution

u =
2x+ y2 − 4y

2(y − 2)
.

(c) For C-curves to pass through the initial curve C: 4x = y2, u = y/2, we must
have

y

2
= y + α,

y2

4
=
y2

8
+ β(α).

These imply that β(α) = α2/2, and therefore the 1-parameter family of C-curve
generating the solution surface is

u = y + α, x =
u2

2
+
α2

2
.

Substitution of α = u− y into the second of theses gives

x =
u2

2
+

1
2
(u− y)2,

and when this quadratic equation is solved for u, the result is

u(x, y) =
y

2
±
√
x− y2

4
.

Solutions are only defined inside and on the initial parabola x = y2/4, but because
partial derivatives are unbounded on the parabola, the solution must be rejected.
This can be attributed to the projection x = y2/4 of the initial curve being tangent
to the base C-curve x = y2/2 at (0, 0).•
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Discontinuities in u(x, y) and/or its
partial derivatives at a point on the
initial curve C are propagated along
the C-curve through that point. For
instance, suppose a solution of a
quasilinear PDE is to contain the non-
characteristic curve C in Figure 1.8
which has a discontinuity in u at the
point (x0, y0). The solution surface

x y

u

( 0 0, )

Initial
Curve

x y

Solution
Surface

u = u(x, y) maintains the discontinuity Figure 1.8
along the C-curve through the point
(x0, y0, u(x0, y0)), unless the solution breaks down with two C-curves intersecting.
This is illustrated in the following example.

Example 1.6 Find the solution of the linear PDE ux + uy = 0

that takes on the values u(0, y) =
{
−y/3, y ≤ 0
2y + 1, y > 0,

(see Figure 1.9).

Solution We cannot write full
characteristic equations 1.2 for the PDE
(since c = 0). We replace them with

dx = dy, du = 0. x
y

u

1

=- /3
=0

=2 +1

,

,

u
x

y

u y
=0x

Integration gives Figure 1.9

y = x+ α, u = β,

so that u is constant along C-curves; that is, C-curves are horizontal. This does
not necessarily imply that the solution of the initial value problem is u = constant.
Indeed, the initial curve in Figure 1.9 indicates that this cannot be the case. For
C-curves to pass through u = −y/3 when x = 0 and y ≤ 0, we set

y = α, −y
3

= β(α).

Thus, C-curves through this part of the initial curve are

y = x+ α, u = −α
3

=⇒ u(x, y) = −1
3
(y − x) =

1
3
(x− y).

For C-curves to pass through u = 2y + 1 when x = 0 and y > 0, we set

y = α, 2y + 1 = β(α).

Thus, C-curves through this part of the initial curve are

y = x+ α, u = 2α+ 1 =⇒ u(x, y) = 2(y − x) + 1.

The solution surface is composed of two planes, and to determine regions in the
xy-plane onto which these planes project, we draw base C-curve. They are the lines
y = x+α shown in Figure 1.10a. Below the C-curve y = x are C-curves along which
u = −y/3; along C-curves above y = x, u = 2y + 1. The solution surface in Figure
1.10b, consists of two planes above the regions corresponding to these two sets of
C-curves. It is discontinuous along the base C-curve y = x through the point (0, 0)
where the initial data is discontinuous.•
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y

x

y x= + >0

( )
y x= + <0

( )

,

y x=

a

a, a

= - /3u y( x)
a

=2 +1u y( )-x

x
y

u

1
= - /3

=2 +1

u y

u y( )-x

( x)

Figure 1.10a Figure 1.10b

In the next example, we illustrate that discontinuities in partial derivatives
of a solution are also propagated along C-curves even when the function itself is
continuous.

Example 1.7 Find the solution of the linear PDE yux + xuy = u in the first quadrant that takes
on values x3 along the positive x-axis and values y3 along the positive y-axis.

Solution Characteristic equations 1.2 for the PDE are

dx

y
=
dy

x
=
du

u
.

The first two of these give

y dy = x dx =⇒ y2 − x2 = α.

In addition, when we add the equations dx =
y du

u
and dy =

x du

u
, we obtain

dx+ dy =
y du

u
+
x du

u
= (x+ y)

du

u
=⇒ dx+ dy

x+ y
=
du

u
=⇒ u = β(x+ y).

Base C-curves in the first quadrant are
the hyperbolas y2 − x2 = α in Figure 1.11.
The base C-curve y = x (α = 0) separates
the first quadrant into two regions R1 and
R2 corresponding to base C-curves that
have α < 0 and α > 0, respectively. Solu-
tion surfaces to the PDE are obtained by
specifying β as a function of α,

y2 − x2 = α, u = β(α)(x+ y).
This one-parameter family of C-curves
takes on the values u(x, 0) = x3 if

y

x

R

R

2

1

a

<

>0( )

a 0( )

−x2 = α, x3 = β(α)x =⇒ β(α) = −α. Figure 1.11

In region R1 then, the solution surface is given by

y2 − x2 = α, u = −α(x+ y) =⇒ u = (x+ y)(x2 − y2).

The one-parameter family of C-curves takes on the values u(0, y) = y3 if

y2 = α, y3 = β(α)y =⇒ β(α) = α.
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In region R2 then, the solution surface is given by

y2 − x2 = α, u = α(x+ y) =⇒ u = (x+ y)(y2 − x2).

The solution is continuous for all x and y, even across the base C-curve y = x that
separates regions R1 and R2. However, in region R1,

ux = (x2 − y2) + 2x(x+ y) = (x+ y)(3x− y),
uy = (x2 − y2) − 2y(x+ y) = (x+ y)(x− 3y),

whereas in region R2,

ux = (y2 − x2) − 2x(x+ y) = (x+ y)(y − 3x),
uy = (y2 − x2) + 2y(x+ y) = (x+ y)(3y − x).

If points (x, y) on y = x are approached from region R1,

ux → 2x(2x) = 4x2, uy → 2x(−2x) = −4x2,

whereas if approached from region R2,

ux → 2x(−2x) = −4x2, uy → 2x(2x) = 4x2.

Thus, although u(x, y) itself is continuous, its derivatives ux and uy are discontin-
uous across the base C-curve y = x through (0, 0).•

The next example illustrates that the method of characteristics, as outlined,
may not give a solution for all values of x and y, but it may be possible to extend
such a solution to encompass all values of the independent variables. This will be
an important consideration in traffic flow applications in Section 1.3.

Example 1.8 Find the solution of the quasilinear PDE ux + uuy = 0, (for x > 0) that takes on

the values u(0, y) =
{
k1, y ≤ 0
k2, y > 0.

Solution Characteristic equations for the PDE are

dx =
dy

u
, du = 0.

It then follows that u = β so that u is constant along C-curves, and y = βx+ α. A
one-parameter family of C-curves is

y = β(α)x+ α, u = β(α).

For C-curves to take on the values u = k1 when x = 0 and y ≤ 0, we set

y = α, k1 = β(α).

Thus, C-curves through this part of the initial curve (y ≤ 0) are

y = k1x+ α u = k1.

Similarly, C-curves passing through the other half of the initial curve (y > 0) are

y = k2x+ α, u = k2.



12 SECTION 1.1

The solution always has value u = k1 or u = k2. To determine regions of the xy-
plane where these values of u are taken on, we draw base C-curves. Base C-curves
along which u = k1 are straight lines y = k1x + α (α ≤ 0) defining region R1 in
Figure 1.12a. Base C-curves along which u = k2 are straight lines y = k2x + α
(α > 0) defining region R2 in Figure 1.12a. We have drawn base C-curves only
for x > 0 as specified in the original problem. This leaves the solution undefined
in the wedge R3 between the lines y = k1x and y = k2x. To obtain a solution in
R3, imagine a fan of straight lines y = mx eminating from (0, 0) into R3. Since u
takes on constant values along the C-curves in R1 and R2, suppose we let u = m
along y = mx. In other words, let equations for the lines in the fan be y = ux,
k1 < u < k2, and let the value of the solution u(x, y) along each line in the fan
be the slope u of the line. It is straightforward to show that when we invert this
equation, the function u = y/x satisfies the PDE in R3. It also joins the planes
u = k1 and u = k2 in R1 and R2 to create a continuous solution (Figure 1.12b).
The straight lines of the fan in R3 satisfy the C-equations, and are called fanlike
base C-curves.•

y

x

y k x

y k x

R
R

R

u k

u k

= 2

= 2
2

3

1

= 1 = 1

x

y

u
u k

u k

R

R

R

y k x

y k x

u y x

= 2

= 1

1

3

2

= 1

= 2

/

k2

k1

=

Figure 1.12a Figure 1.12b

Linear First-order Equations

Because linear first-order PDEs are quasilinear, foregoing results also apply to linear
equations, equations of the form

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= c(x, y)u+ d(x, y). (1.6)

Because such equations are linear in u as well as ux and uy, they possess special
attributes that are useful for comparison purposes when we discuss C-curves for
linear higher order PDEs in subsequent chapters. For linear first-order PDEs, C-
equations 1.2 are

dx

a(x, y)
=

dy

b(x, y)
=

du

c(x, y)u+ d(x, y)
.

As noted earlier, because u is absent from the first two terms, this ODE can be
solved independently of u to give a 1-parameter family of base C-curves. The base
C-curve through a point (x, y, u) is the same for all values of u; C-curves will vary
with u, but they all project onto the same base C-curve.
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EXERCISES 1.1

1. Find solutions to the PDE in Example 1.1 corresponding to the following choices for the function
β(α): (a) 3α+ 4 (b) sinα (c) αe−2α

In Exercises 2–8, find, if possible, the solution surface to the PDE that also contains
the given curve. Plot the projection of the initial curve in the xy-plane and base
C-curves to determine whether the projection is a base C-curve. Verify the same
result algebraically.

2. xux + y uy = u, C: y = x2, u = x

3. x2ux + y2uy = 4, C: xy = x+ y, u = 1 (x > 1)

4. ux + uuy = 4u, C: x = y = u

5. ux − uuy = u, C: y = 2x, u = 3x

6. 2y(u− 3)ux + (2x− u)uy = y(2x− 3), C: x2 + y2 = 2x, u = 0

7. x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u, C: x+ y = 0, u = 1

8. u(x+ y)ux + u(x− y)uy = x2 + y2, C: y = 2x, u = 0

9. Find the solution of the PDE xux + yuuy = −xy containing the following two initial curves:
(a) C: xy = 1, u = c, where c > 0 is a constant
(b) C: x = 0, u = c, where c > 0 is a constant
(c) Can you use the technique of parts (a) and (b) when the initial curve is C: x = 1, u = c?

10. Find the solution to the PDE 2ux + uuy = 2 containing the curve y2 = −4x, u = −y. What is
its domain of definition?

11. Suppose initial values for the unknown function u(x, y) are specified along a straight line y = mx
for the linear PDE xux + yuy = u. When will there be solutions of the Cauchy problem?

12. Discuss the initial value problem of solving the PDE yux − xuy = 0 containing:
(a) C: x2 + y2 = a2, u = y
(b) C: x+ y = a, u = y

13. Discuss the initial value problem of solving the PDE xux + yuy = 4 containing:
(a) C: x = t, y = t+ 1, u = t2, t ≥ 1
(b) C: x = t, y = 3t, u = t2, t ≥ 1
(c) C: x = t, y = 3t, u = 4 ln t, t ≥ 1

14. Find all solution surfaces of the PDE
(ny −mu)ux + (lu− nx)uy = mx− ly

where l, m, and n are constants. Interpret the result geometrically.

15. Show that the solution of the quasilinear PDE ux + uy = u2 passing through the initial curve
u = x = −y becomes infinite along the hyperbola x2 − y2 = 4.

16. Find the solution of the quasilinear PDE ux + uy = u2 that contains the initial curve y = −x,

u =
{
−1, x < 0
1, x > 0 . Determine its domain of validity and show that the solution is discontinuous

along the base C-curve passing through the point where u(x, y) is initially discontinuous.
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17. Find the solution of the quasilinear PDE ux +uy = u2 +1 that contains the initial curve x = 0,
u = f(y).

18. Explain why there are no solutions of the PDE ux + uy = u passing through the line y = x,
u = 1.

19. Find the solution of the PDE uux + uy = 0 passing through the initial curve y = 0, u = f(x),
where

f(x) =

{ 1, x ≤ 0
1 − x, 0 < x < 1
0, x > 1.

Indicate domains of definition for various parts of the solution.

20. Find the solution of the quasilinear PDE ux + 2uuy = 1 passing through the initial curves:
(a) y = x, u = x
(b) y = x, u = x2

21. Find the solution of the quasilinear PDE (u + y)ux + yuy = x − y passing through the initial
curve x = y − 1, u = y2 + 1.

22. Show that if a C-curve has one point in common with a solution surface to PDE 1.1, then the
C-curve lies entirely within the surface.

23. Show that if two solution surfaces of PDE 1.1 intersect in a point, then they intersect in the
entire C-curve through that point.

24. If the solution in Example 1.7 takes on the values u(0, y) = y and u(x, 0) = x, are ux and uy

still discontinuous across the base C-curve y = x?

25. Show that when a and b in PDE 1.1 are constants, base C-curves are straight lines with slope
b/a.

26. Show that when a, b, and d in linear PDE 1.6 are constants and c = 0, and the initial curve is
a straight line, the solution surface is a plane. Describe the plane.
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§1.2 General Nonlinear First-order Partial Differential Equations

We now turn our attention to the general nonlinear first-order PDE

F (x, y, u, p, q) = 0, (1.7)

where p = ux and q = uy. Quasilinear PDEs in Section 1.1 defined a unique tangent
vector at each point in space (C-direction), and we used these vectors to derive a two-
parameter family of C-curves. The one-parameter subfamily of C-curves through
the initial curve constituted the solution surface of the initial value problem. PDE
1.7 does not define a unique tangent vector at each point on a solution surface. It
defines, as we shall see, a one-parameter family of possible tangent vectors, and
these will lead to characteristic strips rather than charactersistic curves.

Suppose that u(x, y) is a solution of PDE 1.7 and (x0, y0, u0) is any point on
the surface u = u(x, y) defined by this solution. The vector 〈p, q,−1〉 where p and q
are evaluated at (x0, y0, u0), is normal to the tangent plane to the surface, and the
equation of the tangent plane is

u− u0 = p(x− x0) + q(y − y0). (1.8)

Since u(x, y) is a solution of equation 1.7, the relation

F (x0, y0, u0, p, q) = 0, (1.9)

is also valid at the point. Conversely, equation 1.8 can be the tangent plane to a
solution surface u = u(x, y) at a point (x0, y0, u0) only if p and q satisfy equation
1.9. Since we could regard equation 1.7 as defining q as a function p at each point
of space, the PDE defines a one-parameter family of planes that can be tangent to
a solution surface. A function u(x, y) satisfies PDE 1.7 when its tangent plane at
each point belongs to this one-parameter family of permissible tangent planes. The
envelope of this family is called the Monge cone at each point. Thus, u(x, y) is
a solution of PDE 1.7 if, and only if, at each point on the surface u = u(x, y), its
tangent plane is also tangent to the Monge cone at that point.

It may not be clear from equations 1.8 and 1.9 why the envelope of the one-
parameter family of planes is called a cone. To see why, we discuss the PDE

p2 + q2 = 1. (1.10)

When we solve this equation for q in terms of p, and substitute into equation 1.8,
we obtain

u− u0 = p(x− x0) ±
√

1 − p2(y − y0). (1.11)

These are the possible tangent planes at a point (x0, y0, u0) to a solution surface
containing the point. Each tangent plane determines a line through (x0, y0, u0) as
the limiting position of the line of intersection of the plane with neigbouring planes
in the family. The accumulation of all such lines is the Monge cone; it is the envelope
of the possible tangent planes at (x0, y0, u0). We find its equation to show that it is
indeed a cone. If p is changed by a small amount h, the equation of the neighbouring
tangent plane is

u− u0 = (p+ h)(x− x0) ±
√

1 − (p+ h)2 (y − y0). (1.12)
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Together, equations 1.11 and 1.12 define the line of intersection of the planes. If we
subtract the equations, then the equations

u− u0 = p(x− x0) ±
√

1 − p2 (y − y0), (1.13a)

0 = h(x− x0) ± [
√

1 − (p+ h)2 −
√

1 − p2](y − y0) (1.13b)

also define the line of intersection. To find the line on the Monge cone determined
by plane 1.11 for a particular value of p, we take the limit as h approaches zero. If
we divide equation 1.13b by h, and take the limit, we obtain

u− u0 = p(x− x0) ±
√

1 − p2(y − y0),

0 = lim
h→0

{
x− x0 ±

[√
1 − (p+ h)2 −

√
1 − p2

h

]
(y − y0)

}
.

Since lim
h→0

√
1 − (p+ h)2 −

√
1 − p2

h
is the derivative of

√
1 − p2, we have

u− u0 = p(x− x0) ±
√

1 − p2 (y − y0), 0 = x− x0 ±

(
−p√
1 − p2

)
(y − y0).

This is the line on the Monge cone determined by the plane with parameter value
p. If we eliminate p, we obtain the equation of the Monge cone itself. The second
equation can be solved for

p =
±(x− x0)√

(x− x0)2 + (y − y0)2
,

and when this is substituted into the first equation,

u− u0 =
±(x− x0)2√

(x− x0)2 + (y − y0)2
±

√
1 − (x− x0)2

(x− x0)2 + (y − y0)2
(y − y0).

This reduces to (u−u0)2 = (x−x0)2+(y−y0)2, a pair of right circular cones through
(x0, y0, u0) with vertical axis of symmetry. Let us take this one step further before
returning to our general discussion of PDE 1.7. Suppose we require the solution of
PDE 1.10 that contains the line y = x, u = 0 in the xy-plane. We have drawn the
upper Monge cones at a few points on the line in Figure 1.13. They are the same
at every point in space. Geometrically, we can see that planes containing the line
y = x, u = 0 and inclined at π/4 radians to the xy-plane would be tangent to the
Monge cones along the line and at every point on the planes. In other words, these
planes should be solution surfaces to the initial value problem. Indeed, equations
of the planes are u = ±(x− y)/

√
2, and it is a mental calculation to show that they

satisfy p2 + q2 = 1. We will discuss this PDE further in Example 1.10, but for now,
we at least see the Monge cones associated with the PDE, and how solution surfaces
are tangent to the Monge cone at each point.
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x y

u

x y

u

Figure 1.13 Figure 1.14

We now return to our discussion of PDE 1.7. The PDE defines a one-parameter
family of possible tangent planes to a solution surface at each point in space. At
each point, the envelope of this family is the Monge cone. A solution surface shares
a tangent plane with the Monge cone. We have shown a solution surface in Figure
1.14 with Monge cones at a number of points on the surface. At each point, one
of the generating lines of the Monge cone is tangent to the solution surface. This
suggests that we derive generating lines for the Monge cone. To do this, we repeat
the above discussion but with general PDE 1.7 rather than the specific example
p2 + q2 = 1. Equation 1.8 defines the tangent plane to a surface u = u(x, y) at a
point (x0, y0, u0) on the surface. This is a tangent plane to a solution surface of
PDE 1.7 only if p and q satisfy equation 1.9. In other words, PDE 1.7 defines a
1-parameter family of possible tangent planes to a solution surface at each point
in space. Suppose we take p as the parameter defining the tangent planes and q
as a function of p defined implicitly by PDE 1.7. Tangent planes at (x0, y0, u0)
corresponding to parameter values p and p+ h are

u− u0 = p(x− x0) + q(p)(y − y0), u− u0 = (p+ h)(x− x0) + q(p+ h)(y − y0).

Together these equations define the line of intersection of the planes. When these
equations are subtracted, the line of intersection is also defined by the equations

u− u0 = p(x− x0) + q(p)(y − y0), h(x− x0) + (y − y0)[q(p+ h)− q(p)] = 0.

If we divide the second of these by h, and let h approach zero, we obtain the gen-
erating line of the Monge cone corresponding to the tangent plane with parameter
value p,

u− u0 = p(x− x0) + q(p)(y − y0), (x− x0) + (y − y0)q′(p) = 0. (1.14)

(Elimination of p between these equations would lead to the equation for the Monge
cone at the point (x0, y0, u0).) To obtain differential equations that can be solved for
all generating lines of the Monge cone, we eliminate q′(p) between these equations.
To do this, we note that because

F [x0, y0, u0, p, q(p)] = 0

is an identity in p, differentiation gives

Fp + Fq q
′(p) = 0.

When this equation and the second equation in 1.14 are solved for q′(p), and the
expressions are equated, the result is

x− x0

Fp
=
y − y0
Fq

.
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This is the equation for the projections in the xy-plane for the generators of the
Monge cone. By replacing x−x0 and y−y0 with dx and dy, and dropping evaluation
of arguments of Fp and Fq at x0, y0, and u0, we obtain a differential equation for
projections in the xy-plane of generators of Monge cones,

dx

Fp
=
dy

Fq
.

To find the generators themselves, we must add an equation for the u-coordinate.
Because

du = ux dx+ uy dy = p dx+ q dy = p dx+ q

(
Fq

Fp
dx

)
=
pFp + qFq

Fp
dx,

it follows that we may expand the above differential equation to the system

dx

Fp
=
dy

Fq
=

du

pFp + qFq
. (1.15)

These equations define the generator along the Monge cone for a specified value of
p (and q as determined by the function q(p)). Remember that a Monge cone has an
infinite number of generators, one corresponding to each plane tangent to the cone.
In other words, if we solve system 1.15, equations of the generators will be functions
of p. In general, this is impossible since it requires that the PDE F (x, y, u, p, q) = 0
be solved for q(p). The alternative is to expand the system to include equations
for p and q. To do this, we differentiate F (x, y, u, p, q) = 0 with respect to x, and
substitute qx = py, and for Fq from system 1.15,

0 = Fx + Fup+ Fp px + Fq qx = Fx + pFu + Fppx + Fp
dy

dx
py

= Fx + pFu +
Fp

dx
(px dx+ py dy) = Fx + pFu +

Fp dp

dx
.

This can be rewritten in the form
dx

Fp
=

−dp
Fx + pFu

.

Similarly,

dy

Fq
=

−dq
Fy + qFu

.

When these are added to system 1.15, the result is

dx

Fp
=
dy

Fq
=

du

pFp + qFq
=

−dp
Fx + pFu

=
−dq

Fy + qFu
. (1.16)

Equations 1.16 are called characteristic equations (C-equations) for PDE 1.7.
They yield a four-parameter family of solutions, called characteristic strips (C-
strips), but the PDE reduces it to a three-parameter family. In practice, we often
use equations 1.16 to obtain four of the dependent quantities, and the PDE to find
the fifth. One-parameter subsets of C-strips generate solution surfaces of the PDE.
We have characteristic curves, as in the quasilinear case, but at each point on a
characteristic curve is added pairs of numbers (p, q), that determine the possible
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orientations of the tangent plane to a solution surface. In the quasilinear case, the
Monge cone reduces to a single line, the line containing the characteristic direction
at the point (see Exercise 14).

The initial value problem for PDE 1.7 consists in solving the PDE for a solution
surface u = u(x, y) passing through an initial curve C which is best written in
parametric form x = x(t), y = y(t), u = u(t). Quantities p and q cannot be
specified along C; they are dictated by C itself and the PDE. Functions p(t) and
q(t) must satisfy the following conditions:

du

dt
= p(t)

dx

dt
+ q(t)

dy

dt
, (1.17a)

0 = F [x(t), y(t), u(t), p(t), q(t)]. (1.17b)

The first of these, called the strip condition, ensures that p(t) and q(t) define a
plane at each point of C which is tangent to C. The second guarantees that initial
values of x, y, u, p, and q satisfy the PDE.

When the three-parameter family of C-strips is made to pass through C, the
resulting one-parameter family of C-strips generates the solution of the PDE.

Example 1.9 Determine the solution of the PDE pq = u passing through the curve x = 0, u = y2.

Solution Characteristic equations for the PDE are

dx

q
=
dy

p
=

du

2pq
=
dp

p
=
dq

q
.

The last equation gives

q = αp.

When this is substituted into the first equation, integration gives

x = αy + β.

The second and fourth terms give

p = y + γ.

Instead of integrating to get u, we use the PDE, u = pq = αp2. Thus, a three-
parameter family of C-strips is

x = αy + β, u = αp2 = α(y + γ)2, p = y + γ, q = α(y + γ).

To obtain initial values for p and q, we parametrize the initial curve C : x = 0, y =
t, u = t2, and invoke conditions 1.17,

2t = 0 · p+ 1 · q, pq = t2.

These give p = t/2 and q = 2t. To find the C-strips that pass through the initial
curve, we set

0 = αt+ β, t2 = α(t+ γ)2,
t

2
= t+ γ, 2t = α(t+ γ).

These give

α = 4, β = −4t, γ = − t

2
.
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The one-parameter family of C-strips generating the solution surface is

x = 4y − 4t, u = 4
(
y − t

2

)2

, p = y − t

2
, q = 4

(
y − t

2

)
.

Substitution of t = (4y − x)/4 into the second gives the explicit solution

u = 4
(
y − 4y − x

8

)2

=
1
16

(x+ 4y)2.•

The following theorem is the analogue for PDE 1.7 of Theorem 1.2 for PDE
1.1.

Theorem 1.3 When curve C ′ in Figure 1.4b is nowhere tangent to a base C-curve, the Cauchy
problem associated with PDE 1.7 has a unique solution. When C ′ is a base C-curve,
PDE 1.7 does not have a solution unless the initial strip is a C-strip, in which case
there is an infinity of solutions.

It is important to note, however, that uniqueness results only after initial values
for p and q have been obtained from equations 1.17. There may be more than one
set of values for p and q satisfying these equations, and for each set, there is a unique
solution of the Cauchy problem. We illustrate this in the following example.

Example 1.10 We demonstrated earlier that Monge cones for the PDE p2+q2 = 1 are right circular
cones with vertical axis of symmetry. We also indicated that u = ±(x− y)/

√
2 are

solution surfaces containing the line y = x, u = 0. (a) Verify that these are the only
solutions by solving the C-equations. (b) Show that there are two solutions of the
PDE that contain the curve C: y = x2, u = y, one of which is a plane.

Solution (a) Characteristic equations for the PDE are

dx

2p
=
dy

2q
=

du

2p2 + 2q2
, dp = 0, dq = 0.

These imply that

p = α, q = β, αy = βx+ γ, βu = y + δ.

This is a four-parameter family of C-strips, but the PDE requires α2 + β2 = 1, so
that only three of the parameters are independent. Along the initial curve C: x = t,
y = t, u = 0, initial values for p and q are determined by equations 1.17,

0 = p · 1 + q · 1, p2 + q2 = 1 =⇒ p = ± 1√
2
, q = ∓ 1√

2
.

There are two possible initial strips,

x = t, y = t, u = 0, p = ± 1√
2
, q = ∓ 1√

2
.

For the above family of C-strips to contain these initial strips, we set

p = α = ± 1√
2
, q = β = ∓ 1√

2
, αt = βt+ γ, 0 = t+ δ.

Consequently, γ = ±t/
√

2 and δ = −t, and the one-parameter family of C-strips
generating the solution surface is
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± y√
2

= ∓ x√
2
±
√

2t, ∓ u√
2

= y − t, p = ± 1√
2
, q = ∓ 1√

2
.

Explicit solutions are

u = ∓
√

2(y − t) = ∓
√

2
(
y − y + x

2

)
= ± 1√

2
(x− y).

(b) Along the initial curve C: x = t, y = t2, u = t2, values for p and q are
determined by

2t = p · 1 + q · 2t, p2 + q2 = 1.

There are two solutions to these equations,

p = 0, q = 1 and p =
4t

4t2 + 1
, q =

4t2 − 1
4t2 + 1

.

We show that p = 0 and q = 1 leads to a planar solution. For C-strips to contain
the initial strip x = t, y = t2, u = t2, p = 0, and q = 1, we set

0 = p = α, 1 = q = β, αt2 = βt+ γ, βt2 = t2 + δ.

Consequently, γ = −t and δ = 0, and the one-parameter family of C-strips generat-
ing the solution surface is

0 = x− t, u = y;

that is, the solution is u = y.•

Example 1.11 Partial differential equations of the form u = px+ qy + f(p, q) are called Clairaut
equations. Show that C-strips are always straight lines along which p and q are
constant.

Solution Characteristic equations 1.16 for the Clairaut equation are

dx

x+ fp
=

dy

y + fq
=

du

xp+ yq + pfp + qfq
, dp = 0, dq = 0.

The last two obviously imply that p and q are constant along C-strips, p = α and
q = β. The first equation gives

y + fq = γ(x+ fp) =⇒ y = γx+ (γfp − fq).

The PDE then yields u = αx + βy + f(α, β). Characteristic strips are therefore
straight lines.•

EXERCISES 1.2
In Exercises 1–5, find, if possible, the solution surface to the PDE containing the
given curve.

1. pq = 4, C : y = 0, u = x

2. u = p2 − q2, C : 4u+ x2 = 0, y = 0

3. p2 + q2 = 4u, C : u = x2 + 1, y = 0

4. p+ q2 + u = 0, C : u = y, x = 0
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5. u =
1
2
(p2 + q2) + (p− x)(q − y), C : y = u = 0

6. Find, if possible, solution surfaces to the PDE pu = q containing the following curves:
(a) C: y = x3, u = 1
(b) C: u = x, y = 0
(c) C: y = x3, u = x
(d) C: u = y = x, x ≥ 0

7. (a) Show that when a PDE is explicitly independent of x, y, and u, then p and q are constant
along C-strips and u is a linear function of x and y.

(b) Verify that p and q must be constant over the entire solution surface of pq2 = 4 if the
solution must contain the line C: u = x, y = 0, and that the problem has two solutions.

(c) Verify that p and q must be constant over the entire solution surface of pq2 = 4 if the solution
must contain the line C: u = y, x = 0, and that the problem has one solution.

(d) Verify that p and q are not constant over the entire solution surface of pq2 = 4 if the solution
must contain the curve C: u = x2, y = 0.

8. Find the solution of the PDE (1 + q2)u = px which passes through the curve y = 0, u = x2/2.

9. Find the Monge cone for the PDE pq = 1 at any point (x0, y0, u0).

10. Find the Monge cone for the PDE p2 + q = u at any point (x0, y0, u0).

11. (a) Find the Monge cone for the PDE pq = u at any point (x0, y0, u0).
(b) Find, if possible, the solution of the PDE containing each of the following curves:

(i) y = x, u = 1 (ii) y = x, u = −1 (iii) u = x, y = 0

12. (a) Find values of k so that the Clairaut PDE u = px + qy + (p2 + q2)/2 with initial curve
x2 + y2 = a2, u = k does not have solutions.

(b) Solve the initial value problem when k = 0.

13. Repeat Exercise 12 for the PDE u = px+ qy +
√

1 + p2 + q2.
14. Show that when a PDE is quasilinear, equations 1.14 for the Monge cone at a point (x0, y0, u0)

reduce to a single line through the point in the C-direction.
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§1.3 Applications of First-order Partial Differential Equations

Unidirectional Wave Motion
Suppose a function f(x) is defined either along the entire x-axis, or some portion

of it. We call f(x) the initial wave form, because it is to be propagated along the
x-axis starting at time t = 0. We let u(x, t) represent the shape of the wave at
any time t > 0. The shape of the wave is determined by the equation governing
propagation. We examine motion determined by the first-order PDE

∂u

∂t
+ c

∂u

∂x
= 0, (1.18)

called the unidirectional wave equation. We compare motions for three values
of coefficient c: (i) c is a constant, in which case the PDE is linear; (ii) c = u, in
which case the PDE is a very simple quasilinear one; (iii) c = c(u), leading to a
more complicated quasilinear equation.
Case (i) - c > 0 a constant

We solve PDE 1.18 for t > 0 subject to the Cauchy data u(x, 0) = f(x). The
C-equations are

dx

c
= dt, du = 0,

with a two-parameter family of solutions

x = ct+ α, u = β.

For C-curves to pass through the initial curve u(x, 0) = f(x), we set β = β(α), and

x = α, f(x) = β(α).

Consequently, β(α) = f(α), and C-curves generating the solution surface are

x = ct+ α, u = f(α).

Elimination of α gives the explicit solution u = f(x − ct). We have shown the
solution surface in Figure 1.15b for the initial triangular wave form in Figure 1.15a.
It is generated by C-curves that are horizontal, projecting onto base C-curves that
are straight lines with slope c. Along any given base C-curve x = ct+ α, the value
of u has constant value f(α).

The initial wave form f(x) has a discontinuous first derivative at x = 0, x = 1,
and x = 2a. These discontinuities are propagated along the base C-curves x = ct,
x = ct+ a, and x = ct+ 2a; partial derivatives ux and ut are discontinuous across
each of these lines.

u

xa2

u f x= ( )b

a

x( ,0)

x

t

u

x ct=

a+2x ct=

a2

C-curves

Base C-curves

Figure 1.15a Figure 1.15b
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The shape of the wave form at
any given time is the intersection of
this surface with a constant t-plane.
For PDE 1.18, with constant c, the
initial wave form f(x) remains un-
changed (Figure 1.15c). In time t,
the wave moves ct units in the x-
direction all points on the initial

y

xa2

y f x= ( )b

a ct ct+

ct-

wave form move with the same
velocity dx/dt = c. Figure 1.15c

The discussion of equation 1.18 is the same when constant c is negative. The
initial wave moves to the left with speed c rather than to the right.

Case (ii) - c = u

C-equations for the quasilinear PDE

∂u

∂t
+ u

∂u

∂x
= 0, (1.19)

are
dx

u
= dt, du = 0,

with solutions

x = βt+ α, u = β.

Suppose the initial wave form is u(x, 0) = f(x) (not necessarily that in Figure
1.15a). For C-curves to pass through this initial curve, we set β = β(α) and

x = α, f(x) = f(β).

Consequently, β(α) = f(α), and C-curves generating the solution surface are

x = f(α)t+ α, u = f(α).

We obtain an implicit definition of the solution surface by writing

u = f(x− tf(α)) = f(x− tu).

Unlike Case (i), the velocity of the wave at any point x and time t is not
constant; it depends on the height of the wave (dx/dt = u). When f(x) > 0, the
corresponding point on the wave moves to the right; when f(x) < 0, motion is to
the left; and when f(x) = 0, the point is at rest. In general then, motion of the
initial wave form as described by PDE 1.19 is not unidirectional. Since higher points
on the wave have greater velocity than lower ones, it follows that when points to
the left of others on the initial wave form are higher than those to the right, the
higher points may overtake the lower ones, at which time the solution breaks down,
becoming multi-valued thereafter. (It is possible in such situations to extend the
validity of the solution by introducing shock waves, a topic that is beyond the scope
of these notes.) For example, suppose f(x) = sinx. Figure 1.16a shows the initial
wave form on the interval 0 ≤ x ≤ 2π, along with the wave at two additional values
of t before breaking occurs. Figure 1.16b shows the situation at the instant the
solution breaks down; the tangent line is vertical at x = 2π.
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Case (iii) - c = c(u)

C-equations for the quasilinear equation

∂u

∂t
+ c(u)

∂u

∂x
= 0, (1.20)

are
dx

c(u)
= dt, du = 0,

with solutions

x = c(β)t+ α, u = β.

If the initial wave form is u(x, 0) = f(x), then for C-curves to pass through the
initial curve, we set β = β(α), and

x = α, f(x) = β(α).

Consequently, β(α) = f(α), and C-curves generating the solution surface are

x = c[f(α)]t+ α, u = f(α).

These imply that x = c(u)t+ α from which α = x − tc(u), and the solution of the
Cauchy problem associated with PDE 1.20 is defined implicitly by u = f

(
x− tc(u)

)
.

The qualitative behaviour of this solution is the same as in Case (ii), complicated
by the presence of c(u).

Consider now solving unidirectional wave equation 1.18, (with constant c), on
the interval x > 0, subject to the initial condition u(0, t) = f(t). Think of this as
the transmission of a signal f(t) that is emitted in the positive x-direction at x = 0.
For C-curves x = ct+ α, u = β to pass through the initial curve x = 0, u = f(t),
we set β = β(α), and

0 = ct+ α, f(t) = β(α).

Hence, β(α) = f(−α/c), and C-curves generating the solution surface are

x = ct+ α, u = f(−α/c).

Since α = x− ct, the solution surface has equation u = f(t− x/c). We have shown
the solution surface in Figure 1.17b for the piecewise linear input signal in Figure
1.17a. It is generated by C-curves that are horizontal, projecting onto base C-curves
that are straight lines with slope c. Along any given base C-curve x = c(t − τ),
the value of u has constant value f(τ). The input signal is transmitted at speed c,
arriving at point x in time t = x/c.
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The Eikonal Equation

The eikonal equation of geometric optics in two dimensions is the nonlinear PDE

p2 + q2 = n2. (1.21)

It describes the propagation of waves in optics, acoustics, and elasticity. In optics,
n = c0/c, called the index of refraction, c0 is the speed of light in a vacuum, and c
is the velocity of light in the optical medium. For the Cauchy problem associated
with this equation, we take an initial curve in the form x = x(t), y = y(t), u = u(t).
C-equations for the PDE are

dx

2p
=
dy

2q
=

du

2n2
, dp = 0, dq = 0.

Integration of the last two of these, and then the first two, gives

δx = γy + α, γu = n2x+ β, p = γ, q = δ, (1.22)

provided n is constant. Although we have four integration constants, the PDE
demands that γ2 + δ2 = n2, so that we have a three-parameter family of C-strips.
Because light rays travel along C-curves, the first two of these show that light travels
along straight lines. In addition, because wave fronts are given by the level curve
u(x, y) = constant, the vector ∇u = 〈p, q〉 is normal to wave fronts. Since the
equation δx = γy+α implies that the vector 〈γ, δ〉 is tangent to C-curves, it follows
that light rays are normal to wave fronts.

Along the initial curve, p and q are determined by equations 1.17,

du

dt
= p

dx

dt
+ q

dy

dt
, p2 + q2 = n2.

Let the solutions be p(t) and q(t). Along the initial curve, then

x = x(t), y = y(t), u = u(t), p = p(t), q = q(t).

When these are substituted into equations 1.22,

δx(t) = γy(t) + α, γu(t) = n2x(t) + β, p(t) = γ, q(t) = δ.

These give α = q(t)x(t) − p(t)y(t) and β = p(t)u(t) − n2x(t), and therefore the
C-strips generating the solution surface are

q(t)x = p(t)y + q(t)x(t)− p(t)y(t), p(t)u = n2x+ p(t)u(t)− n2x(t), p = p(t), q = q(t).
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They can also be written in the form

q(t)[x− x(t)] = p(t)[y − y(t)], p(t)[u− u(t)] = n2[x− x(t)], p = p(t), q = q(t).

Using the fact that p2+q2 = n2, these can be combined to give the following implicit
definition of the solution

[u− u(t)]2 = n2{[x− x(t)]2 + [y − y(t)]2}. (1.23)

Both surfaces defined by this equation satisfy eikonal equation 1.21 and pass through
the initial curve. The solution is singular, however, since ux and uy are undefined
along the initial curve.

Solutions are now derived for two specific initial situations.

Case 1 - x(t) = 0, y(t) = 0, u(t) = 0, a point
In this case the disturbance is initiated at the origin. The positive root in equation
1.23 reduces to the conical, singular solution

u = n
√
x2 + y2.

Wave fronts u(x, y) = constant are cylinders about the u-axis and light rays are
horizontal straight lines through the u-axis.

Case 2 - x = t, y = at, u = bt, where a and b are constants, a line
Initial values of p and q can be obtained from equations 1.17

b = p+ aq, p2 + q2 = n2.

To avoid the radicals if we solve these directly, we notice that
( p
n

)2

+
( q
n

)2

= 1.

This implies that the vector 〈p/n, q/n〉 has length unity, and we may therefore set

p = n cos θ, q = n sin θ,

where θ is defined by

n cos θ + an sin θ = b =⇒ cos θ + a sin θ =
b

n
.

Since the left side can always be expressed in the form
√

1 + a2 sin (θ + φ) =
b

n

for some φ, it follows that solutions can only exist when
b

n
≤
√

1 + a2, and this

implies that b ≤ n
√

1 + a2. Along the initial curve, then

x = t, y = at, u = bt, p = n cos θ, q = n sin θ.

Substitution of these into equations 1.22 gives

δt = aγt+ α, bγt = n2t+ β, γ = n cos θ, δ = n sin θ.

These imply that
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α = (δ − aγ)t = n(sin θ − a cos θ)t, β = (bγ − n2)t = n(b cos θ − n)t.

When these are substituted into equation 1.22 and a factor n is removed, C-strips
generating the solution surface are given by

sin θx = cos θy + (sin θ − a cos θ)t, cos θu = nx+ (b cos θ − n)t, p = n cos θ, q = n sin θ.

When t is eliminated between the first two equations, an explicit definition of the
solution results,

u(x, y) = n(x cos θ + y sin θ).

For instance, when a = 1 and b = n, angle θ is defined by

cos θ + sin θ = 1 =⇒ θ = 0 or θ = π/2.

Thus, there are two solutions to this problem, u = nx and u = ny. They represent
plane wave solutions.

Traffic Flow

First order PDEs can be used to model traffic flow on a single-lane highway repre-
sented by the x-axis with flow to the right. Two important quantities in the analysis
are density ρ(x, t) of vehicles on the highway (number of vehicles per unit length)
at position x and time t, and speed v(x, t) of vehicles. The integral

∫ x

a

ρ(ζ, t) dζ

represents the number of vehicles on that part of the highway between a fixed point
x = a and any other point x > a. Its time-derivative is the rate of change of the
number of vehicles on this part of the highway. It must be equal to the rate at which
vehicles enter this part of the highway at x = a less the rate at which they leave at
x. Since ρv represents the number of vehicles passing point x on the highway per
unit time, we may write that

∂

∂t

∫ x

a

ρ(ζ, t) dζ = ρ(a, t)v(a, t) − ρ(x, t)v(x, t).

When we differentiate this equation with respect to x and interchange order of
operations on the left,

∂ρ

∂t
= − ∂

∂x
(ρv) =⇒ ∂ρ

∂t
+

∂

∂x
(ρv) = 0. (1.24)

This is the fundamental equation of traffic flow; it relates the density and speed
of the flow. It is necessary to specify a functional relationship between ρ and v in
order to solve this PDE for both quantities. We assume that v is a function of ρ
only, v = v(ρ) which logically should be a decreasing function dv/dρ < 0, velocity
decreasing as density increases. Equation 1.24 then becomes

∂ρ

∂t
+

∂

∂x
[ρ v(ρ)] = 0 =⇒ ∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

dv

dρ

∂ρ

∂x
= 0.

Replacing equation 1.24 is

∂ρ

∂t
+
(
v + ρ

dv

dρ

)
∂ρ

∂x
= 0. (1.25)
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Once v(ρ) is specified, this is a quasilinear first-order PDE for ρ(x, t).

The simplest conceivable relationship would be v(ρ) = vm

(
1 − ρ

ρm

)
, a linear

function with maximum v = vm when ρ = 0, and minimum v = 0 when ρ = ρm is
a maximum. In this case,

v + ρ
dv

dρ
= vm

(
1 − ρ

ρm

)
+ ρ

(
−vm

ρm

)
= vm

(
1 − 2ρ

ρm

)
,

and PDE 1.25 becomes

∂ρ

∂t
+ vm

(
1 − 2ρ

ρm

)
∂ρ

∂x
= 0. (1.26)

C-equations for this first-order quasilinear PDE are

dx

vm

(
1 − 2ρ

ρm

) = dt, dρ = 0.

C-curves are therefore

x = vm

(
1 − 2β

ρm

)
t+ α, ρ = β.

They are straight lines along which density is constant, but the value of ρ varies
from C-curve to C-curve.

To proceed further, we must specify the initial density of vehicles on the road.
We do so in the following example.

Example 1.12 Find the density and velocity of traffic when a traffic light at x = 0 turns green at
time t = 0. Assume that initially there is no traffic to the right of the light and
traffic to the left is stationary at maximum density ρm.

Solution The initial data is

ρ(x, 0) =
{
ρm, x < 0
0, x > 0.

For C-curves to pass through this curve when x < 0, we set β = β(α) and

x = α, ρm = β(α).

C-curves for x < 0 are therefore

x = vm

(
1 − 2ρm

ρm

)
t+ α = −vmt+ α, ρ = ρm.

For C-curves to pass through the initial curve when x > 0, we again set β = β(α),
and

x = α, 0 = β(α).

C-curves for x > 0 are therefore

x = vmt+ α, ρ = 0.

Base C-curves (Figure 1.18a) are two sets of parallel lines. For any point x and
time t in region R1, the density of traffic flow is a maximum, meaning that motion
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has not yet commenced. On the other hand, for any point and time in region R2,
density is a minimum and traffic would flow at maximum velocity except for the
fact that no cars have reached this value for x at this time.

t

x

x vmt

x

= + 0

0

- x vmt= xx vmt=

R
R

R1

3

2

t

x

x vmt

x

= + 0

0

- x vmt= xx vmt=

R
R

R1

3

2

Figure 1.18a Figure 1.18b

What is missing is the transition from zero velocity to maximum velocity, and this
corresponds to the fact that the solution is as yet undefined in region R3. To remedy
this, we follow the lead of Example 1.8 and introduce fanlike base C-curves in R3.
They are straight lines through the origin, and in order that the definition of ρ(x, t)
in this region satisfy PDE 1.26, equations for these lines are specified in the form

x = vm

(
1 − 2ρ

ρm

)
t, −vm < vm

(
1 − 2ρ

ρm

)
< vm.

When we solve this equation for ρ, the result is

ρ(x, t) =
ρm

2

(
1 − x

vmt

)
, −vmt < x < vmt.

This is the transition traffic density in region R3, and it does indeed satisfy PDE
1.26. Substitution into v = vm(1− ρ/ρm) gives the transition flow velocity,

v(x, t) =
1
2

(
vm +

x

t

)
, −vmt < x < vmt.

Complete specifications of ρ(x, t) and v(x, t) are

ρ(x, t) =





ρm, x < −vmt

ρm

2

(
1 − x

vmt

)
, −vmt < x < vmt

0 x > vmt

v(x, t) =





0, x < −vmt
1
2

(
vm +

x

t

)
, −vmt < x < vmt

vm, x > vmt.

It is interesting, informative, and surprising to plot these as functions of x for fixed
t. Plots are shown in Figures 1.19.
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Figure 1.19a Figure 1.19b
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As time increases, the slanted portions of each of these graphs increase in length
and become more horizontal. The point x = −vmt on the x-axis of the velocity
graph moves to the left with velocity −vm. This indicates that when the light turns
green, all cars do not begin to move; there is a time delay for all but the first car.
For a car at position x on the negative x-axis, the time delay is t = −x/vm. Cars
further back in line experience longer delays. It’s as if a signal to move propagates
back through the line of stationary cars at velocity vm.

In Figures 1.20a,b, we have plotted velocity as a function of time for fixed x < 0
and x > 0, respectively. Figure 1.20a confirms what we saw in Figure 1.19b. The
car at position x in the line of stationary cars experiences a time delay t = −x/vm

before it begins to move. Thereafter, velocities of cars at this position gradually
increase, ultimately approaching vm/2. On the other hand, for x > 0, Figure 1.19b
indicates velocity vm at position x until t = x/vm. It is not that cars move at this
velocity at this position for these times because until time x/vm no cars will have
reached position x. The lead car in line travels with velocity vm, reaching position
x at time x/vm. Thereafter, velocities of cars at this position gradually decrease,
approaching vm/2.

v
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vm

x
vm

2

-

x<0

v

t

vm

x
vm

2
x>0

vm

Figure 1.20a Figure 1.20b

What may seem strange at first is that for very large t, all cars move with velocity
vm/2. This is a result of the fact that the number of cars on the highway must be
preserved; the initial number of cars to the left of the traffic light with density ρm

eventually spreads out over the entire highway at density ρm/2.•

EXERCISES 1.3

1. Show that when f(x) = mx, m a positive constant, the solution of PDE 1.19 never breaks.
Draw the wave form for t = 0, 1, 2, 3.

2. Show that when f(x) = −mx, m a postive constant, the solution of PDE 1.19 breaks. Determine
the time for breaking to occur. Draw the wave form when m = 1/4 for t = 0, 3, 3.5, 3.75.

3. (a) Find an explicit solution of PDE 1.19 when the initial wave form f(x) = 1− x2. Determine
when breaking occurs.

(b) Repeat part (a) if f(x) = 1 − x2 for −1 ≤ x ≤ 1.

4. Show that when the initial wave form for PDE 1.19 is f(x), breaking time occurs at the smallest
value of t satisfying the equation

f ′(x− tu) = −1
t
.
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5. Use the result of Exercise 4 to verify the breaking times in (a) Exercise 1, (b) Exercise 2, and
(c) Exercise 3.

6. Use the result of Exercise 4 to show that if the initial wave form f(x) for PDE 1.19 is such that
f ′(x) > 0 for all x, breaking will not occur.

7. Values of the solution to PDE 1.19 generally vary from base C-curve to base C-curve. As a
result, the breaking time for a solution is the earliest positive time at which two base C-curves
intersect. Illustrate this in (a) Exercise 1, (b) Exercise 2, and (c) Exercise 3.

8. Use the technique of Exercise 7 to find the breaking time for the solution of PDE 1.19 when
f(x) = 1− x2 for −1 ≤ x ≤ a, where a > 1.

9. Solve the unidirectional wave equation 1.18 (with c > 0) for x > 0 and t > 0 with an initial
wave form u(x, 0) = f(x) and an input signal u(0, t) = g(t).

10. Solve the damped unidirectional wave equation

∂u

∂t
+ c

∂u

∂x
+ βu = 0, u(x, 0) = f(x),

where c and β > 0 are constants.

11. (a) Find, in integral form, the solution to the following nonhomogeneous unidirectional wave
equation

∂u

∂t
+ c

∂u

∂x
= F (x, t), u(x, 0) = f(x),

where c is constant.
(b) Simplify the solution in part (a) when F (x, t) = x+ t.

12. Show that the singular solution in Case 1 for the eikonal equation is the Monge cone at the
origin.

13. Find the solution of eikonal equation 1.21 when the initial curve is the straight line x = x0 + t,
y = y0 + at, u = u0 + bt.
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CHAPTER 2 DERIVATION OF PARTIAL DIFFERENTIAL

EQUATIONS OF MATHEMATICAL PHYSICS

§2.1 Introduction

In this and the remaining chapters of the text, we concentrate on PDEs that contain
derivatives of second and higher order. For example, in Figure 2.1 we picture a cir-
cular rod of length L that at some initial time (say t = 0) has constant temperature
10◦C. Suppose that at this time, the lateral side of the rod is perfectly insulated
and the ends are suddenly heated to 100◦C and maintained at this temperature
thereafter. In Section 2.2 it is shown that the temperature U at points in the rod
is a function of x and t only, U = U(x, t), and that this function must satisfy the
PDE

∂U

∂t
= k

∂2U

∂x2
, (2.1a)

where k is a constant (the thermal diffusivity of the material in the rod). This
second-order PDE is called the one-dimensional heat conduction equation;
it states that the temperature function U(x, t) must have a first partial derivative
with respect to t identical to k times its second partial derivative with respect to x.

x

x L
x

Rod

Insulation

=0

=

Figure 2.1

Other PDEs that we shall consider include the one-dimensional wave equation
for displacement y(x, t) of a vibrating string (Section 2.3),

∂2y

∂t2
=
τ

ρ

∂2y

∂x2
; (2.2)

the three-dimensional Poisson equation for potential V (x, y, z) (Section 2.6)

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= F (x, y, z); (2.3)

and the beam-vibration equation for displacement y(x, t) (Section 2.5),

w

g

∂2y

∂t2
+EI

∂4y

∂x4
= F (x, t). (2.4)

Equations 2.2 and 2.3 are second order, and equation 2.4 is fourth order.
In the study of ODEs, it is customary to solve a certain class of equations and

thereafter to deal with applications involving equations in this class. For example,

a general solution of the second-order linear ODE p
d2y

dt2
+ q

dy

dt
+ ry = 0 is y(t) =

Ay1(t) + By2(t), where A and B are arbitrary constants and y1(t) and y2(t) are
any two linearly independent solutions of the equation. Once y1(t) and y2(t) are
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known, every solution of the equation is of the form Ay1(t) + By2(t) for some A
and B. When such an equation is found in an application, say a vibrating mass-
spring system or an LCR-circuit, it is accompanied by two initial conditions that
the solution y(t) must also satisfy. These conditions determine the values for A
and B. What we are saying is that in applications, ODEs are often solved by first
finding general solutions and then using subsidiary conditions to determine arbitrary
constants. (Using Laplace transforms is an exception to this method.)

It is very unusual to approach PDEs in this way, principally because arbitrary
constants in general solutions of ODEs are replaced by arbitrary functions in PDEs,
and determination of these arbitrary functions using subsidiary conditions is usually
impossible. In other words, general solutions of PDEs are of limited utility in solving
PDEs. (The one major exception is wave equation 2.2, and this particular situation
is discussed in Section 2.7.) In general, then, it is necessary to consider a PDE
and any extra conditions that accompany the equation simultaneously. We must
proceed directly to a solution of the PDE and subsidiary conditions, as opposed to
PDE first and subsidiary conditions later.

Subsidiary conditions that accompany PDEs are called initial and boundary
conditions. For example, it is clear that the temperature function U(x, t) for the
rod in Figure 2.1 must also satisfy the boundary conditions

U(0, t) = 100, (2.1b)
U(L, t) = 100, (2.1c)

since the ends of the rod, x = 0 and x = L, are held at temperature 100◦C. In
addition, U(x, t) must satisfy the initial condition

U(x, 0) = 10, (2.1d)

since its temperature at time t = 0 is 10◦C throughout.
Partial differential equation 2.1a, boundary conditions 2.1b,c, and initial con-

dition 2.1d constitute the complete initial boundary value problem for temper-
ature in the rod. It is more precise to describe the problem as follows:

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (2.5a)

U(0, t) = 100, t > 0, (2.5b)
U(L, t) = 100, t > 0, (2.5c)
U(x, 0) = 10, 0 < x < L. (2.5d)

All that we have done is affix intervals on
which conditions 2.1 must be satisfied,
but, perhaps unexpectedly, these intervals
are all open. To see why this is the case,
consider first PDE 2.5a. Physically, U(x, t)
is a function of one space variable x and
the time variable t, but mathematically,
it is simply a function of two independent
variables x and t. It must satisfy PDE 2.5a

t

xL

in some region of the xt-plane, and we take Figure 2.2
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this region to be described by the inequalities 0 < x < L and t > 0 (Figure 2.2).
By keeping these intervals open, we avoid discussing the PDE on the boundary of
the region. Otherwise it would be necessary to consider one-sided derivatives with
respect to x along x = 0 and x = L, one-sided derivatives with respect to t along
t = 0, and both types of one-sided derivatives at (0, 0) and (L, 0). We take as a
general principle that partial differential equations are always considered on open
regions. *

Replacement of t > 0 and 0 < x < L in equations 2.5b–d with t ≥ 0 and 0 ≤
x ≤ L would lead to contradictions. Conditions 2.5b,c would then require U(x, t)
to have values U(0, 0) = U(L, 0) = 100, whereas condition 2.5d would demand that
U(0, 0) = U(L, 0) = 10. By imposing boundary and initial conditions on open
intervals, we eliminate such mathematical contradictions. Realize, however, that
although conditions 2.5b,c,d contain no mathematical contradictions, it is physically
impossible to change the temperature of the ends of the rod instantaneously from
10◦C to 100◦C, and yet problem 2.5 does demand this. We must therefore anticipate
some type of anomaly in the solution to problem 2.5 near positions x = 0 and x = L
at times close to t = 0.

It is not always necessary to use open intervals for boundary and initial con-
ditions. If the initial temperature in the rod were not constant but varied with x
according to, say, f(x) = 400x(L− x) + 100, it would not be necessary to heat the
ends of the rod suddenly to 100◦C at time t = 0; they would already be at that
temperature, since f(0) = f(L) = 100. It would be necessary only to maintain
them at 100◦C thereafter. In this case, it would be quite acceptable to replace the
open intervals in conditions 2.5b,c,d with

U(0, t) = 100, t ≥ 0,
U(L, t) = 100, t ≥ 0,
U(x, 0) = 400x(L− x) + 100, 0 ≤ x ≤ L.

It will be our practice to state initial and boundary conditions on open intervals
even when closed intervals are acceptable.

Example 2.1 The ends of a violin string of length L are fixed on the x-axis at positions x = 0
and x = L. When the middle of the string is elevated to the position in Figure 2.3
and then released from rest (at time t = 0),
subsequent displacements of points of the
string must satisfy PDE 2.2, where τ is
the tension in the string and ρ is its
linear density. What are the boundary
and initial conditions for y(x, t)?

y

x
L

L L

LinearLinear

/2

/100

Figure 2.3

Solution Since the ends of the string are fixed on the x-axis, boundary conditions
are

* A region of the xy-plane is said to be open if about every point in the region there
can be drawn a circle such that its interior contains only points of the region. A
region in space is open if about every point in the region there can be drawn a
sphere such that its interior contains only points of the region.
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y(0, t) = 0, t > 0,
y(L, t) = 0, t > 0.

Because the string has the position in Figure 2.3 at time t = 0, y(x, t) must satisfy
the initial condition

y(x, 0) =
{
x/50, 0 < x ≤ L/2
(L− x)/50, L/2 < x < L.

In addition, the fact that the string is released from rest indicates that its velocity at
time t = 0 is equal to zero. Since velocity is the time rate of change of displacement,
the second initial condition is

∂y(x, 0)
∂t

= 0, 0 < x < L.

There would be no conflict in replacing each of the open intervals in these four
conditions with closed intervals.•

In problem 2.5, boundary conditions 2.5b,c specify the temperature of the rod
at its ends, x = 0 and x = L. Likewise, in Example 2.1, the boundary conditions
specify the displacement of the string at its ends. These are examples of what are
called Dirichlet boundary conditions. A Dirichlet boundary condition specifies
the value of the unknown function on a physical boundary. As another example,
consider the two-dimensional version of Poisson’s equation 2.3,

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (x, y) in R, (2.6a)

for the region R in Figure 2.4. (F (x, y) is
a given function.) In compliance with our
previous remarks, R is the open region
consisting of all points interior to the
bounding curve β(R) but not including
β(R) itself. A Dirichlet boundary condi-
tion specifies the value of V (x, y) on β(R):

y

x

x,y
x,y

n
n

RR

1

2

1

2

( )
( )

( )
b

n
n

^
^

V (x, y) = G(x, y), (x, y) on β(R), (2.6b) Figure 2.4
where G(x, y) is some given function. Poisson’s equation 2.6a together with bound-
ary condition 2.6b is called a boundary value problem.

Two other types of boundary conditions arise frequently in applications — Neu-
mann and Robin. A Neumann boundary condition for equation 2.6a specifies
the rate of change of V (x, y) at points on β(R) in a direction outwardly normal
(perpendicular) to β(R). We express this in the form

∂V

∂n
= G(x, y), (x, y) on β(R), (2.7a)

where n is understood to be a measure of distance at (x, y) in a direction perpendic-
ular to β(R) (Figure 2.4). Because ∂V/∂n is the directional derivative of V along
the outward normal to β(R), equation 2.7a may be expressed in the equivalent form
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∇V · n̂ = G(x, y), (x, y) on β(R), (2.7b)

where ∇V is the gradient of V at (x, y) and n̂ is the unit outward normal vector to
β(R) at (x, y).

A Robin boundary condition is a linear combination of a Dirichlet and a
Neumann condition. For equation 2.6a, it takes the form

l
∂V

∂n
+ hV = G(x, y), (x, y) on β(R), (2.8a)

where l and h are nonzero constants. What is important is not the individual values
of l and h but their ratio, l/h or h/l; division of condition 2.8a by l and h leads to
boundary conditions

∂V

∂n
+
(
h

l

)
V =

G(x, y)
l

, (x, y) on β(R), (2.8b)

and
(
l

h

)
∂V

∂n
+ V =

G(x, y)
h

, (x, y) on β(R), (2.8c)

both of which are equivalent to 2.8a. The advantage of condition 2.8a, however, is
that solutions of problems with Dirichlet and Neumann boundary conditions can
be obtained from those with Robin conditions by specifying l = 0, h = 1 and
h = 0, l = 1, respectively. Boundary conditions 2.6b, 2.7, and 2.8 are said to be
homogeneous if G(x, y) ≡ 0; otherwise, they are said to be nonhomogeneous.
Physical interpretations of Neumann and Robin boundary conditions are discussed
in the context of applications in Sections 2.2–2.6.

Example 2.2 What form do Robin boundary conditions take for the heat conduction problem
described by equations 2.5a–d?

Solution At the end x = L of the rod, the outward normal is in the positive x-
direction. Consequently, at x = L, we have ∂U/∂n = ∂U/∂x, and a Robin boundary
condition there is

l2
∂U(L, t)
∂x

+ h2U(L, t) = G2(t), t > 0.

With the outward normal at x = 0 in the negative x-direction, it follows that the

normal derivative there is
∂U(0, t)
∂n

= −∂U(0, t)
∂x

, and a Robin condition there takes
the form

−l1
∂U(0, t)
∂x

+ h1U(0, t) = G1(t), t > 0.•

In order that an (initial) boundary value problem adequately represent a phys-
ical situation, its solution should have certain properties. First, there should be
a solution to the problem. Second, this solution should be unique; that is, the
problem should not have more than one solution. For example, if problem 2.5 had
more than one solution, how could it possibly be an adequate description of the
temperature in the rod? Solutions should also have one further property, which we
explain through problem 2.6. The solution of this problem depends on the functions
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F (x, y) and G(x, y). In practice, these quantities may not be known exactly; they
may, for instance, be obtained from physical measurements. It would be reasonable
to expect that small changes in either F (x, y) or G(x, y) should not appreciably
affect V (x, y). These three conditions lead to what is called a well-posed problem.
An (initial) boundary value problem is said to be well-posed if:

(1) the problem has a solution;
(2) the solution is unique;
(3) the solutions depends continuously on source terms and initial and boundary

data (that is, small changes in source terms and initial and boundary data
produce small changes in the solution).

All stable physical situations should be modelled by well-posed problems. The
situation in Figure 2.5 indicates why we have
added the adjective “stable”. Pictured is a
vertical rod that can pivot about its lower end.
If this is the initial position of the rod, then
it remains at this position forever. If, however,
this initial position is changed ever so slightly,
then the rod experiences oscillations. These
oscillations may persist forever if friction and
damping are neglected, or die out if friction

Rod

Pin

or damping is taken into account. In either case, Figure 2.5
a small change in the initial conditions has
resulted in large changes in the solution, contrary to item (3) above. But clearly,
the vertical position of the rod is an unstable situation. Hence, we cannot expect
unstable physical situations to be modelled by well-posed problems.

In this book we discuss only existence and uniqueness of solutions; continuous
dependence of solutions on source terms and subsidiary data is beyond our scope.
Existence of solutions can be approached in two ways. One might be interested
in knowing whether a particular initial boundary value problem has a solution but
might not be at all interested in what the solution is. This is “existence” in its
purest sense. Our approach is more pragmatic. We discuss different ways to solve
initial boundary value problems, and if one of these methods succeeds in giving a
solution to a problem, then clearly “existence” of a solution has been established.
It is important to know that a problem has only one solution, however, since then,
and only then, may we conclude that once a solution has been found, it must be
the solution to the problem. Uniqueness is discussed in Sections 6.6–6.8.

In Sections 2.2–2.6 we derive partial differential equations that arise in physics
and engineering. Each section is self-contained and may therefore be read indepen-
dently of the others. This means that readers interested in heat conduction could
study Section 2.2 and omit Sections 2.3–2.6 without fear of missing any central ideas
concerning PDEs. Likewise, readers interested in mechanical vibrations could omit
Sections 2.2 and 2.6 and concentrate on Sections 2.3–2.5.

Arising in many of these applications is the Laplacian of a function. The
Laplacian of a function V (x, y) in Cartesian coordinates x and y is defined as

∇2V =
∂2V

∂x2
+
∂2V

∂y2
, (2.9a)
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and if V (x, y, z) is a function of three variables, as

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
. (2.9b)

When a function is expressed in polar, cylindrical, or spherical coordinates, its
Laplacian is more complicated to calculate. We list the formulae here, leaving
verification to Exercises 10 and 11. In polar coordinates (r, θ) (Figure 2.6),

∇2V =
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
; (2.10a)

in cylindrical coordinates (r, θ, z),

∇2V =
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
+
∂2V

∂z2
; (2.10b)

and in spherical coordinates (r, φ, θ) (Figure 2.7),

∇2V =
∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂V

∂φ

)
+

1
r2 sin2 φ

∂2V

∂θ2
. (2.10c)

The PDE obtained by setting the Laplacian of a function equal to zero,

∇2V = 0, (2.11)

is called Laplace’s equation. When set equal to a nonzero function,

∇2V = F, (2.12)

it is Poisson’s equation.
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Figure 2.6 Figure 2.7

Dirac-delta Functions

Dirac-delta functions (or delta functions, for short) have become an accepted
way to model point “sources” in physical systems (point charges in electrostatics,
point masses in physics, point sources in heat conduction and fluid flow, and concen-
trated forces on beams and membranes, to name a few). They are essential to our
discussions of Green’s functions in Chapters 12 and 13, and we shall discuss them
in detail in these chapters. But to make use of delta functions only in this context
would neglect a valuable tool for solving many problems. For the first eleven chap-
ters, we need only what might be called the fundamental property of delta functions.
When c is a constant, the delta function δ(x− c) operates on a functions f(x) that
is continuous at x = c in the following way
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∫ b

a

f(x) δ(x− c) dx =
{
f(c), when a < c < b
0, otherwise,

(2.13)

where limits a and b may be finite or infinite. For instance,
∫ 5

0

(2x− 1) δ(x− 3) dx = 5,
∫ ∞

−∞
x2 δ(x− 2) dx = 4,

∫ −2

−5

(x2 + 1) δ(x) dx = 0.

Delta functions are not ordinary functions in the sense that we can ask for the
value of δ(x − c) at say x = 5. They are examples of what are called “generalized
functions”, and they are characterized by their effect on other functions through
integral 2.13. It follows from this property that when c > a,

∫ x

a

δ(t− c) dt =
{

1, x > c
0, x < c. (2.14)

This function is called the (Heaviside)
unit step function, which we denote by

h(x− c) =
{

0, x < c
1, x > c. (2.15)

Its graph is shown in Figure 2.8. Since
the left side of equation 2.14 is essen-
tially an antiderivative of δ(x− c), we
can write that x

1

c

y h x-c( )=
y

Figure 2.8
∫
δ(x− c) dx = h(x− c) + C ⇐⇒ h′(x− c) = δ(x− c), (2.16)

where C is an arbitrary constant. Antiderivatives of the unit step function are
discussed in Exercise 8. Detailed discussions of delta functions can be found in
Sections 12.1 and 13.1.

EXERCISES 2.1
On the region in Exercises 1–7 what form do (a) Dirichlet, (b) Neumann, and (c)
Robin boundary conditions take for the PDE?

1.
∂2V

∂x2
+
∂2V

∂y2
= F (x, y), 0 < x < L, 0 < y < L′

2.
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
+ V = F (x, y, z), 0 < x < L, y > 0, z > 0

3.
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
= F (r, θ), 0 < r < r0, −π < θ ≤ π

4.
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
= F (r, θ), 0 < r < r0, 0 < θ < π

5.
∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
+
∂2V

∂z2
= F (r, θ, z), 0 < r < r0, −π < θ ≤ π, z > 0

6.
∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂V

∂φ

)
+

1
r2 sin2 φ

∂2V

∂θ2
= F (r, φ, θ), 0 < r < r0,



SECTION 2.1 41

−π < θ ≤ π, 0 < φ < π

7. Use the same PDE as in the previous exercise but on the region 0 < r < r0, −π < θ ≤ π,
0 < φ < π/2.

8. (a) Show that continuous antiderivatives of h(x− c) are
∫
h(x− c) dx = (x− c)h(x− c) + C,

provided the right side is given value 0 at x = c.
(b) Extend the result in part (a) to verify the following continuous antiderivatives

∫
(x− c)nh(x− c) dx =

1
n+ 1

(x− c)n+1h(x− c) + C,

provided once again that the right side is given value 0 at x = c.
9. When a boundary value problem (but not an initial boundary value problem) has a Neumann

boundary condition on all parts of its boundary, nonhomogeneities must satisfy a consistency
condition. In this exercise we derive this condition for two- and three-dimensional problems.
(a) Use Green’s theorem in the plane to show that if V (x, y) is a solution of Poisson’s equation

2.6a in some region R of the xy-plane with boundary β(R), then
∫∫

R

F (x, y) dA =
∫
©

β(R)

∂V

∂n
ds. (2.17)

(Green’s theorem is stated in Appendix C.) If the boundary condition for the PDE is Neu-
mann (condition 2.7a), show that

∫∫

R

F (x, y) dA =
∫
©

β(R)

G(x, y) ds. (2.18)

The right side of this equation is the line integral of G(x, y) around the boundary β(R), and
the left side is the double integral of F (x, y) over R. Thus, the source term F (x, y) in 2.6a
and the boundary data G(x, y) in 2.7a cannot be specified independently; they must satisfy
this consistency condition. Physical interpretations of this condition will be given later (see,
for example, Exercise 24 in Section 2.2). This condition is also sufficient for existence of
a solution, but this is more difficult to prove. When the boundary condition is Dirichlet
(equation 2.6a), equation 2.17 is not a consistency condition, since ∂V/∂n is not specified.
It can be used as a check on the acceptability of a proposed solution to the boundary value
problem. Likewise, when the boundary condition is Robin (2.8a), equation 2.17 can be
written in the form ∫∫

R

F (x, y) dA =
∫
©

β(R)

1
l
[G(x, y) − hU(x, u)] ds,

which again serves as a check on solutions, but not a consistency condition.
(b) Show that the analogue of the consistency condition in part (a) for the three-dimensional

boundary value problem

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= F (x, y, z), (x, y, z) in V ,

∂V

∂n
= G(x, y, z), (x, y, z) on β(V ),
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is ∫∫
⊂⊃

β(V )

G(x, y, z) dS =
∫∫∫

V

F (x, y, z) dV .

(You will need the divergence theorem from Appendix C.)

10. In this exercise we verify expression 2.10a for the Laplacian in polar coordinates. Formula 2.10b
is then obvious.
(a) Verify that when a function V (x, y) is expressed in polar coordinates r and θ, its Cartesian

derivatives ∂V/∂x and ∂V/∂y may be calculated according to

∂V

∂x
=
∂V

∂r

∂r

∂x
+
∂V

∂θ

∂θ

∂x
,

∂V

∂y
=
∂V

∂r

∂r

∂y
+
∂V

∂θ

∂θ

∂y
.

(b) Obtain formulas for ∂r/∂x, ∂r/∂y, ∂θ/∂x, and ∂θ/∂y from the equations x = r cos θ and
y = r sin θ between polar and Cartesian coordinates, and use them to show that

∂V

∂x
= cos θ

∂V

∂r
− sin θ

r

∂V

∂θ
,

∂V

∂y
= sin θ

∂V

∂r
+

cos θ
r

∂V

∂θ
.

(c) Use the result in part (b) to calculate the following expressions for second partial derivatives
of V with respect to x and y:

∂2V

∂x2
= cos2 θ

∂2V

∂r2
+

sin2 θ

r

∂V

∂r
+

sin2 θ

r2
∂2V

∂θ2
+

2 sin θ cos θ
r2

∂V

∂θ
− 2 sin θ cos θ

r

∂2V

∂r∂θ
,

∂2V

∂y2
= sin2 θ

∂2V

∂r2
+

cos2 θ
r

∂V

∂r
+

cos2 θ
r2

∂2V

∂θ2
− 2 sin θ cos θ

r2
∂V

∂θ
+

2 sin θ cos θ
r

∂2V

∂r∂θ
.

(d) Finally, add the results in part (c) to obtain expression 2.10a.

11. Use the technique in the previous exercise to obtain expression 2.10c.
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§2.2 Heat Conduction

In this section we develop the mathematics necessary to describe conductive heat
flow in various physical bodies — rods, plates, and three-dimensional regions. We
could begin with one-dimensional flow, such as that in the rod of Figure 2.1, and
generalize later to plates and volumes. Alternatively, we could begin with three-
dimensional heat flow and specialize later to plates and rods. We find the latter
approach more satisfactory; it does not require special physical apparatus to ensure
heat flow in only one or two directions. Furthermore, the mathematical and physical
quantities that describe heat flow have units that are more natural in a three-
dimensional setting.

When we consider temperature at various points in some object (a nuclear
reactor, say), seldom is it constant; temperature normally varies from point to
point and changes with time. Experience has shown that when temperature does
vary, heat flows by conduction. Heat can flow by other means as well, namely by
convection and by radiation. Heat received by the earth from the sun is due to
radiation. We do not consider heat transfer by radiation in this book. The engine
of a car illustrates the difference between convective and conductive heat flow. In
order to keep the engine cool, water carries heat from the engine to the radiator
through hoses; it is the motion of the water that transfers heat from engine to
radiator. This is called convective heat transfer. Heat will also pass through the
walls of the engine to be dissipated into the air. The process by which heat is moved
from molecule to molecule in the engine wall is called heat transfer by conduction;
it is due to vibrations of molecules, the vibrations increasing with higher and higher
temperatures. In this book we discuss only heat transfer by conduction. To describe
conductive heat flow in a medium, and ultimately obtain a PDE that determines
temperature in the medium, we introduce the heat flux vector.

Definition 2.1 The heat flux vector q(r, t) is a vector function of position r and time t. Its
direction corresponds to the direction of heat flow at position r and time t, and its
magnitude is equal to the amount of heat per unit time crossing unit area normal
to the direction of q.

This vector, which has units of watts per square metre (W/m2), is defined at
every point in a conducting medium except possibly at sources or sinks of heat
(Figure 2.9).

A medium is said to be isotropic if,
when any point within it is heated, heat
spreads out equally in all directions. In
other words, isotropic media have no
preferred directions for heat flow. It has
been shown experimentally that in an
isotropic medium, heat flows in the
direction in which temperature decreases
most rapidly, and the amount of heat x

z

y

t

t

r

q r

q r

Unit area normal
to ( , )

( , )

flowing in that direction is proportional to the Figure 2.9
rate of change of temperature in that direction.
This is called Fourier’s law of heat conduction.

Mathematically, if U(r, t) is the temperature distribution in the medium, then
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the negative of its gradient −∇U points in the direction in which the function U
decreases most rapidly and −|∇U | is the maximum rate of decrease. Consequently,
Fourier’s law of heat conduction in an isotropic medium can be stated vectorially
as

q(r, t) = −κ∇U, (2.19)

where κ > 0 is the “constant” of proportionality called the thermal conductivity
of the medium. It has units of watts per metre per degree Kelvin or Celsius (W/mK).
In general, thermal conductivity may depend both on the temperature of and the
position in the medium. If, however, the range of temperature is “limited” (and
we shall consider only this case), the variation of κ with temperature is negligible,
and κ becomes a function of position only, κ = κ(r). The medium is said to be
homogeneous if κ is independent of position, in which case κ becomes a numerical
constant. Rough values for thermal conductivities of various homogeneous materials
are given in Table 2.1. The larger the value of κ, the more readily the material
conducts heat. Other thermal properties are also included; they will be introduced
shortly.

Thermal Properties of Some Materials

Specific Thermal Thermal
Material Density Heat Conductivity Diffusivity

(kg/m3) (Ws/kgK) (W/mK) at 273K (m2/s)

Copper 8950 381 390 114× 10−6

Mild Steel 7884 460 45 12.4 × 10−6

Pyrex Glass 2413 837 1.18 0.584× 10−6

Water 1000 1000 0.600 0.600× 10−6

Asbestos 579 1047 0.15 0.247× 10−6

Table 2.1

To obtain a PDE governing tempera-
ture in a medium, we consider an imagi-
nary surface β(R) bounding a portion R
of the medium (Figure 2.10). Heat is added
to (or removed from) R in two ways —
across β(R) by conduction and by internal
heat sources or sinks. When g(r, t) is the
amount of heat generated (or removed) per
unit time per unit volume at position r
and time t, the total heat generation per x

z

y

R

b

dS

q
n̂

R( )

unit time within R is expressed by the Figure 2.10
triple integral

∫∫∫

R

g(r, t) dV . (2.20)

The amount of heat flowing into R through β(R) per unit time is given by the
surface integral on the left side of the equation
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∫∫

β(R)

q · (−n̂) dS =
∫∫

β(R)

κ∇U · n̂ dS, (2.21)

where n̂ is the unit outward-pointing normal to β(R). Fourier’s law 2.19 has been
used to obtain the integral on the right. The total heat represented by expressions
2.20 and 2.21 changes the temperature of points (x, y, z) in R by an amount ∂U/∂t
in unit time. The heat requirement for this change is

∫∫∫

R

∂U

∂t
sρ dV , (2.22)

where ρ and s are the density and specific heat of the medium. (Specific heat
is the amount of heat required to produce unit temperature change in unit mass.)
Energy balance requires that expression 2.22 be equal to the sum of expressions 2.20
and 2.21:

∫∫∫

R

∂U

∂t
sρ dV =

∫∫∫

R

g(r, t) dV +
∫∫

β(R)

κ∇U · n̂ dS, (2.23)

and when the divergence theorem (see Appendix C) is applied to the surface integral,
the result is

∫∫∫

R

[
ρs
∂U

∂t
− g(r, t) −∇ · (κ∇U)

]
dV = 0. (2.24)

For this integral to vanish for an arbitrary volume R, in particular for an arbitrarily
small volume, the integrand must vanish at each point of R; that is, U must satisfy
the PDE

ρs
∂U

∂t
− g(r, t) −∇ · (κ∇U) = 0. (2.25)

In actual fact, this conclusion is correct only when we know that the integrand in
equation 2.24 is a continuous function throughout R. When this is not the case,
equation 2.25 may not be valid at every point of R. It will, however, be true in each
subregion in which the integrand is continuous. Since equation 2.24 must be valid
even when its integrand is discontinuous, it is a more general statement of energy
balance than equation 2.25.

Equation 2.25 is the PDE for heat conduction in an isotropic medium. If the
medium is also homogeneous, we define k = κ/(sρ) as the thermal diffusivity of
the medium, in which case equation 2.25 reduces to

∂U

∂t
= k

[
∇2U +

g(r, t)
κ

]
. (2.26)

The units of k are metres squared per second; typical values are given in Table 2.1.
Accompanying the PDE of heat conduction will be initial and/or boundary

conditions. If R now represents the entire region in which U(r, t) is to be considered,
rather than a particular part of it as in the foregoing discussion, an initial condition
describes temperature in R at some initial time (usually t = 0):

U(r, 0) = f(r), r in R, (2.27)

where f(r) is some given function of position.
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The three types of boundary conditions that we consider are those introduced
in Section 2.1 — Dirichlet, Neumann, and Robin. A Dirichlet condition prescribes
temperature on the boundary β(R) of R:

U(r, t) = F (r, t), r on β(R), t > 0, (2.28)

where F (r, t) is a given function.
Sometimes in applications we

know the heat flux vector q on β(R)
(Figure 2.10). Suppose we represent
q on β(R) in terms of its tangential
and normal components to β(R),

q = qn(r, t)n̂ + qT (r, t)T̂.
Component qn(r, t) is negative when
heat is added to R and positive when
heat is extracted. Fourier’s law 2.19 on x

z

y

R

q

n̂ R( )b

β(R) yields Figure 2.10

qnn̂ = −κ∇U, r on β(R), t > 0, (2.29)

and scalar products with n̂ give

∂U

∂n
= −qn(r, t)

κ
, r on β(R), t > 0. (2.30)

In other words, specification of heat flow on β(R) leads to a Neumann boundary
condition. In particular, if a bounding surface is perfectly insulated, the heat flux
vector thereon vanishes and consequently that surface satisfies a homogeneous Neu-
mann boundary condition

∂U

∂n
= 0, r on β(R), t > 0. (2.31)

A Robin boundary condition is a linear combination of a Dirichlet and a Neu-
mann condition:

l
∂U

∂n
+ hU = F (r, t), r on β(R), t > 0. (2.32)

Dirichlet and Neumann boundary conditions are obtained by setting l and h equal to
zero, respectively. To show that Robin boundary conditions are physically realistic,
suppose the conducting medium transfers heat to or from a surrounding medium
according to Newton’s law of cooling (heat transfer proportional to temperature
difference). Then, on β(R),

q(r, t) = µ(U − Um)n̂,

where µ > 0 is a constant, called the surface heat transfer coefficient, and
Um is the temperature of the surrounding medium. When we substitute this into
Fourier’s law 2.19,

µ(U − Um)n̂ = −κ∇U, r on β(R), t > 0.

Scalar products with n̂ give
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−κ∂U
∂n

= µ(U − Um), r on β(R), t > 0. (2.33a)

Alternatively,

κ
∂U

∂n
+ µU = µUm = F (r, t), r on β(R), t > 0. (2.33b)

This is clearly a Robin condition. Homogeneous Robin conditions

κ
∂U

∂n
+ µU = 0, r on β(R), t > 0, (2.34)

describe heat transfer according to Newton’s law of cooling to (or from) media at
temperature zero.

The initial boundary value problem of heat conduction in a homogeneous,
isotropic medium can thus be stated as

∂U

∂t
= k

[
∇2U +

g(r, t)
κ

]
, r in R, t > 0, (2.35a)

Boundary conditions, if applicable, (2.35b)
Initial condition U(r, 0) = f(r), r in R, if applicable. (2.35c)

If boundary conditions 2.35b and heat sources g(r, t) in 2.35a are independent
of time, there may exist solutions of 2.35a,b that are also independent of time. Such
solutions are called steady-state solutions; they satisfy

∇2U = −g(r)
κ

, r in R, (2.36a)

Boundary conditions, if applicable. (2.36b)

For example, suppose a conducting sphere
of radius a (Figure 2.11) has at time t = 0
some temperature distribution f(r, φ, θ),
where r, φ and θ are spherical coordinates
shown in Figure 2.7. If the sphere is suddenly
packed on the outside with perfect insulation,
and no heat generation occurs within the
sphere, the temperature distribution U(r, φ, θ)
thereafter must satisfy the initial boundary x

z

y

a

a

a

value problem Figure 2.11

∂U

∂t
= k∇2U, 0 < r < a, 0 < φ < π, −π < θ ≤ π, t > 0, (2.37a)

∂U(a, φ, θ, t)
∂r

= 0, 0 ≤ φ ≤ π, −π < θ ≤ π, t > 0, (2.37b)

U(r, φ, θ, 0) = f(r, φ, θ), 0 ≤ r < a, 0 ≤ φ ≤ π, −π < θ ≤ π. (2.37c)

Steady-state solutions U(r, φ, θ) for this problem, if there are any, must satisfy

∇2U = 0, 0 < r < a, 0 < φ < π, −π < θ ≤ π, (2.38a)
∂U(a, φ, θ)

∂r
= 0, 0 ≤ φ ≤ π, −π < θ ≤ π. (2.38b)
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Obviously a solution of problem 2.38 is U = C, where C is any constant whatsoever.
Thus, constant functions are steady-state solutions for problem 2.37. We can realize
the physical significance of steady-state solutions and determine a useful value for
C if we return to initial boundary value problem 2.37. Physically it is clear that
because no heat can enter or leave the sphere, heat will eventually redistribute itself
until the temperature at every point in the sphere becomes the same constant value.
In Section 9.1 we prove that the value of this constant is the average value Ũ of
f(r, φ, θ) over the sphere. In other words, the steady-state solution will be U = Ũ .
Later we shall see that the solution of problem 2.37 contains two parts. One is
the steady-state (time-independent) part U = Ũ ; the other is a transient (time-
dependent) part that describes the transition from initial temperature f(r, φ, θ) to
final temperature Ũ .

When g(r) in Poisson’s equation 2.36 is identically zero (i.e., no internal heat
generation occurs within R), the PDE reduces to Laplace’s equation. Problem
2.36 then reads

∇2U = 0, r in R, (2.39a)
Boundary conditions, if applicable. (2.39b)

Problems 2.36 and 2.39 are called boundary value problems rather than initial
boundary value problems, since no initial conditions are present.

Example 2.3 Formulate the initial boundary value problem for the temperature in a cylindrical
rod with insulated sides and with flat ends at x = 0 and x = L. The end at x = 0
is kept at temperature 60◦C; the end at x = L is insulated; and at time t = 0 the
temperature distribution is f(x), 0 ≤ x ≤ L. Assume no internal heat generation.
Are there steady-state solutions for this problem?

Solution Notwithstanding the fact that the rod is three-dimensional, we note
that because all cross sections are identical, the sides are insulated, and the initial
temperature distribution is a function of x alone, heat flows only in the x-direction.
In other words, the heat conduction problem is one-dimensional, namely,

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 60, t > 0,
∂U(L, t)
∂x

= 0, t > 0,

U(x, 0) = f(x), 0 < x < L.

Steady-state solutions ψ(x) for this problem must satisfy

d2ψ

dx2
= 0, 0 < x < L,

ψ(0) = 60, ψ′(L) = 0.

A general solution of this ODE is ψ(x) = Ax + B, and the boundary conditions
require

60 = B, 0 = A;
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that is, ψ(x) = 60. After a very long time, the temperature in the rod will become
60◦C throughout.•

Example 2.4 The top and bottom of a horizontal, semicircular plate 0 ≤ r ≤ r0, 0 ≤ θ ≤ π are
insulated. At time t = 0, its temperature is f(r, θ). For t > 0, the curved edge
of the plate is insulated. That part of the x-axis for which 0 < x < r0 is held at
temperature 5◦C, and along the remaining part of the x-axis −r0 < x < 0, heat
is added at a constant rate q > 0 W/m2. Formulate the initial boundary value
problem for temperature in the plate.

Solution Temperature U(r, θ, t) satisfies the PDE

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
, 0 < r < r0, 0 < θ < π, t > 0,

and the initial condition

U(r, θ, 0) = f(r, θ), 0 < r < r0, 0 < θ < π.

Since the curved edge is insulated, U(r, θ, t) satisfies a homogeneous, Neumann
condition thereon. Because coordinate r is perpendicular to the semi-circle, this
condition is

Ur(r0, θ, t) = 0, 0 < θ < π, t > 0.

Since the positive part of the x-axis is held at temperature 5◦C, the boundary
condition along this edge is Dirichlet,

U(r, 0, t) = 5, 0 < r < r0, t > 0.

We could use equation 2.30 to find the boundary condition along the negative x-axis,
but it is often easier to keep signs straight if we return to Fourier’s law q = −κ∇U .
Along y = 0 (and x < 0), q = qĵ, and therefore

qĵ = −κ∇U.

Scalar products with ĵ gives

q = −κ∂U
∂y

, or
∂U(x, 0, t)

∂y
= − q

κ
.

But from Exercise 4 in Section 2.1, ∂U/∂y can be expressed in polar coordinates as
follows

∂U

∂y
= sin θ

∂U

∂r
+

cos θ
r

∂U

∂θ
.

Since θ = π along y = 0 (and x < 0), we can write that

−1
r

∂U(r, π, t)
∂θ

= − q

κ
from which

1
r

∂U(r, π, t)
∂θ

=
q

κ
, 0 < r < r0, t > 0.•

Heat equation 2.26 is often called the diffusion equation because it also de-
scribes the diffusion of other quantities, chemicals for example. When a chemical
diffuses through a medium, we define the chemical flux vector q(r, t) as the amount
of chemical flowing though unit area perpendicular to r per unit time t. Many
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chemicals diffuse according to Fick’s Law which states that q is proportional to the
gradient of the density or concentration U(r, t) of the chemical,

q = −k∇U. (2.40)

This is Fourier’s law 2.19 in a different setting. As a result, chemical density U(r, t)
must satisfy PDE 2.26, now called the one-dimensional diffusion equation.

EXERCISES 2.2

1. (a) A cylindrical, homogeneous, isotropic rod has flat ends at x = 0 and x = L and insulated
sides. Initially the temperature distribution in the rod is a function of x only, and heat
generation at points x in the rod takes place uniformly over the cross section at x. Apply
an energy balance to a segment of the rod from a fixed point x = a to an arbitrary value of
x to show that the PDE governing temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t),

where g(x, t) is the amount of heat per unit volume per unit time generated at position x
and time t.

(b) What form do Robin boundary conditions take at x = 0 and x = L?
In Exercises 2–18, set up, but do not solve, an initial boundary value problem for
the required temperature. Assume that the medium is isotropic and homogeneous.

2. A cylindrical rod has flat ends at x = 0 and x = L and insulated sides. At time t = 0 its
temperature is a function f(x), 0 ≤ x ≤ L, of x only. For t > 0, both ends are kept at 100◦C.

3. Repeat Exercise 2 except that the end at x = 0 is insulated.

4. Repeat Exercise 2 except that the temperature at end x = L is changed from 0◦C to 100◦C at
a constant rate over a period of T seconds and maintained at 100◦C thereafter.

5. Repeat Exercise 2 except that heat is transferred according to Newton’s law of cooling from the
ends x = 0 and x = L into media at temperatures U0 and UL, respectively.

6. Repeat Exercise 2 except that both ends are insulated and at each point in the rod heat is
generated at a rate g(x, t) per unit volume per unit time. What is g(x, t) if heat generation
is q calories per cubic centimetre per minute over that part of the rod between x = L/4 and
x = 3L/4 and is zero otherwise?

7. Repeat Exercise 2 except that heat is added to the end x = 0 at a constant rate Q0 > 0 W/m2

uniformly over the end and is removed at a variable rate QL(t) > 0 W at x = L uniformly over
the end.

8. The top and bottom of a horizontal rectangular plate 0 ≤ x ≤ L, 0 ≤ y ≤ L′ are insulated. At
time t = 0 its temperature is a function f(x, y) of x and y only. The edges x = 0 and y = L′

are kept at 50◦C for t > 0, and the edges y = 0 and x = L are insulated.

9. Repeat Exercise 8 except that along y = 0 heat is transferred according to Newton’s law of
cooling into a medium with temperature f1(t), and heat is generated at a rate of eαt joules per
cubic metre per second at every point in the plate for the first T seconds.

10. The top and bottom of a horizontal circular plate 0 ≤ r ≤ r0, −π < θ ≤ π are insulated. At
time t = 0 its temperature is a function f(r, θ) of polar coordinates r and θ only. For t > 0, heat
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is transferred along its edge according to Newton’s law of cooling into a medium at temperature
zero, and heat is generated at constant rate q W/m3 inside the ring 0 < r1 < r < r2 < r0.

11. A right circular cylinder of length L and radius r0 has its axis along the z-axis with flat faces
in the planes z = 0 and z = L. At time t = 0 its temperature is a function f(r, θ) of r and θ
only. For t > 0, faces z = 0 and z = L are insulated, and r = r0 is kept at temperature f1(θ, t).

12. Repeat Exercise 11 except that f(r, θ) is replaced by f(r, θ, z).

13. Repeat Exercise 11 except that the ends z = 0 and z = L are kept at 100◦C for t > 0 and the
cylindrical side is insulated.

14. Repeat Exercise 11 except that heat is transferred according to Newton’s law of cooling from
the top and cylindrical faces into air at temperature 20◦C. Initially, temperature is a function
f(r) of r only.

15. Repeat Exercise 11 except that the initial temperature is a function f(r) of r only and r = r0
is kept at temperature f1(t).

16. The top and bottom of a horizontal semicircular plate 0 ≤ r ≤ r0, 0 ≤ θ ≤ π are insulated. At
time t = 0, its temperature is f(r, θ). For t > 0, the curved edge of the plate is insulated, but
along the straight edge, heat is added at a constant rate q > 0 W/m2.

17. Repeat Exercise 16 except that along r = r0, heat is extracted at a constant rate q > 0 W/m2

and along the straight edge, heat is exchanged according to Newton’s law of cooling with an
environment at constant temperature U0.

18. A sphere of radius r0 has an initial temperature (t = 0) of 100◦C. For t > 0, heat is transfered
according to Newton’s law of cooling to an environment at constant temperature 10◦C.

19. A hemisphere of radius r0 above the xy-plane has flat face in the xy-plane. The curved face
of the sphere is insulated. If the heat flux vector on the face z = 0 is q = f(r, θ)k̂, formulate
the boundary value problem for steady-state temperature in the hemisphere. Can f(r, θ) be
arbitrarily specified? (See Exercise 9(b) in Section 2.1 and Exercise 24 below.)

20. A homogeneous, isotropic rod with insulated sides has its ends x = 0 and x = L held at
temperatures U0 and UL, respectively. If no heat is generated in the rod, can there be a
steady-state temperature distribution in the rod?

21. Heat is added at the end x = 0 of a homogeneous, isotropic rod with insulated sides at a
constant rates q0 > 0. It is extracted from end x = L at a constant rate qL > 0. Can there be
a steady-state temperature distribution in the rod when there is no internal heat generation?

22. Discuss each of the following statements for temperature in a homogeneous, isotropic rod with
insulated sides:
(a) If temperature at points in the rod changes in time, heat must flow in the rod.
(b) If heat flows in the rod, temperature at points in the rod must change in time.

23. Heat is transferred at the ends x = 0 and x = L of a homogeneous, isotropic rod with insulated
sides to surrounding media at constant, but different temperatures, according to Newton’s law of
cooling. If no heat is generated in the rod, can there be a steady-state temperature distribution
in the rod?

24. (a) Suppose there is a steady-state temperature distribution in a region R of the xy-plane that
satisfies Poisson’s equation ∇2U = −g(x, y)/κ. Use the result of Exercise 9 in Section 2.1
(or Green’s theorem) to show that the solution must satisfy the equation
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∫∫

R

g(x, y) dA =
∫
©

β(R)

−κ∂U
∂n

ds.

Interpret this equation physically.
(b) Suppose now that the boundary condition on the boundary is of Neumann type, ∂U/∂n =

f(x, y) for (x, y) on β(R). Show that f(x, y) and g(x, y) must satisfy the consistency condi-
tion ∫∫

R

g(x, y) dA =
∫
©

β(R)

−κf(x, y) ds.

(c) What is the three-dimensional analogue of the result in part (b)?

25. A steady-state temperature distribution in the rectangle R : 0 ≤ x ≤ L, 0 ≤ y ≤ L′ of the
xy-plane must satisfy Poisson’s equation ∇2U = −g(x, y)/κ. Suppose that boundary conditions
are of Neumann type, specified in the form

∂U(0, y)
∂x

= f1(y), 0 < y < L′,
∂U(L, y)

∂x
= f2(y), 0 < y < L′,

∂U(x, 0)
∂y

= f3(x), 0 < x < L,
∂U(x,L′)

∂y
= f4(x), 0 < x < L.

Use the result of Exercise 24 to determine the appropriate consistency condition for the problem.
In Exercises 26–31 we discuss steady-state temperature in spheres and hollow
spheres where heat flow is radial. In such situations, temperature U is only a
function of the radial coordinate r in spherical coordinates, U = U(r). Make this
assumption in each of the exercises.

26. Show that if a sphere is in a steady-state temperature situation, and its temperature depends
only on distance from the centre of the sphere, then temperature must be constant throughout
the sphere. Assume no heat generation within the sphere.

27. Show that the result of Exercise 26 is not true if there is heat generation in the sphere. Assume
that heat is generated at the rate g(r) so that heat flows radially. Find the temperature U(r)
within the sphere when the boundary condition on the surface r = b of the sphere is:
(a) U(b) = Ub; (b) U ′(b) = −Q/κ; (c) κU ′(b) + µU(b) = µUm.
In each case simplify the solution when g(r) = G, a constant.

28. A hollow sphere has inner radius a and outer radius b. Find the steady-state temperature if
inner and outer surface temperatures are Ua and Ub. Assume no internal heat generation.

29. Repeat Exercise 28 if the inner surface has temperature Ua and heat is added uniformly at the
outer surface at rate Q.

30. Repeat Exercise 28 if the temperature of the inner surface is Ua and heat is exchanged at the
outer surface according to Newton’s law of cooling with a medium at temperature Um.

31. Repeat Exercise 28 if heat is added uniformly at the inner surface at rateQ and heat is exchanged
at the outer surface according to Newton’s law of cooling with a medium at temperature Um.

32. In Exercise 1 we developed the one-dimensional heat conduction equation based on energy
balance for a small segment of the rod. In this exercise we use the PDE to discuss energy
balance for the entire rod. Multiply the PDE in Exercise 1 by Aκ/k (A is the cross-sectional
area of the rod), integrate with respect to x over the length 0 ≤ x ≤ L of the rod, and integrate
with respect to t from t = 0 to an arbitrary value of t, to obtain the following result:
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∫ L

0

AρsU(x, t) dx−
∫ L

0

AρsU(x, 0) dx =
∫ t

0

Aκ
∂U(L, t)
∂x

dt−
∫ t

0

Aκ
∂U(0, t)
∂x

dt

+
∫ t

0

∫ L

0

Ag(x, t) dx dt.

Interpret each term in this equation physically, and hence deduce that the equation is a state-
ment of energy balance for the rod.

33. Repeat Exercise 32 to obtain energy balance for a volume R using PDE 2.26.

34. Consider the following heat conduction problem in a rod with insulated sides

∂U

∂t
= k

∂2U

∂x2
+
k

κ
xt, 0 < x < L, t > 0,

Ux(0, t) = 10e−t, t > 0,
Ux(L, t) = −5, t > 0,
U(x, 0) = f(x), 0 < x < L.

(a) Use the result of Exercise 32 to determine the amount of thermal energy that has been
added to the rod from time t = 0 to an arbitrary time t.

(b) Could you determine the thermal energy in part (a) if either boundary condition were
Dirichlet?

35. Repeat part (a) of Exercise 34 for the following problem in a rectangle R with insulated top
and bottom

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
kt

κ
sin

2πx
L

, 0 < x < L, 0 < y < L′, t > 0,

Ux(0, y, t) = 10et, 0 < y < L′, t > 0,
Ux(L, y, t) = 10et, 0 < y < L′, t > 0,
Uy(x, 0, t) = 5t, 0 < x < L, t > 0,
Uy(x,L′, t) = 5t, 0 < x < L, t > 0,
U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′.

Hint: See Exercises 32 and 33.

36. (a) The inside temperature of a flat wall is a constant Uin
◦C and the outside temperature is a

constant temperature Uout
◦C. If the wall is considered as part of an infinite slab that is in a

steady-state temperature situation, find an expression for the amount of heat lost through
an area A of the wall per unit time. Is this expression inversely proportional to the thickness
of the wall?

(b) Evaluate the result in part (a) if A is 15 m2, the thickness of the wall is 10 cm, the thermal
conductivity of the material in the wall is 0.11 W/mK, Uout = −20◦C, and Uin = 20◦C.

37. (a) Steam is passed through a pipe with inner radius rin and outer radius rout. The temperature
of the inner wall is a constant Uin

◦C and that on the outer wall is a constant Uout
◦C. If

the pipe is considered part of an infinitely long pipe that is in a steady-state temperature
situation, find an expression for the amount of heat per unit area per unit time flowing
radially outward.



54 SECTION 2.2

(b) How much heat (per second) is lost at the outer surface of the pipe in a section 2 m long if
rin = 3.75 cm, rout = 5.0 cm, Uin = 205◦C, Uout = 195◦C, and κ = 54 W/mK?

(c) Illustrate that the same amount of heat is transferred through the inner wall of the section.
Must this be the case?

38. A homogeneous, isotropic rod with insulated sides has temperature sin (nπx/L), n a positive
integer, at time t = 0. For time t > 0 its ends at x = 0 and x = L are held at temperature 0◦C.
(a) Find the initial boundary value problem for temperature in the rod and verify that a solution

is

U(x, t) = e−n2π2kt/L2
sin

nπx

L
.

(b) Find the rate of heat flow across cross sections of the rod at x = 0, x = L/2, and x = L by
calculating

lim
x→0+

q(x, t), q(L/2, t), lim
x→L−

q(x, t).

(c) Calculate limits of the heat flows in part (b) as t→ 0+ and t→ ∞.

39. (a) When two media with different thermal conductivities κ1 and κ2 are brought into intimate
contact, heat flows from the hotter to the cooler medium. Assuming that heat transfer fol-
lows Newton’s law of cooling, show that the following boundary conditions must be satisfied
by the temperatures in the media at the interface:

−κ1
∂U(0−)
∂n

= µ[U(0−)− U(0+)], κ2
∂U(0+)
∂n

= µ[U(0+) − U(0−)],

−κ1
∂U(0−)
∂n

= −κ2
∂U(0+)
∂n

,

where n is a coordinate perpendicular to the interface with positive direction from medium
1 into medium 2. Are these conditions independent?

(b) What do these conditions become in the event that µ is so high that there is essentially no
resistance to heat flow across the interface?

40. (a) A homogeneous, isotropic sphere of radius R is heated uniformly from heat sources within
at the rate of Q watts per cubic metre. Heat is transferred to a surrounding medium at
constant temperature Um according to Newton’s law of cooling until a steady-state situation
is achieved. Find the steady-state temperature distribution in the sphere.

(b) What is the initial boundary value problem for temperature in the sphere for t > 0 if the
heat sources are turned off at time t = 0 and the steady-state situation has been achieved?

41. A thin wire of uniform cross section radiates heat from its sides (not ends) at a rate per unit
area per unit time that is proportional to the difference between the temperature of the wire on
its surface and that of its surroundings. It follows that variations in temperature should occur
over cross sections of the wire. In many applications, these variations are sufficiently small
that they may be considered negligible. In such a case, temperature at points in the wire is a
function of time t and only one space variable along the wire, which we take as x, U = U(x, t).
Temperature problems of this type are called thin-wire problems. By considering heat flow
into, and out of, the segment of the wire from a fixed point x = a to an arbitrary x, show that
the PDE for thin-wire problems is

∂U

∂t
= k

∂2U

∂x2
− h(U − Um) +

k

κ
g(x, t),
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where h > 0 is a constant and Um is the temperature of the medium surrounding the wire.

42. Heat generation within a rod can be effected by passing an electric current along the length of
the rod. Show that when the current is I,

g(x, t) =
I2

A2σ
,

where σ is the electrical conductivity of the material of the rod and A is its cross-sectional area.

43. A cylindrical pipe of inner and outer radii a and b is sufficiently long that end effects may be
neglected. The temperature of the inner wall is a constant Ua, and heat is transferred at the
outer wall to a medium at constant temperature Um < Ua with surface heat transfer coefficient
µ.
(a) Find U as a function of r when the steady-state situation has been achieved.
(b) Show that the amount of heat flowing radially through unit length of the pipe at any radius

a < r < b is

2πµκb(Ua − Um)
κ+ µb ln (b/a)

.

44. A long straight wire of circular cross section has thermal conductivity κ and carries a current
I. Surrounding the wire is insulation with thermal conductivity κ∗, b − a units thick. If r is a
radial coordinate measured from the centre of the wire, the wire occupies the region 0 < r < a,
and the insulation, a < r < b. Heat transfer takes place at r = b into a medium at constant
temperature Um with surface heat transfer coefficient µ∗. Find the steady-state temperature
U(r) in the wire and insulation under the assumption that U(r) must be continuous at r = a.
(Hint: See Exercise 42 for g(r) and Exercise 39 for the additional boundary condition at the
wire-insulation interface.)

45. Repeat Exercise 44 except that continuity of U(r) at r = a is replaced by the condition that
heat transfer from the wire to the insulation occurs according to Newton’s law of cooling with
surface heat transfer coefficient µ.
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§2.3 Transverse Vibrations of Strings; Longitudinal and Angular Vibrations of Bars

In this section we discuss three vibration problems that all give rise to the same
mathematical representation.

Transverse Vibrations of Strings

A perfectly flexible string (such as, perhaps, a violin string) is stretched tightly
between two fixed points x = 0 and x = L on the x-axis (Figure 2.12). Suppose
the string is somehow set into motion in the xy-plane (perhaps by pulling vertically
on the midpoint of the string and then releasing it). Our objective is to study the
subsequent motion of the string. When the string is very taut and displacements
are small, horizontal displacements of particles of the string are negligible com-
pared with vertical displacements; that is, displacements may be taken as purely
transverse, representable in the form y(x, t).

y

x
String

x x L==0

y

x

Segment of string

a x

sint q

q

t
t

sint q

q( ,t)a

( ,t)a( ,t)a ( ,t)a

( ,t)x

( ,t)x( ,t)x ( ,t)x

Figure 2.12 Figure 2.13

To find a PDE for y(x, t), we analyze the forces on a segment of the string from
a fixed position x = a to an arbitrary position x (Figure 2.13). We denote by τ(x, t)
the magnitude of the tension in the string at position x and time t. Because the
string is perfectly flexible, tension in the string is always in the tangential direction
of the string. If we let θ(x, t) be the angle of inclination of the tangent line of the
curve to the positive x-axis, then the y-component of tension on the right end of
the string segment is τ(x, t) sin θ(x, t). Since the y-component of tension on the left
end of the segment is −τ(a, t) sin θ(a, t), the sum of these two forces is

τ(x, t) sin θ(x, t) − τ(a, t) sin θ(a, t).

We group all other forces acting on the segment into one function by letting F (x, t)
be the y-component of the sum of all external forces acting on the string per unit
length in the x-direction. The total of all external forces acting on the segment then
has y-component

∫ x

a

F (ζ, t) dζ.

Newton’s second law states that the time rate of change of the momentum of the
segment of the string must be equal to the resultant force thereon:

∂

∂t



∫ x

a

∂y(ζ, t)
∂t

ρ(ζ, t)

√
1 +

(
∂y(ζ, t)
∂x

)2

dζ




= τ(x, t) sin θ(x, t) − τ(a, t) sin θ(a, t) +
∫ x

a

F (ζ, t) dζ, (2.41)
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where ρ(x, t) is the linear density of the string (mass per unit x-length). The
quantity

√
1 + [∂y(ζ, t)/∂x]2 dζ is the length of string that projects onto a length

dζ along the x-axis. Multiplication by ρ(ζ, t)∂y(ζ, t)/∂t gives the momentum of
this infinitesimal length of the string, and integration yields the momentum of that
segment of the string from x = a to an arbitrary position x. If we differentiate this
equation with respect to x, we obtain

∂

∂t


ρ∂y

∂t

√
1 +

(
∂y

∂x

)2

 =

∂

∂x
(τ sin θ) + F (x, t). (2.42)

When vibrations of the string are such that the slope of the displaced string, ∂y/∂x,
is very much less than unity (and this is the only case that we consider), the radical
may be dropped from the equation and sin θ approximated by tan θ = ∂y/∂x. The
resulting PDE for y(x, t) is

∂

∂t

(
ρ
∂y

∂t

)
=

∂

∂x

(
τ
∂y

∂x

)
+ F (x, t). (2.43)

For most applications, both the density of and the tension in the string may be
taken as constant, in which case equation 2.43 reduces to

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, c2 = τ/ρ. (2.44)

This is the mathematical model for small transverse vibrations of a taut string; it
is called the one-dimensional wave equation. In its derivation we have assumed
that the slope of the string at every point is always very much less than 1 and that
tension and density are constant.

When the only external force acting on the string is gravity, F (x, t) takes the
form

F = −ρg, g > 0. (2.45)

Other possibilities include a damping force proportional to velocity,

F = −β ∂y
∂t
, β > 0; (2.46)

and a restoring force proportional to displacement,

F = −ky, k > 0. (2.47)

Accompanying the wave equation will be initial and/or boundary conditions.
Initial conditions describe the displacement and velocity of the string at some initial
time (usually t = 0):

y(x, 0) = f(x), x in I, (2.48a)
∂y(x, 0)
∂t

= yt(x, 0) = g(x), x in I, (2.48b)

where I is the interval over which the string is stretched. In Figure 2.12, I is
0 < x < L, but other intervals are also possible. Interval I also dictates the number
of boundary conditions. There are three possibilities, depending upon whether the
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string is of finite length, of semi-infinite length, or of infinite length. If the string is
of finite length, the interval I is customarily taken as 0 < x < L and two boundary
conditions result, one at each end. The string is said to be of semi-infinite length,
or the problem is semi-infinite, if the string has only one end that satisfies some
prescribed condition. The interval I in this case is always chosen as 0 < x < ∞,
and the one boundary condition is at x = 0. The string is said to be of infinite
length, or the problem is infinite, if the string has no ends. In this case interval
I becomes −∞ < x <∞ and there are no boundary conditions.

It might be argued that there is no such thing as a semi-infinitely long or
infinitely long string, and we must agree. There are, however, situations in which
the model of a semi-infinite or infinite string is advantageous. For example, suppose
a fairly long string (with ends at x = 0 and x = L) is initially at rest along the
x-axis. Suddenly, something disturbs the string at its midpoint, x = L/2 (perhaps
it is struck by an object). The effect of this disturbance travels along the string in
both directions toward x = 0 and x = L. Before the disturbance reaches x = 0 and
x = L, the string reacts exactly as if it had no ends whatsoever. If we are interested
only in these initial disturbances, and consideration of the infinite problem provides
straightforward explanations, it is an advantage to analyze the infinite problem
rather than the finite one.

We consider only three types of boundary conditions at an end of the string —
Dirichlet, Neumann, and Robin. When the string has an end at x = 0, a Dirichlet
boundary condition takes the form

y(0, t) = f1(t), t > 0. (2.49a)

It states that the end x = 0 of the string is caused by some external mechanism to
perform the vertical motion described by f1(t). Similarly, if the string has an end
at x = L, a Dirichlet condition

y(L, t) = f2(t), t > 0 (2.49b)

indicates that this end has a vertical displacement described by f2(t). For the string
in Figure 2.12, f1(t) = f2(t) = 0.

Instead of prescribing the motion of the end x = 0 of the string, suppose that
this end is restricted to move vertically along the y-axis (Figure 2.14). The vertical
component of the tension of the string acting on the end is τ(0, t) sin θ(0, t), which
for small slopes can be approximated by

τ(0, t) sin θ(0, t) ≈ τ(0, t) tan θ(0, t) = τ(0, t)
∂y(0, t)
∂x

. (2.50)
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Consequently, when Newton’s second law is applied to the motion of the end of the
string, and the end is taken to be massless,

0 = τ(0, t)
∂y(0, t)
∂x

+ f1(t), t > 0, (2.51)

where f1(t) represents the y-component of all other forces acting on the end. Thus,
the motion of the end of the string must satisfy

∂y(0, t)
∂x

= − 1
τ(0, t)

f1(t), t > 0, (2.52)

a Neumann boundary condition. In particular, if the massless end of the string
is free to slide vertically with no force acting on it except tension in the string, it
satisfies a homogeneous Neumann condition

∂y(0, t)
∂x

= 0, t > 0. (2.53)

What this equation says is that when the end of a taut string is free of external
forces, the slope of the string there will always be zero.

Similarly, if the string has a massless end at x = L that is subjected to a vertical
force with component f2(t), the boundary condition there is once again Neumann:

∂y(L, t)
∂x

=
1

τ(L, t)
f2(t), t > 0. (2.54)

What we have shown, then, is that Neumann boundary conditions result when the
ends of the string, taken as massless, move vertically under the influence of forces
that are specified as functions of time.

Robin boundary conditions, which are linear combinations of Dirichlet and
Neumann conditions, arise when the ends of the string are attached to springs that
are unstretched on the x-axis (Figure 2.15). When this is the case at x = 0, equation
2.51 becomes

0 = τ(0, t)
∂y(0, t)
∂x

− ky(0, t) + f1(t), (2.55)

where f1(t) now represents all external forces acting on the end of the string other
than the spring and tension in the string. For constant tension τ , equation 2.55
takes the form

−τ ∂y
∂x

+ ky = f1(t), x = 0, t > 0. (2.56a)

Similarly, attaching the end x = L to a spring gives the Robin condition

τ
∂y

∂x
+ ky = f2(t), x = L, t > 0. (2.56b)

The initial boundary value problem for the vibrating string consists of the one-
dimensional wave equation together with two initial conditions and/or zero, one, or
two boundary conditions:



60 SECTION 2.3

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, x in I, t > 0, (2.57a)

Boundary conditions, if applicable, (2.57b)
y(x, 0) = f(x), x in I, if applicable, (2.57c)
yt(x, 0) = g(x), x in I, if applicable. (2.57d)

When the boundary conditions and external force F are independent of time,
there may exist solutions of problem 2.57a,b that are also independent of time. Such
solutions, called static deflections, satisfy the boundary value problem

d2y

dx2
= −F (x)

τ
, x in I, (2.58a)

Boundary conditions. (2.58b)

No vibrations occur; the string remains in static equilibrium under the forces
present. We shall see that, in such cases, the solution of problem 2.57 divides into
two parts, the static deflection part plus a second part that represents vibrations
about the static solution.

Example 2.5 Formulate the initial boundary value problem for transverse vibrations of a string
stretched tightly along the x-axis between x = 0 and x = L. The end x = 0 is free
to move without friction along a vertical support, and the end x = L is fixed on
the x-axis. Initially, the string is released from rest at a position described by the
function f(x), 0 ≤ x ≤ L. Take gravity into account. Are there static deflections
for this problem?

Solution The initial boundary value problem for displacements y(x, t) of points
in the string is

∂2y

∂t2
= c2

∂2y

∂x2
− 9.81, 0 < x < L, t > 0,

∂y(0, t)
∂x

= 0, t > 0,

y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

∂y(x, 0)
∂t

= 0, 0 < x < L.

The PDE is a result of equations 2.44 and 2.45, and the boundary condition at
x = 0 is equation 2.53. Static deflections must satisfy

0 = c2
d2y

dx2
− 9.81, 0 < x < L,

y′(0) = 0, y(L) = 0,
the solution of which is

y(x) =
9.81
2c2

(x2 − L2)

(Figure 2.16). This is the position that the
string would occupy were it to hang motionless

y

x

c y
c

x L
9.81

2
- 2 = 9.81

2 2 ( -2 2)

L

L2

under gravity. Notice, in particular, that the Figure 2.16
parabola has zero slope at its free end x = 0.•



SECTION 2.3 61

It is a standard example in ODEs to find the shape of a string that hangs
between two points under the influence of gravity. The solution, called a catenary,
is a hyperbolic cosine function, not a parabola as derived in Example 2.5. The
difference lies in the assumptions leading to the ODEs describing the two situations.
In Example 2.5, it is assumed that tension τ in the taut string is constant, and
deflections are small. This leads to the differential equation d2y/dx2 = 9.81ρ/τ
for static deflections. For the catenary problem, the string is not sufficiently taut
that tension is constant, and deflections are not necessarily small. This leads to the
differential equation d2y/dx2 = (9.81ρ/τ)

√
1 + (dy/dx)2, where τ is tension at only

the lowest point in the string.

Longitudinal Vibrations of Bars

In Figure 2.17 we show a cylindrical bar of natural length L lying along the x-
axis. Suppose that the end x = 0 is clamped at that position and the end x = L
is struck with a hammer. This will set up longitudinal vibrations in the bar. We
show that the one-dimensional wave equation, which describes transverse vibrations
of a taut string, also describes these longitudinal vibrations of the bar. Although
we have drawn the bar in a horizontal position, it could equally well be vertical.
We denote by x the positions of cross sections of the bar when the bar is in an
unstrained state, and we denote by y(x, t) the positions of cross sections relative to
their unstrained positions (Figure 2.18). It is assumed that cross sections remain
plane during vibrations.

xx x Lx

Bar of circular cross section
in unstrained state

This end of bar
clamped at

=0 =

x=0

Figure 2.17

xx x Lx=0 =a

y a t y x,t y L t( , )( , ) ( )

Position of cross section
normally at position x

Figure 2.18

Consider the segment of the bar that in an unstrained state occupies the region
between x = a (a some fixed number) and an arbitrary position x. At time t, this
segment is stretched an amount y(x, t) − y(a, t). Hooke’s law states that the force
exerted across the segment due to this extension (or compression) is given by

AE

[
y(x, t) − y(a, t)

x− a

]
, (2.59)

where A is the cross-sectional area of the bar and E is Young’s modulus of elasticity
of the material in tension and compression. It follows (by limits as x→ a) that the
internal force exerted on the face at x = a by that part of the bar to its right at
time t has component
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AE
∂y(a, t)
∂x

. (2.60)

(The internal force on the face at x = a due to that part of the bar to its left has
component −AE∂y(a, t)/∂x.)

We now apply Newton’s second law to the motion of the above segment of the
bar:

AE
∂y(x, t)
∂x

−AE
∂y(a, t)
∂x

+
∫ x

a

F (ζ, t)Adζ =
∂

∂t

[∫ x

a

∂y(ζ, t)
∂t

ρ(ζ, t)Adζ
]
, (2.61)

where ρ(x, t) is the density of the bar (mass per unit volume) and F (x, t) is the
x-component of all external forces acting on the bar per unit volume. It is as-
sumed that these external forces are constant over each cross section of the bar.
Differentiation of this equation with respect to x and division by A give

E
∂2y

∂x2
+ F (x, t) =

∂

∂t

(
ρ
∂y

∂t

)
. (2.62)

In most applications, ρ can be taken as constant, in which case PDE 2.62 reduces
to the one-dimensional wave equation

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, c2 = E/ρ. (2.63)

Initial conditions that accompany PDE 2.63 describe the displacement and
velocity of cross sections of the bar at some initial time, usually t = 0 (see equations
2.48). Boundary conditions must also be specified. When the bar is of finite length
(0 < x < L), two boundary conditions occur, one at each end. If the bar is
of semi-infinte length (0 < x < ∞), only one end x = 0 satisfies a boundary
condition; and when the bar is of infinite length, no boundary conditions are present.
Dirichlet boundary conditions are of form 2.49a,b; they specify displacements y(0, t)
and y(L, t) of the ends of the bar. Neumann boundary conditions result when
longitudinal forces that are prescribed functions of time are applied to the faces of
the bar. To see this, note that the force exerted on the face x = 0 by the bar (to the
right) is AE∂y(0, t)/∂x. Consequently, if the end x = 0 of the bar is subjected to an
external force with x-component f1(t), then taking the face as massless, Newton’s
second law for the face gives

AE
∂y(0, t)
∂x

+ f1(t) = 0 =⇒ ∂y(0, t)
∂x

= − 1
AE

f1(t), t > 0, (2.64)

a Neumann condition. Similarly, if the bar has an end x = L with external force
f2(t), the Neumann boundary condition there is

∂y(L, t)
∂x

=
1
AE

f2(t), t > 0. (2.65)

Homogeneous Neumann boundary conditions describe free ends.
Were we to attach the end of the bar at x = 0 to a spring (of constant k > 0)

so that the spring is unstretched when the end of the bar is at x = 0 (Figure 2.19),
boundary condition 2.64 would be replaced by
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AE
∂y(0, t)
∂x

− ky(0, t) = 0 =⇒ −AE∂y(0, t)
∂x

+ ky(0, t) = 0, t > 0. (2.66a)

This is a homogeneous Robin condition. Similarly, when end x = L is attached to
a spring, the resulting boundary condition is the homogeneous Robin condition

AE
∂y(L, t)
∂x

+ ky(L, t) = 0, t > 0. (2.66b)

x
x

=0

Spring unstretched

Figure 2.19
The initial boundary value problem for longitudinal displacements in the bar

consists of the one-dimensional wave equation 2.63 together with two initial condi-
tions and zero, one, or two boundary conditions, a problem identical to that for the
string.

Angular Vibrations of Bars

Angular vibrations of a bar also give rise to the above mathematical problem. Let
x denote distance from some fixed reference point to cross sections of a cylindrical
elastic bar (Figure 2.20). At time t, the angular displacement of the section labeled
x from its torque-free position is denoted by y(x, t), where it is assumed that in
each cross section, lines that are radial in the bar before torque is applied remain
straight after the bar is twisted. At this time, the segment of the bar between a
and x has its right face twisted relative to its left face by an amount y(x, t)−y(a, t).
The torque exerted across the element is then

IE

[
y(x, t) − y(a, t)

x− a

]
, (2.67)

where I is the moment of inertia of the cross-sectional area about the axis of the
bar and E is Young’s modulus of elasticity of the material in shear. It follows (by
limits) that the internal torque exerted on the face at x = a by that part of the bar
to its right at time t is

IE
∂y(a, t)
∂x

. (2.68)

(The internal torque on the face at x = a due to that part of the bar to its left is
−IE∂y(a, t)/∂x.)

x
x a x L

y x ta

=0

( , )y t( , )

Figure 2.20
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If, in addition, an external torque per unit length τ(x, t) acts, and ρ(x, t) is the
density (mass per unit volume) of the bar, then the PDE for angular vibrations of
the bar can be obtained from Newton’s second law applied to the element between
a and x:

IE
∂y(x, t)
∂x

− IE
∂y(a, t)
∂x

+
∫ x

a

τ(ζ, t) dζ =
∂

∂t

[∫ x

a

Iρ(ζ, t)
∂y(ζ, t)
∂t

dζ

]
. (2.69)

Differentiation of this equation with respect to x and division by I give

E
∂2y

∂x2
+
τ(x, t)
I

=
∂

∂t

(
ρ
∂y

∂t

)
. (2.70)

When ρ is constant, this reduces to the one-dimensional wave equation

∂2y

∂t2
= c2

∂2y

∂x2
+
τ(x, t)
ρI

, c2 = E/ρ. (2.71)

Accompanying this PDE will be two initial conditions and/or zero, one, or two
boundary conditions.

EXERCISES 2.3
In Exercise 1–8, set up, but do not solve, an (initial) boundary value problem for
the required displacement. Assume that density of and tension in the string are
constant (or that Young’s modulus and density are constant in the bar).

1. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial
displacement at t = 0 of f(x), 0 ≤ x ≤ L and initial velocity g(x), 0 ≤ x ≤ L. Formulate the
initial boundary value problem for displacement y(x, t) of the string for 0 < x < L and t > 0.

2. Repeat Exercise 1 except that the end at x = L is free to slide without friction along a vertical
support and gravity on the string is taken into account.

3. Repeat Exercise 1 where oscillations take place in a medium that creates a damping force
proportional to velocity and the ends of the string are elastically connected to the x-axis.
Furthermore, do not neglect the weight of the string.

4. Repeat Exercise 1 except that a vertical force F (t) = cosωt, t > 0, acts on the massless end
x = 0 of the string which is looped around a vertical support. The string is initially at rest
along the x-axis.

5. Repeat Exercise 3 except that the force F (t) in Exercise 4 also acts on the end x = 0.

6. A horizontal cylindrical bar is originally at rest and unstrained along the x-axis between x = 0
and x = L. For time t > 0, the left end is fixed and the right end is subjected to a constant
elongating force per unit area F parallel to the bar. Formulate the initial boundary value
problem for displacements y(x, t) of cross sections of the bar.

7. A bar of unstrained length L is clamped along its length, turned to the vertical position and
hung from its end x = 0. At time t > 0, the clamp is removed and gravity is therefore permitted
to act on the bar. Formulate an initial boundary value problem for displacements y(x, t) of cross
sections of the bar.

8. Repeat Exercise 7 except that the top of the bar is attached to a spring with constant k. Let
x = 0 correspond to the top of the bar when the spring is in the unstretched position at t = 0.
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9. Robin condition 2.56a applies to the massless left end of the string in Figure 2.15. Assuming
f1(t) = 0, show that when the end of the string is above the x-axis, the slope of the string at
x = 0 must be positive (as shown in the figure). Furthermore, when the end of the string is
below the x-axis, the slope must be negative. Is this also true at the right end of the string?
Illustrate your results graphically.

10. Suppose the left end of the spring in Figure 2.19 is attached to a nonstationary support. Its
horizontal displacement relative to its position in Figure 2.19 is g(t). Formulate the boundary
condition at x = 0 for motion of the bar.

11. The ends of a taut string are fixed at x = 0 and x = L on the x-axis. The string is initially at
rest along the x-axis, and is then allowed to drop under its own weight. Formulate an initial
boundary value problem for displacements of the string. What are the static deflections for this
string?

12. Repeat Exercise 11 except that motion takes place in a medium that creates a damping force
proportional to velocity.

13. Repeat Exercise 11 except that the end of the string at x = L is looped around a smooth vertical
support and a constant vertical force FL acts on this loop.

14. An unstrained elastic bar falls vertically under gravity with its axis vertical. When its velocity
is v (which we take at time t = 0), it strikes a solid object and remains in contact with it
thereafter. Formulate an initial boundary value problem for displacements of cross sections of
the bar.

15. A cylindrical bar has unstrained length L. If it is hung vertically from one end so that no
oscillations occur, what is its length?

16. The bar in Exercise 15 is hung from a spring with constant k > 0. How far below x = 0 (the
position of the lower end of the spring in the unstretched position) will the lower end of the bar
lie?

17. Verify that Robin and Neumann conditions at x = L take the forms 2.56b and 2.54 for massless
ends.

18. The end x = 0 of a horizontal bar of length L is kept fixed, and the other end has a mass m
attached to it. The mass m is then subjected to a horizontal periodic force F = F0 sinωt. If the
bar is initially unstrained and at rest, set up the initial boundary value problem for longitudinal
displacements in the bar.

19. The one-dimensional wave equation 2.44 for vibrations of a taut string was derived by applying
Newton’s second law to a segment of the string. In this exercise, we use the PDE to discuss
energy balance for the entire string (assumed finite in length).
(a) Multiply the PDE by ∂y/∂t, integrate the result with respect to x over the length of the

string 0 ≤ x ≤ L, and use integration by parts to obtain

1
2

∫ L

0

[
∂

∂t

(
∂y

∂t

)2

+ c2
∂

∂t

(
∂y

∂x

)2
]
dx = c2

{
∂y

∂x

∂y

∂t

}L

0

+
∫ L

0

F (x, t)
ρ

∂y

∂t
dx.

(b) Integrate the result in part (a) with respect to time from t = 0 to an arbitrary t to show
that

∫ L

0

ρ

2

(
∂y

∂t

)2

dx+
∫ L

0

τ

2

(
∂y

∂x

)2

dx =
∫ L

0

ρ

2

[
∂y(x, 0)
∂t

]2

dx+
∫ L

0

τ

2

[
∂y(x, 0)
∂x

]2

dx
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+
∫ t

0

τ
∂y(L, t)
∂x

∂y(L, t)
∂t

dt+
∫ t

0

[
−τ ∂y(0, t)

∂x

]
∂y(0, t)
∂t

dt

+
∫ t

0

∫ L

0

F (x, t)
∂y

∂t
dx dt.

Interpret each of these terms physically and thereby conclude that the equation is a state-
ment of work-energy balance. It is often called the energy equation for the string.

20. (a) Use Exercise 19 to show that if F (x, t) = 0 in equation 2.44, then the sum of the kinetic
and strain energies of the string is constant in time if boundary conditions are homogeneous
Dirichlet or Neumann.

(b) Describe the situation when one or both of the boundary conditions is homogeneous Robin.

21. (a) Evaluate the last integral in the energy equation of Exercise 19 if F (x, t) is due only to
gravity (see equation 2.45)?

(b) Are the results of Exercise 20 still valid?

22. Repeat Exercise 21 if the only force in F (x, t) is a damping force proportional to velocity (see
equation 2.46)?

23. Repeat Exercise 21 if the only force in F (x, t) is a restoring force proportional to displacement
(see equation 2.47)?

24. Show that when the cross-sectional area of the bar in Figure 2.17 varies with position, equation
2.63 is replaced by

∂2y

∂t2
=

c2

A(x)
∂

∂x

[
A(x)

∂y

∂x

]
+
F (x, t)
ρ

, c2 = E/ρ,

provided expression 2.60 still gives forces across cross sections of the bar.

25. A bar of unstrained length L is clamped at end x = 0. For time t < 0, it is at rest, subjected to
a force with x-component F distributed uniformly over the other end. If the force is removed at
time t = 0, formulate the initial boundary value problem for subsequent displacements in the
bar.

26. In this exercise we derive the PDE for small vibrations of a suspended heavy cable. Consider
a heavy cable of uniform density ρ (mass/length) and length L suspended vertically from one
end. Take the origin of coordinates at the position of equilibrium of the lower end of the cable
and the positive x-axis along the cable. Denote by y(x, t) small horizontal deflections of points
in the cable from equilibrium.
(a) Apply Newton’s second law to a segment of the cable to obtain the PDE for small deflections

∂2y

∂t2
= g

∂

∂x

(
x
∂y

∂x

)
+
F

ρ
,

where g > 0 is the acceleration due to gravity and F is the y-component of all external
horizontal forces per unit length in the x-direction.

(b) What boundary condition must y(x, t) satisfy at x = L?

27. (a) The current I(x, t) and potential V (x, t) in a long insulated cable must satisfy the pair of
first-order partial differential equations

∂V

∂x
+RI + L

∂I

∂t
= 0,

∂I

∂x
+GV + C

∂V

∂t
= 0,
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where R, L, C, and G are respectively the resistance, inductance, capacitance, and conduc-
tance per unit length of the cable. Show that I and V must satisfy the same second order
PDE, which for I is

∂2I

∂x2
= LC

∂2I

∂t2
+ (RC + LG)

∂I

∂t
+RGI,

the one-dimensional wave equation 2.44 with terms of the form 2.46 and 2.47. It is often
called the telegraph equation.

(b) Verify that when leakage to the ground is small so that L and G can be neglected, the PDE
becomes the one-dimensional heat conduction equation with k = 1/(RC).

(c) Verify that in the high-frequency case when R and G can be neglected, the PDE becomes
the one-dimensional wave equation 2.44 with c2 = 1/(LC) and F = 0.
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§2.4 Transverse Vibrations of Membranes

In this section we study vibrations of perfectly flexible membranes stretched over
regions of the xy-plane (Figure 2.21). When the membrane is very taut and dis-
placements are small, the horizontal components of these displacements are negli-
gible compared with vertical components; that is, displacements may be taken as
purely transverse, representable in the form z(x, y, t).

x

z

y

P

P

Unit length in -plane

Tension normal to curve and
in tangent plane to membrane

Portion of vibrating
membrane

xy

Tangent plane at P

Projection of
portion of membrane

Figure 2.21

In discussing transverse vibrations of strings, tension played an integral role.
No less important is the tension in a membrane. Suppose a line of unit length is
drawn in any direction at a point P ′ in the xy-plane and projected onto a curve
on the membrane (Figure 2.21). The material on one side of the curve exerts a
force on the material on the other side, the force acting normal to the curve and
in the tangent plane of the surface at P . This force is called the tension τ of the
membrane.
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Figure 2.22

To obtain a PDE for displacements z(x, y, t) of the membrane, we examine
forces acting on a portion S of the membrane that projects onto an area A in the
xy-plane (Figure 2.22). The vertical component of the tension on S is obtained
by taking vertical components of the tension on the boundary β(S). Tension on
a small element ds′ along β(S) acts in the tangent plane to S at ds′ and normal
to β(S). If parametric equations for β(A), the projection of β(S) in the xy-plane,
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are x = x(s), y = y(s), where s is arc length along β(A), then a vector normal to

β(A) is
dy

ds
î − dx

ds
ĵ. It follows that the vector

dy

ds
î − dx

ds
ĵ + ak̂ is normal to β(S) for

any constant a. Since a vector normal to S is ∇[z(x, y, t) − z] =
∂z

∂x
î +

∂z

∂y
ĵ− k̂, it

follows that

0 =
(
dy

ds
î − dx

ds
ĵ + ak̂

)
·
(
∂z

∂x
î +

∂z

∂y
ĵ− k̂

)
.

This implies that a =
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds
, and therefore a vector normal to ds′ is

n =
dy

ds
î− dx

ds
ĵ +

(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)
k̂.

A unit normal in this direction is

n̂ =

dy

ds
î− dx

ds
ĵ +

(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)
k̂

√(
dy

ds

)2

+
(
dx

ds

)2

+
(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)2
.

If we assume that vibrations of the membrane are very small, then the third term in
the denominator is negligible compared to the first two terms. With this assumption,
the denominator is now unity (since ds2 = dx2 + dy2), and a unit tangent vector is

n̂ =
dy

ds
î− dx

ds
ĵ +

(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)
k̂.

Since the vertical component of tension acting on ds′ is τ(x, y, t)n̂ · k̂ ds′, the vertical
component of tension on β(S) is

∫
©

β(S)

τ(x, y, t)n̂ · k̂ ds′ =
∫
©

β(S)

τ(x, y, t)
(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)
ds′.

With the assumption on small oscillations, we can also say that ds′ = ds, where
ds is an element of arc length along β(A), and hence, the line integral along β(S)
can be converted to a line integral along β(A); that is, the vertical component of
tension on β(S) is

∫
©

β(A)

τ(x, y, t)
(
∂z

∂x

dy

ds
− ∂z

∂y

dx

ds

)
ds =

∫
©

β(A)

τ(x, y, t)
(
−∂z
∂y
dx+

∂z

∂x
dy

)
.

If we apply Green’s theorem (see Appendix C), this becomes
∫∫

A

[
∂

∂x

(
τ
∂z

∂x

)
+

∂

∂y

(
τ
∂z

∂y

)]
dA.

We group all other forces acting on the membrane into one function by letting
F (x, y, t) be the z-component of the sum of all external forces acting on the mem-
brane per unit area in the xy-plane. The total of all external forces acting on element
S of the membrane then has z-component
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∫∫

A

F (x, y, t) dA.

We now apply Newton’s second law (force equals time rate of change of momentum)
to element S of the membrane,

∫∫

A

[
∂

∂x

(
τ
∂z

∂x

)
+

∂

∂y

(
τ
∂z

∂y

)]
dA+

∫∫

A

F (x, y, t) dA =
∂

∂t

∫∫

A

∂z

∂t
ρ

√
1 +

(
∂z

∂x

)2

+
(
∂z

∂y

)2

dA,

where ρ is the mass per unit in the xy-plane of the membrane. Once again, with
small oscillations, we can remove the squared terms under the radical, and write

∫∫

A

[
∂

∂x

(
τ
∂z

∂x

)
+

∂

∂y

(
τ
∂z

∂y

)
+ F (x, y, t) − ∂

∂t

(
ρ
∂z

∂t

)]
dA = 0.

For this integral to vanish for an arbitrary area A, in particular, for an arbitrarily
small area, the integrand must vanish at each point of A; that is, z(x, y, t) must
satisfy the PDE

∂

∂x

(
τ
∂z

∂x

)
+

∂

∂y

(
τ
∂z

∂y

)
+ F (x, y, t) − ∂

∂t

(
ρ
∂z

∂t

)
= 0,

or,

∂

∂t

(
ρ
∂z

∂t

)
=

∂

∂x

(
τ
∂z

∂x

)
+

∂

∂y

(
τ
∂z

∂y

)
+ F. (2.72)

For most applications, both the mass per unit area of and the tension in the mem-
brane may be taken as constant, in which case equation 2.72 reduces to

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
+
F

ρ
, c2 = τ/ρ. (2.73)

This is the PDE for transverse vibrations of the membrane, called the two-dimen-
sional wave equation.

For an external force due only to gravity,

F = −ρg, g > 0; (2.74)

for a damping force proportional to velocity,

F = −β ∂z
∂t
, β > 0; (2.75)

and for a restoring force proportional to displacement,

F = −kz, k > 0. (2.76)

Initial conditions that accompany PDE 2.73 describe the displacement and velocity
of the membrane at some initial time (usually t = 0):

z(x, y, 0) = f(x, y), (x, y) in R, (2.77a)
∂z(x, y, 0)

∂t
= g(x, y), (x, y) in R, (2.77b)
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where R is the open region in the xy-plane onto which the membrane projects. A
Dirichlet boundary condition for PDE 2.73 prescribes the displacement z(x, y, t) on
the boundary β(R) of R,

z(x, y, t) = f(x, y, t), (x, y) on β(R), t > 0, (2.78)

where f(x, y, t) is some given function.
Suppose instead that the edge of the membrane can move vertically and that

it is subjected to an external vertical force per unit length f(x, y, t). The edge
is also acted on by the tension in the membrane, and the magnitude of the z-
component of the tension acting across a unit length along β(R) is |τ∂z/∂n|, where
n is a coordinate measuring distance in the xy-plane normal to β(R) (Figure 2.23).
Consequently, if we take the edge of the membrane as massless, Newton’s second
law for vertical components of forces on an element ds of β(R) gives

−
(
τ
∂z

∂n

)

|β(R)

ds+ f(x, y, t)ds = 0 (2.79a)

or,

∂z

∂n
=

1
τ
f(x, y, t), (x, y) on β(R), t > 0. (2.79b)

This is a nonhomogeneous Neumann boundary condition. When the only force
acting on the edge of the membrane is that due to tension, z(x, y, t) must satisfy a
homogeneous Neumann condition,

∂z

∂n
= 0, (x, y) on β(R), t > 0. (2.80)
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Another possibility is to have the edge of the membrane elastically attached to
the xy-plane in such a way that the restoring force per unit length along β(R) is
proportional to displacement. Then, according to condition 2.79a,

−
(
τ
∂z

∂n

)
ds+ [−kz + f(x, y, t)]ds = 0, (x, y) on β(R), t > 0, (2.81a)
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where k > 0, and f(x, y, t) now represents all external forces acting on β(R) other
than tension and the restoring force. This equation can be written in the equivalent
form

τ
∂z

∂n
+ kz = f(x, y, t), (x, y) on β(R), t > 0, (2.81b)

a Robin condition.
The initial boundary value problem for displacements of the membrane is

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
+
F (x, y, t)

ρ
, (x, y) in R, t > 0, (2.82a)

Boundary conditions, (2.82b)
z(x, y, 0) = f(x, y), (x, y) in R, (2.82c)
zt(x, y, 0) = g(x, y), (x, y) in R. (2.82d)

If boundary conditions 2.82b and external force F (x, y, t) are independent of
time, there may exist solutions of 2.82a,b that are also independent of time. Such
solutions, called static deflections, satisfy Poisson’s equation

∇2z = −F (x, y)
τ

, (x, y) in R, (2.83)

and the appropriate boundary conditions. If, in addition, no external forces are
present, the PDE reduces to Laplace’s equation

∇2z = 0, (x, y) in R. (2.84)

An important technique in solving two-dimensional wave equation 2.82a is the
method of separation of variables, a method we shall deal with at length in Section
4.2. In this method it is assumed that displacement can be separated into a function
of x and y multiplied by a function of time t, z(x, y, t) = u(x, y)T (t). Substitution
of this into equation 2.82a when F = 0 gives

u(x, y)
d2T

dt2
= c2

[
∂2u

∂x2
T (t) +

∂2u

∂y2
T (t)

]

or,

1
c2T

d2T

dt2
=

1
u

(
∂2u

∂x2
+
∂2u

∂y2

)
.

Because the left side of this equation is a function of only t and the right side is a
function of x and y, it follows that each must be equal to a constant, say −k. Then
u(x, y) must satisfy

1
u

(
∂2u

∂x2
+
∂2u

∂y2

)
= −k,

or

∇2u+ ku = 0. (2.85)

This equation is called the two-dimensional Helmholtz equation. In the present
context, it is also called the reduced wave equation. In essence, it describes the



SECTION 2.4 73

amplitude of the oscillations of each point in the membrane; T (t) contains the time
dependence of the vibrations. Boundary conditions for the wave equation will yield
boundary conditions for the Helmholtz equation.

EXERCISES 2.4

In Exercises 1–7, set up, but do not solve, an (initial) boundary value problem for
the required displacement. Assume that mass per unit area of and tension in the
membrane are constant.

1. A vibrating circular membrane of radius r1 is given initial displacement f(r, θ) and zero initial
velocity. If its edge r = r1 is fixed on the xy-plane, formulate an initial value problem for
subsequent displacements of the membane. Assume that no external forces act on the membrane.

2. Repeat Exercise 1 except that f(r, θ) is replaced by f(r).

3. A circular membrane of radius r1 is in a static position with radial lines θ = 0 and θ = α
clamped on the xy-plane. If the displacement of the edge r = r1 is f(θ) for 0 ≤ θ ≤ α,
formulate the boundary value problem for displacement in the sector 0 < θ < α. Would there
be any restriction on f(θ)?

4. Repeat Exercise 3 except that gravity acts on the membrane.

5. Repeat Exercise 1 except that gravity and a damping force proportional to velocity act on the
membrane.

6. A rectangular membrane is initially (t = 0) at rest over the region 0 ≤ x ≤ L, 0 ≤ y ≤ L′

in the xy-plane. For time t > 0, a periodic force per unit area cosωt acts at all points in the
membrane. If the edge of the membrane is fixed on the xy-plane, formulate an initial boundary
value problem for displacements of the membrane.

7. Repeat Exercise 6 except that the boundaries x = 0 and x = L are elastically connected to
the xy-plane and the boundaries y = 0 and y = L′ are forced to exhibit motion described by
f1(x, t) and f2(x, t), respectively.

8. Suppose a membrane over the region R of the xy-plane is in a static position with displacement
z(x, y) satisfying Poisson’s equation ∇2z = −F (x, y)/τ . Suppose further that the boundary
condition on the boundary β(R) of R is of Neumann type, ∂z/∂n = f(x, y)/τ for (x, y) on
β(R). Use the result of Exercise 9 in Section 2.1 (or Green’s theorem) to show that F (x, y) and
f(x, y) must satisfy the consistency condition

∫
©

β(R)

f(x, y) ds =
∫∫

R

−F (x, y) dA.

What is the physical significance of this requirement?
9. A circular membrane of radius r2 has its edge r = r2 fixed on the xy-plane. If gravity and

tension are the only forces acting on the membrane, what are the static deflections of points of
the membrane?

10. In this exercise we replace gravity in Exercise 9 with an arbitrary (but continuous) function
f(r); that is, assume that the only forces acting on the membrane are tension and a force per
unit area with z-component f(r).
(a) What is the boundary value problem for static deflections z(r) of the membrane?
(b) Show that z′(r) must be of the form
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z′(r) = − 1
τr

∫
rf(r) dr.

(c) Express the antiderivative in part (b) as a definite integral

z′(r) = − 1
τr

∫ r

0

uf(u) du

and integrate once more to find z(r) in the form

z(r) =
1
τ

[∫ r2

0

∫ v

0

u

v
f(u) du dv −

∫ r

0

∫ v

0

u

v
f(u) du dv

]
.

(d) Interchange orders of integration to obtain

z(r) =
1
τ

[∫ r2

0

uf(u) ln
(r2
u

)
du−

∫ r

0

uf(u) ln
( r
u

)
du

]
.

(e) Verify that the result in part (d) yields the solution to Exercise 9 when f(r) = −ρg.
(f) Find deflections when f(r) = k(r − r2), k > 0 a constant.

11. The two-dimensional wave equation 2.73 was derived by applying Newton’s second law to a
segment of the membrane. In this exercise we use the PDE to discuss energy balance for the
entire membrane.
(a) Multiply equation 2.73 by ∂z/∂t and integrate over the region R in the xy-plane onto which

the membrane projects to show that
∫∫

R

1
2
∂

∂z

(
∂z

∂t

)2

dA = c2
∫∫

R

∂z

∂t

(
∂2z

∂x2
+
∂2z

∂y2

)
dA+

∫∫

R

F (x, y, t)
ρ

∂z

∂t
dA.

(b) Verify that for z a function of x, y, and t,

∂z

∂t
∇2z = ∇ ·

(
∂z

∂t
∇z
)
− 1

2
∂

∂t
|∇z|2,

and use this identity together with Green’s theorem to rewrite the result in part (a) in the
form

1
2

∫∫

R

[
∂

∂t

(
∂z

∂t

)2

+ c2
∂

∂t
|∇z|2

]
dA = c2

∫
©

β(R)

∂z

∂t

∂z

∂n
ds+

∫∫

R

F (x, y, t)
ρ

∂z

∂t
dA.

(c) Integrate the result in part (b) with respect to time from t = 0 to an arbitrary t to obtain

∫∫

R

[
ρ

2

(
∂z

∂t

)2

+
τ

2
|∇z|2

]
dA =

∫∫

R

[
ρ

2

(
∂z(x, y, 0)

∂t

)2

+
τ

2
|∇z(x, y, 0)|2

]
dA

+
∫ t

0

∫
©

β(R)

(
τ
∂z

∂n

)
∂z

∂t
ds dt+

∫ t

0

∫∫

R

F (x, y, t)
∂z

∂t
dAdt.

Interpret each term in this result physically, and hence obtain a physical interpretation of
the equation as a whole. It is often called the energy equation for the membrane.
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§2.5 Transverse Vibrations of Beams

In this section we study vertical oscillations of horizontal beams (Figure 2.24). It is
assumed that the beam is symmetric about the xy-plane and that all cross sections
(which would be plane in the absence of any loading) remain plane during vibrations.
Displacements are then described by the position y(x, t) of the neutral axis.
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Figure 2.24 Figure 2.25

Stretches and compressions in various parts of the beam lead to internal forces
and moments. It has been shown experimentally that the bending moment M(x, t)
on the right face of the cross section of the beam at position x due to the rest of
the beam to its right is related to the signed curvature κ(x, t) of the neutral axis by
the equation

M = EIκ, (2.86)

where E = E(x) > 0 is Young’s modulus of elasticity (depending on the material in
the beam) and I = I(x) is the moment of inertia of the cross section of the beam
(Figure 2.25). It is shown in elementary calculus that

κ =
∂2y/∂x2

[
1 +

(
∂y

∂x

)2
]3/2

, (2.87)

but if we assume that vibrations produce only small slopes, then ∂y/∂x << 1, and
we may take

κ =
∂2y

∂x2
. (2.88)

Consequently, for vibrations producing small slopes, bending moments are related
to curvature by

M(x, t) = EI
∂2y

∂x2
. (2.89)

Since ∂2y/∂x2 is positive when the beam is concave upward (as in Figure 2.25),
it follows that M must be positive on the right face for the direction shown. The
moment on the left face of the same cross section due to the material in the beam
to its left is therefore −M(x, t) = −EI∂2y/∂x2.

Shear forces also act on any cross section. We denote by Q(x, t) the y-compo-
nent of the shear force acting on the right face of the cross section at position x due
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to that part of the beam to its right. Then, −Q(x, t) is the shear force acting on
the left face. Shear and bending moments are related by the equation

Q(x, t) = −∂M(x, t)
∂x

. (2.90)

Vibrations of the beam are determined by
the interactions of the internal bending
moments and shear forces with the exterior
loading w(x, t) per unit x-length (including
the weight of the beam) and all external forces
F (x, t) per unit x-length (including loading).
The function w(x, t) is the load per unit length
which we take as positive, while F (x, t), the

y

xa x x

M x t

Q a
w F

( , )

x t( , ) x t( , ) x t( , )t( , ) Q-

a t( , )-M

y-component of all external forces, may be Figure 2.26
positive, negative, or zero. To describe these
interactions, we apply Newton’s second law to the vertical translational motion of
the segment of the beam in Figure 2.26:

∂

∂t

[∫ x

a

∂y(ζ, t)
∂t

w

g
dζ

]
=
∫ x

a

F (ζ, t) dζ +Q(x, t) −Q(a, t), (g > 0). (2.91)

The integral on the left is the momentum of the segment; wdζ/g is the mass on an
element of the beam of length dζ along the x-axis, and multiplication by velocity
∂y(ζ, t)/∂t gives momentum. The integral on the right is the sum of all external
forces on the segment, and Q(x, t) and Q(a, t) are the shear forces on the faces at x
and a, respectively. Differentiation of this equation with respect to x gives

∂

∂t

(
w

g

∂y

∂t

)
= F (x, t) +

∂Q

∂x
. (2.92)

Substitutions for ∂Q/∂x andM from equations 2.90 and 2.89 yield the PDE satisfied
by transverse vibrations of the beam:

∂

∂t

(
w

g

∂y

∂t

)
+

∂2

∂x2

(
EI

∂2y

∂x2

)
= F (x, t). (2.93)

When E and I are independent of x, and w(x, t) is independent of t, the PDE can
be written in the simplified form

w

EIg

∂2y

∂t2
+
∂4y

∂x4
=

F

EI
. (2.94)

In many applications, the internal forces in the beam are so large that the effect
of F is negligible. In such cases, PDE 2.94 may be replaced by the homogeneous*
equation

w

EIg

∂2y

∂t2
+
∂4y

∂x4
= 0. (2.95)

* A general definition for a homogeneous PDE is given in Section 4.1.
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This is illustrated in Exercise 5, where it is shown that when F (x) is due only to
the weight of the beam itself, static deflections are small.

Accompanying PDEs 2.94 or 2.95 will be two initial conditions that describe
the displacement and velocity of the beam at some initial time (usually t = 0):

y(x, 0) = f(x), 0 < x < L, (2.96a)
yt(x, 0) = g(x), 0 < x < L. (2.96b)

Various types of boundary conditions may exist at each end of the beam. If
the end x = 0 is simply-supported (Figure 2.27), displacement and curvature
(moment) there are both zero:

y(0, t) = 0,
∂2y(0, t)
∂x2

= 0. (2.97)

x

L

Simple Support

L

x

Built in horizontally

Figure 2.27 Figure 2.28

If this end is built in horizontally (Figure 2.28), displacement and slope vanish:

y(0, t) = 0,
∂y(0, t)
∂x

= 0. (2.98)

Finally, if this end is free or cantilevered (Figure 2.29), curvature and shear are
both zero:

∂2y(0, t)
∂x2

= 0,
∂3y(0, t)
∂x3

= 0. (2.99)

L

x

Free end

Figure 2.29

Similar conditions exist at the end x = L.
When F (x, t) and the boundary conditions are independent of time, there may

exist solutions of the initial boundary value problem that are also independent of
time, called static deflections. They satisfy the ordinary differential equation

d4y

dx4
=
F (x)
EI

, (2.100)
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and the appropriate boundary conditions. When the beam lies on an elastic foun-
dation, and the only other force acting on the beam is gravity, then F = w − ky,
and this differential equation becomes

d4y

dx4
=

1
EI

(w − ky). (2.101)

EXERCISES 2.5
In Exercises 1–4, set up, but do not solve, an (initial) boundary value problem for
the required displacement. Assume that Young’s modulus E and the moment of
inertia I of the cross section of the beam are constant.

1. A horizontal beam of length L has flat ends at x = 0 and x = L. At time t = 0, it is at rest
but its neutral axis is deflected according to the function f(x), 0 ≤ x ≤ L. It is then released
from this position. The left end of the beam is built in horizontally, and the right end is free.

2. Repeat Exercise 1 except that both ends are simply supported on the x-axis.

3. Repeat Exercise 1 except that a mass m is distributed uniformly along the beam and both ends
are built in horizontally.

4. A beam of length L is clamped horizontally at x = 0 and is cantilevered at x = L. For time
t < 0, it is deflected, but motionless, under a downward force of magnitude F at x = L and its
own weight. At time t = 0, this force is removed. (Hint: In the static situation, the boundary
conditions at x = L are y′′(L) = 0 and y′′′(L) = F/(EI).)

5. In this exercise we discuss deflections and forces for a typical static beam.
(a) What is the boundary value problem for static deflections of a beam of length L, simply

supported at both ends? Solve this problem when the external force is constant.
(b) Suppose now that F is due only to the weight of the beam itself. Find the maximum

deflection of the beam using the following data: E = 2.1 × 1011 N/m2, ρ = 7.85 × 103

kg/m3, L = 5 m, I = 6.5 kg·m2, Cross-sectional area = 0.02 m2.
(c) What constant force (per unit x-length) over the beam would create a maximum deflection

of 1 cm? How large is this compared with the weight per unit length of the beam?

6. Show that when the ends of the beam in Exercise 5 are clamped horizontally, the maximum
deflection is only one-fifth that for the simply supported beam.

7. Solve equation 2.101 for static deflections of a beam of length L on an elastic foundation when
both ends are simply-supported.
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§2.6 Electrostatic Potential

When two positive point charges Q and q are r units apart in free space, Coulomb’s
law states that each repels the other with a force whose magnitude is

F =
qQ

4πε0r2
, (2.102)

where ε0 is the permittivity of free space. The force on unit charge q due to Q is
called the electric field intensity

E =
Q

4πε0r3
r, (2.103)

where r is the vector from Q to q = 1
(Figure 2.30). It is straightforward to
show that the curl and divergence of this
vector field vanish:

∇×E = 0, (2.104a)
∇ · E = 0. (2.104b) x

z

y

q

Q

r

Figure 2.30

A vanishing curl implies the existence (in a suitably defined domain not containing
Q) of a potential function V satisfying

E = −∇V. (2.105)

Combine this with property 2.104b, and we find that V must satisfy Laplace’s
equation

∇2V = 0. (2.106)

For such a simple charge distribution, it is easily shown (from 2.105) that to an
additive constant,

V =
Q

4πε0r
. (2.107)

When Q is replaced by a distribution of charge with density σ in some re-
gion of free space (or other medium), determination of a potential function is more
complex. In this case we appeal to Maxwell’s equations, which govern all electro-
magnetic fields. In a static situation, Maxwell’s equations still require the electric
field intensity equation E to satisfy 2.104a, in which case the potential function V
associated with the field is once again defined by 2.105. Unfortunately, however, we
do not know E (as we did for the point charge) and therefore cannot solve equation
2.105 for V . To find an equation determining V that does not contain E, we use
another of Maxwell’s equations that requires the electric field displacement D to
satisfy

∇ · D = σ (2.108)

at each point in the medium. When the medium is isotropic with constant permit-
tivity ε, then D and E are related by
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D = εE, (2.109)

and hence E must satisfy

∇ ·E =
σ

ε
. (2.110)

Between equations 2.105 and 2.110 we may eliminate E, the result being Poisson’s
equation

∇2V = −σ
ε
. (2.111)

In other words, the electrostatic potential function V associated with an electrostatic
field E must satisfy Poisson’s equation 2.111 at every point interior to the charge
distribution. At points outside the charge distribution, σ vanishes and V satisfies
Laplace’s equation 2.106.

Partial differential equations 2.106 and 2.111 are not, by themselves, sufficient
to determine V . It is necessary to specify boundary conditions as well. A Dirichlet
boundary condition specifies V (x, y, z) on the bounding surface β(R) of the medium:

V (x, y, z) = f(x, y, z), (x, y, z) on β(R), (2.112)

where f(x, y, z) is a given function. A Neumann boundary condition prescribes the
directional derivative of V (x, y, z) normal to the bounding surface:

∂V

∂n
= ∇V · n̂ = f(x, y, z), (x, y, z) on β(R), (2.113)

where n̂ is the unit outward normal to β(R). Since ∇V = −E, it follows that
specification of the electrostatic force on a bounding surface yields a Neumann
boundary condition. If a bounding surface is free of electrostatic forces, it satisfies
a homogeneous Neumann boundary condition.

A Robin boundary condition is a linear combination of a Dirichlet and a Neu-
mann condition:

l
∂V

∂n
+ hV = f(x, y, z), (x, y, z) on β(R). (2.114)

Dirichlet and Neumann boundary conditions are obtained by setting l and h equal
to zero, respectively.

EXERCISES 2.6
In Exercises 1–2, set up, but do not solve, a boundary value problem for the
required potential.

1. Region R in space is bounded by the planes x = 0, y = 0, x = L, and y = L′. If the planes
y = 0 and x = 0 are held at zero potential, whereas x = L and y = L′ are maintained at a
potential of 100, what is the boundary value problem for potential in R?

2. Repeat Exercise 1 except that a uniform charge (with density σ) is spread over the volume
L/4 ≤ x ≤ 3L/4, L′/4 ≤ y ≤ 3L′/4.
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3. A region R of space has a subregion R occupied by charge with density σ(x, y, z) coulombs per
cubic metre, assumed continuous (figure below). Consider the function V (x, y, z) defined by

V (x, y, z) =
∫∫∫

R

σ(X,Y,Z)
4πε0

√
(x−X)2 + (y − Y )2 + (z − Z)2

dZ dY dX.

Coordinates (X,Y,Z) identify points in R.
(a) When (x, y, z) is in R but not in R, V (x, y, z) is clearly well defined. By using spherical

coordinates originating at (x, y, z) for integration variables, show that when (x, y, z) is in R,
the improper integral converges. In other words, V (x, y, z) is well defined throughout all R.

(b) By interchanging the order of differentiations with respect to x, y, and z and integrations
with respect to X, Y , and Z, show that when (x, y, z) is in R, but not in R, V (x, y, z)
satisfies Laplace’s equation 2.106.

To prove that V (x, y, z) satisfies Poisson’s equation 2.111 when (x, y, z) is in R requires the
theory of generalized functions. Parts of this theory are introduced in Chapters 12 and 13, but
the development is not carried far enough to permit verification
of the integral as a solution to Poisson’s
equation. This is not really a problem, however,
because the integral representation of V (x, y, z)
is of limited utility anyway. Seldom can the
integral be evaluated in closed form. In
addition, the integral does not take into
account any boundary conditions that may be
present, and there is no obvious way to modify
the integral in order to encompass boundary
conditions. x

z

y

R

R
X,Y,Z

x,y,z
( )

( )
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§2.7 General Solutions of Partial Differential Equations

When boundary and/or initial conditions accompany an ODE, we often find a gen-
eral solution and then use the subsidiary conditions to determine the arbitrary
constants. This procedure seldom works for PDEs. Arbitrary constants in ODEs
are replaced by arbitrary functions in PDEs, and to use initial and/or boundary
conditions to determine these functions is usually impossible. We give one very
simple, but important, example to illustrate the direction the analysis might take
in using a general solution for a PDE to solve an initial boundary value problem.
The one-dimensional vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
, −∞ < x <∞, t > 0, (2.115a)

y(x, 0) = f(x), −∞ < x <∞, (2.115b)
yt(x, 0) = g(x), −∞ < x <∞, (2.115c)

describes free oscillations of an infinitely long taut string with initial displacement
f(x) and initial velocity g(x). By changing independent variables according to
ν = x+ ct and η = x− ct and denoting y[x(ν, η), t(ν, η)] by w(ν, η), wave equation
2.115a is replaced by

∂2w

∂ν∂η
= 0 (2.116)

(see Exercise 1 for details). A general solution of this PDE is

w(ν, η) = F (ν) +G(η), (2.117)

where F and G are arbitrary but continuous functions with continuous first deriva-
tives. As a result, a general solution of PDE 2.115a is

y(x, t) = F (x+ ct) +G(x− ct). (2.118)

It now remains to determine the exact form of these functions. Application of initial
conditions 2.115b,c requires

f(x) = F (x) +G(x), −∞ < x <∞,

g(x) = cF ′(x) − cG′(x), −∞ < x <∞.

When the first of these is differentiated with respect to x and combined with the
second,

F ′(x) =
1
2c

[cf ′(x) + g(x)]

and therefore

F (x) =
1
2
f(x) +

1
2c

∫ x

0

g(ζ) dζ +D, G(x) =
1
2
f(x)− 1

2c

∫ x

0

g(ζ) dζ −D,

where D is an arbitrary constant. When x is replaced by x + ct in F (x) and by
x− ct in G(x), we obtain
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y(x, t) =
1
2
f(x+ ct) +

1
2c

∫ x+ct

0

g(ζ) dζ +D

+
1
2
f(x− ct) − 1

2c

∫ x−ct

0

g(ζ) dζ −D

=
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ. (2.119)

This is called d’Alembert’s solution of initial value problem 2.115. As was stated
earlier, this is a particularly simple example, and analyses of this type are not usually
possible. For this reason, it is unusual to solve initial boundary value problems
by finding a general solution for the PDE and attempting to use initial and/or
boundary conditions to determine the arbitrary functions. More direct methods
must be devised.

Notwithstanding the fact that general solutions of PDEs are seldom of use in
solving initial boundary value problems, d’Alembert’s solution 2.119 of problem
2.115 provides considerable insight into the behaviour of vibrating strings that are
free of external forces. Consider first a taut string that at time t = 0 is released from
rest (g(x) = 0) from the position in Figure 2.31a (f(x) = 0 for |x − 1/2| ≥ 1/16).
This is not a realistic initial displacement in view of the assumptions in Section
2.3 that displacements and slopes must be small. But because our discussion is
independent of f(x), we have purposely exaggerated the initial shape in order that
our graphical representations be unmistakable. According to d’Alembert’s solution
2.119, subsequent displacements of the string are defined by

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)], (2.120)

and it is quite simple to obtain a pictorial history of the string using this function.
For any given time t, the graph of f(x+ ct)/2 is one-half that of f(x) translated ct
units to the left; f(x − ct)/2 is one-half of f(x) shifted ct units to the right. The
position of the string at this particular time is the sum of these two graphs. We
have shown this procedure for the times t = 1/(64c), 1/(32c), 3/(64c), 1/(16c), and
1/(8c) in Figures 2.31b–f, respectively. The dotted curves represent f(x+ ct)/2 and
f(x− ct)/2, and the solid curve y(x, t).
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Figure 2.31a
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Figure 2.31b
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What is most interesting is that these graphs suggest the following physical
description for the motion of the string. The initial deflection f(x) of the string
divides into two parts, each equal to one-half of f(x), one traveling to the left with
velocity −c and the other traveling to the right with velocity c. At first they interfere
with each another, but at time t = 1/(16c), they separate and travel in opposite
directions along the string.

Consider now the situation in which the string is given a nonzero initial velocity
g(x), but no initial displacement, f(x) = 0. In this case, equation 2.119 yields

y(x, t) =
1
2c

∫ x+ct

x−ct

g(ζ) dζ (2.121a)

as the displacement of the string at position x and time t. Suppose, for example,
that

g(x) =





0, x ≤ 7/16,
k, 7/16 < x < 9/16,
0, x ≥ 9/16
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where k > 0 is a constant (Figure 2.52). (Think of only that part of the string
7/16 < x < 9/16 being struck by a hammer.)

y

x1
2

x(
k

y g= )

97
1616

Figure 2.52

Suppose we denote by G(x) the antiderivative

G(x) =
1
2c

∫ x

0

g(ζ) dζ,

the graph of which is shown in Figure 2.33.
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97
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Figure 2.33

Displacement of the string can be expressed in the form

y(x, t) = G(x+ ct)−G(x− ct). (2.121b)

Because of the negative sign, it is the destructive combination of the left-traveling
wave G(x+ct) and the right traveling wave G(x−ct). Results are shown for various
times in Figures 2.34a–e.
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Each point moves from its initial position on the x-axis to a stationary position
k/(16c) units above the x-axis.

When a string has both an initial displacement f(x) and an initial velocity
g(x), graphical techniques may still be used to determine the solution of problem
2.115. We express y(x, t) in the form y(x, t) = u(x, t) + v(x, t), where u(x, y) and
v(x, t) satisfy the problems

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x, 0) = f(x),
ut(x, 0) = 0;

∂2v

∂t2
= c2

∂2v

∂x2
,

v(x, 0) = 0,
vt(x, 0) = g(x).

We began this section suggesting how discussions might ensue were we to at-
tempt to find a general solution of a PDE and then use initial and boundary data
to determine functions in the general solution. It is important to point out that
what we have done here with the one-dimensional wave equation is not possible
with other PDEs such as the heat equation and Laplace’s equation; we should not
expect to repeat similar discussions in other applications. On the other hand, these
discussions of the wave equation have shed light on some of the properties of vibra-
tions problems, and with the material from Section 2.8, we will be able to continue
discussions in Sections 2.9–2.11, and obtain further insight into solutions of the wave
equation. In particular, we shall see how to modify the above discussion in the case
of a single boundary condition for a semi-infinite string and a pair of boundary
conditions for a finite string.
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EXERCISES 2.7

1. Show that the transformation of independent variables ν = x+ ct and η = x− ct replaces wave
equation 2.115a with 2.116.

2. Use the graphical techniques of this section to determine the displacements of an infinite string
with zero initial velocity and initial displacement

f(x) =





0, x < 0
x/8, 0 ≤ x ≤ 1/2
(1− x)/8, 1/2 ≤ x ≤ 1
0, x > 1

at the times (a) t = 1/(8c), (b) t = 1/(4c), (c) t = 3/(8c), (d) t = 1/(2c), (e) t = 5/(8c).

3. Repeat Exercise 2 with f(x) =

{ 0, x < 0
sin (2πx), 0 ≤ x ≤ 1
0, x > 1

.

4. Use the graphical techniques of this section to determine the displacements of an infinite string
with zero initial displacement and initial velocity

g(x) =





0, x < 1/4
1, 1/4 < x < 3/4
0, x > 3/4.

for the times in Exercise 2.

5. Repeat Exercise 4 with

g(x) =





0, x < 1/8
1, 1/8 < x < 3/8
0, 3/8 < x < 5/8
1, 5/8 < x < 7/8
0, x > 7/8.
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§2.8 Classification of Second-Order Partial Differential Equations

The material in this section is not essential at this point in our discussions. It can be
considered at any time, since it is neither a prerequisite for subsequent discussions
nor dependent on them. We include it here because it provides justification for the
approach that we take in the remainder of the book. We intend solving the initial
boundary value problems in Sections 2.2–2.6 using the techniques of separation of
variables; Fourier transforms, finite and infinite; Laplace transforms; and Green’s
functions. Second-order PDEs play a prominent role in these problems; the only
application we have seen so far that gives rise to a PDE that is not second order
is that for beam vibrations. What we illustrate here is that all linear second-order
PDEs (we define this term shortly) are basically of three types. These types corre-
spond generally to Poisson’s equation, the wave equation, and the heat conduction
equation. Consequently, once we learn how to apply the above techniques to these
three equations, we have essentially learned how to handle all second-order linear
equations.

For purposes of classification, it is not necessary to restrict consideration to
linear equations, although it is worth noting that a second-order PDE in u(x, y) is
linear if it can be represented in the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y). (2.122)

The classification that we develop here is also valid for more general equations; in
particular, equations of the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy = f(x, y, u, ux, uy), (2.123)

where f is any function of its arguments. Such equations are linear in the second
derivatives only. It is assumed that a, b, and c have continuous first partial de-
riatives in some domain D and that these coefficient functions do not all vanish
simultaneously. We classify such PDEs into one of three types — elliptic, parabolic,
or hyperbolic — and each type of PDE displays characterisitics quite distinct from
the others. This classification is stated as follows.

Definition 2.2 Partial differential equation 2.123 is said to be hyperbolic at a point (x, y) if

b2 − 4ac > 0; (2.124a)

parabolic if

b2 − 4ac = 0; (2.124b)

and elliptic if

b2 − 4ac < 0. (2.124c)

This classification is a pointwise one so that a PDE may change its type from
point to point. The one-dimensional wave equation 2.44 is hyperbolic at all points;
the one-dimensional heat conduction equation in Example 2.3 in Section 2.2 is
parabolic; and Poisson’s equation 2.6a is elliptic.
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Example 2.6 Determine points at which the PDE

x2 uxx − xy uxy + y uyy = xyu2 + 3ux

is hyperbolic, parabolic, and elliptic.

Solution We calculate
b2 − 4ac = (−xy)2 − 4(x2)(y) = x2y(y − 4).
The PDE is therefore hyperbolic in
the region y > 4, x > 0, the region
y > 4, x < 0, the region y < 0, x > 0,
and the region y < 0, x < 0. It is
elliptic for 0 < y < 4, x > 0 and
0 < y < 4, x < 0. It is parabolic
on the lines x = 0, y = 0 and y = 4
(Figure 2.35).•

y

x

HyperbolicHyperbolic

Hyperbolic Hyperbolic

Elliptic Elliptic

Parabolic4

Figure 2.35
When PDE 2.123 is of the same type at every point in a domain D, we show

that by means of a change of independent variables

ν = ν(x, y), η = η(x, y), (2.125)

the PDE can be transformed into a simpler form. We require that functions ν(x, y)
and η(x, y) have continuous second partial derivatives in D and that the Jacobian
(determinant)

∂(ν, η)
∂(x, y)

=
∣∣∣∣
νx νy

ηx ηy

∣∣∣∣ 6= 0 (2.126)

in order that the original variables x and y be retrievable:

x = x(ν, η), y = y(ν, η). (2.127)

When we replace x and y by ν and η, we denote the dependent variable by
w(ν, η) = u[x(ν, η), y(ν, η)]. It follows, then, that u(x, y) = w[ν(x, y), η(x, y)], and
chain rules for partial deriatives permit us to express derivatives of u(x, y) with
respect to x and y in terms of derivatives of w with respect to ν and η:

ux = wννx + wηηx, uy = wννy + wηηy ,

and

uxx = (wνννx + wνηηx)νx + wννxx + (wηννx + wηηηx)ηx + wηηxx,

uxy = (wνννy + wνηηy)νx + wννxy + (wηννy + wηηηy)ηx + wηηxy ,

uyy = (wνννy + wνηηy)νy + wννyy + (wηννy + wηηηy)ηy + wηηyy.

The PDE in w as a function of ν and η equivalent to equation 2.123 is therefore

(aνx
2 + bνxνy + cνy

2)wνν + [2aνxηx + b(νxηy + νyηx) + 2cνyηy]wνη

+ (aηx
2 + bηxηy + cηy

2)wηη + (aνxx + bνxy + cνyy)wν

+ (aηxx + bηxy + cηyy)wη = f [x(ν, η), y(ν, η), w,wννx + wηηx, wννy + wηηy]
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or

αwνν + βwνη + γwηη = F (ν, η, w,wν , wη), (2.128a)

where

α = aνx
2 + bνxνy + cνy

2,

β = 2aνxηx + b(νxηy + νyηx) + 2cνyηy, (2.128b)
γ = aηx

2 + bηxηy + cηy
2,

and

F (ν, η, w,wν , wη) = f [x(ν, η), y(ν, η), w,wννx + wηηx, wννy + wηηy]
− (aνxx + bνxy + cνyywx)wν − (aηxx + bηxy + cηyywη)wη. (2.128c)

It is a simple exercise to show that

β2 − 4αγ = (b2 − 4ac)
[
∂(ν, η)
∂(x, y)

]2

, (2.129)

a result that proves that our classification of PDEs is invariant under a real trans-
formation of independent variables.

We now show that when PDE 2.123 is hyperbolic at every point (x, y) in D,
then it can be transformed into the canonical form

wνη = F (ν, η, w,wν , wη); (2.130a)

when it is parabolic at every point of D, it can be transformed into the canonical
form

wνν = F (ν, η, w,wν , wη); (2.130b)

and when it is elliptic, it can be transformed into the canonical form

wνν + wηη = F (ν, η, w,wν , wη). (2.130c)

Hyperbolic Equations

For hyperbolic PDEs, we claim the existence of a transformation 2.125 that reduces
the PDE to canonical form 2.130a. This is possible if functions ν(x, y) and η(x, y)
can be found to satisfy

0 = α = aνx
2 + bνxνy + cνy

2, 0 = γ = aηx
2 + bηxηy + cηy

2, (2.131a)

or,

0 = a

(
νx

νy

)2

+ b

(
νx

νy

)
+ c, 0 = a

(
ηx

ηy

)2

+ b

(
ηx

ηy

)
+ c; (2.131b)

that is; the ratios νx/νy and ηx/ηy must satisfy the equation

aλ2 + bλ+ c = 0. (2.132)
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Since b2−4ac > 0, there are two distinct solutions, λ1 = λ1(x, y) and λ2 = λ2(x, y),
of this quadratic equation. Consequently, when function ν(x, y) and η(x, y) satisfy
the first-order PDEs

νx = λ1(x, y)νy, ηx = λ2(x, y)ηy, (2.133)

the PDE in w as a function of ν and η is reduced to the form

βwνη = F (ν, η, w,wν , wη). (2.134)

With α = γ = 0, it follows that β2 − 4αγ = (b2 − 4ac)[∂(ν, η)/∂(x, y)]2 6= 0.
Consequently, we may divide by β and obtain the canonical form 2.130a for a
hyperbolic PDE.

Because of the form of PDEs 2.133, solutions can be obtained with ODEs.
Indeed, suppose the ordinary differential equation

dy

dx
= −λ1(x, y) (2.135)

has a solution defined implicitly by

ν(x, y) = C1. (2.136)

Then each curve in this one-parameter family has slope defined by

νx + νy
dy

dx
= 0 =⇒ dy

dx
= −νx

νy
. (2.137)

Thus, when ODE 2.135 is solved in form 2.136, function ν(x, y) satisfies the PDE

νx

νy
= λ1(x, y). (2.138)

The curves defined implicitly by equation 2.136 are called characteristic curves
for the hyperbolic PDE; they are determined by the coefficients a, b, and c in the
equation.

(For those who have read Chapter 1, equation 2.135 follows naturally. Charac-
teristic equations for the first of PDEs 2.133 are

dx =
dy

λ1(x, y)
, dν = 0, =⇒ dy

dx
= −λ1(x, y).

Characteristic curves here are base C-curves in Chapter 1.)
Similarly, the ODE

dy

dx
= −λ2(x, y) (2.139)

defines another family of characteristic curves
η(x, y) = C2, (2.140)

and η(x, y) is a solution of ηx = λ2(x, y)ηy.
Each of the families ν(x, y) = C1 and

η(x, y) = C2 forms a covering of the domain
of the xy-plane in which the PDE is hyper-
bolic (Figure 2.36). At no point can the

x

u

y
x,y C

Cx,y

( )=

( )= 1

2h

n

particular curves from each family share a Figure 2.36
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common tangent line (since at no point can λ1 = λ2).
Under the transformation ν = ν(x, y), η = η(x, y), regarded as a mapping

from the xy-plane to the νη-plane, curves along which ν and η are constant in
the xy-plane become coordinates lines in the νη-plane. Since these are precisely the
characteristic curves, we conclude that when a hyperbolic PDE is in canonical form,
coordinate lines are characteristic curves for the PDE. In other words, characteristic
curves of a hyperbolic PDE are those curves to which the PDE must be referred as
coordinate curves in order that it take on canonical form.

Example 2.7 Show that the one-dimensional wave equation

∂2y

∂t2
− c2

∂2y

∂x2
=

1
ρ
F (x, t, y, yx, yt)

is hyperbolic, and find an equivalent canonical form.

Solution When we note that coefficient c in PDE 2.123 is equal to −c2 in the
wave equation, we calculate that b2 − 4ac = 4c2 > 0, and therefore the PDE is
hyperbolic. Characteristic curves can be found by solving the ODE

dx

dt
= −λ(x, t),

where λ(x, t) satisfies λ2 − c2 = 0. From the equations

dx

dt
= −λ1 = −c and

dx

dt
= −λ2 = c,

we obtain the characteristic curves

x = −ct+ C1, x = ct+ C2.

It follows, then, that the transformation

ν = x+ ct, η = x− ct

reduces the wave equation to canonical form in w(ν, η):

∂2w

∂ν∂η
=

−1
4τ

F (x(ν, η), t(ν, η), w,wν + wη, cwν − cwη) .•

Notice that when F = 0 in this example, the canonical form for the one-
dimensional wave equation ytt − c2yxx = 0 is

∂2w

∂ν∂η
= 0.

This is equation 2.116 of Section 2.7, but now we see the origin of the transformation
ν = x+ ct and η = x− ct.

If ψ(ν) and φ(η) are any two (twice continuously differentiable) functions of
the canonical variables ν and η, then

ψx = ψ′(ν)νx = λ1(x, y)νyψ
′(ν) = λ1(x, y)ψy,

φx = φ′(η)ηx = λ2(x, y)ηyφ
′(η) = λ2(x, y)φy.

Thus, ψ[ν(x, y)] and φ[η(x, y)] also satisfy equation 2.133, and it follows that any
transformation of the form
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ψ = ψ[ν(x, y)], φ = φ[η(x, y)] (2.141)

also reduces the PDE to canonical form (in ψ and φ).
Finally, notice that if we set r = ν+η, s = ν−η, and f(r, s) = w[ν(r, s), η(r, s)],

then

wν = frrν + fssν = fr + fs,

wνη = frrrη + frssη + fsrrη + fsssη = frr − frs + fsr − fss = frr − fss.

Consequently, the PDE in f(r, s) corresponding to form 2.130a is

frr − fss = F [ν(r, s), η(r, s), f, fr + fs, fr − fs]; (2.142)

this is sometimes used as a canonical form for hyperbolic equations.

Parabolic Equations

Parabolic equations can be transformed into canonical form 2.130b by transforma-
tion 2.125 if functions ν(x, y) and η(x, y) can be found to satisfy

0 = β = 2aνxηx + b(νxηy + νyηx) + 2cνyηy , 0 = γ = aηx
2 + bηxηy + cηy

2. (2.143)

The second equation can be written in the form

a

(
ηx

ηy

)2

+ b

(
ηx

ηy

)
+ c = 0 (2.144)

so that ηx/ηy must satisfy

aλ2 + bλ+ c = 0. (2.145)

Since b2 − 4ac = 0, there is exactly one solution λ = λ(x, y) of this quadratic, and
η(x, y) must therefore satisfy the first-order PDE

ηx = λ(x, y)ηy. (2.146)

When η(x, y) is so defined, γ = 0 and, from identity 2.129,

0 = (b2 − 4ac)
[
∂(ν, η)
∂(x, y)

]2
= β2 − 4αγ = β2.

Thus, β must also vanish, and PDE 2.128a in the parabolic case reduces to

αwνν = F (ν, η, w,wν , wη). (2.147)

Since α 6= 0 (why?), we may divide to obtain the canonical form 2.130b for a
paraboic PDE.

We may obtain η(x, y) by writing the solutions of the ODE

dy

dx
= −λ(x, y) (2.148)

in the form

η(x, y) = C. (2.149)



94 SECTION 2.8

The curves in this one-parameter family are called characteristic curves for the
parabolic PDE. Parabolic PDEs therefore have only one family of characteristic
curves. Notice that no mention of ν has been made throughout the discussion.
It follows that the canonical form for parabolic PDEs is obtained for arbitrary
ν(x, y), except that ν(x, y) must be chosen to yield a nonvanishing Jacobian 2.126
in whatever domain is under consideration.

Example 2.8 Is the one-dimensional heat conduction equation

k
∂2U

∂x2
=
∂U

∂t
− k

κ
g(x, t)

parabolic? What are its characteristic curves?

Solution The equation is already in canonical form for a parabolic PDE. If we
replace y with t in equation 2.148, characteristic curves are defined by

dt

dx
= −λ(x, t),

where λ(x, t) must satisfy kλ2 = 0. Consequently, λ = 0, and characteristic curves
are t = constant.•

Example 2.9 Show that the PDE

x2uxx − 2xyuxy + y2uyy = x2 + uy

is parabolic, and find an equivalent PDE in canonical form.

Solution Because b2 − 4ac = (−2xy)2 − 4(x2)(y2) = 0, the PDE is everywhere
parabolic. Characteristic curves can be found by solving

dy

dx
= −λ(x, y)

where λ(x, y) satisfies

0 = x2λ2 − 2xyλ+ y2 = (xλ− y)2.

Consequently, we solve

dy

dx
= −y

x
,

the solution of which can be written in the form xy = C. We choose therefore
η(x, y) = xy, and ν(x, y) is arbitrary except that the Jacobian ∂(ν, η)/∂(x, y) 6= 0.
If we choose ν(x, y) = y, then

∂(ν, η)
∂(x, y)

=
∣∣∣∣
0 1
y x

∣∣∣∣ = −y 6= 0 (except along the x-axis).

Instead of using equation 2.128 to write the PDE in w(ν, η) equivalent to the original
equation in u(x, y), let us perform the transformation. To do this, we require the
following partial derivatives:

ux = wννx + wηηx = ywη, uy = wννy + wηηy = wν + xwη ,

uxx = y(wηννx + wηηηx) = y2wηη,

uxy = wη + y(wηννy + wηηηy) = wη + ywην + xywηη,
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uyy = wνννy + wνηηy + x(wηννy + wηηηy) = wνν + 2xwνη + x2wηη.

Substitution of these into the PDE for u(x, y) along with x = η/ν and y = ν gives

η2

ν2
ν2wηη − 2

η

ν
ν
(
wη + νwην +

η

ν
νwηη

)
+ ν2

(
wνν + 2

η

ν
wην +

η2

ν2
wηη

)

=
η2

ν2
+ wν +

η

ν
wη.

Thus, the PDE equivalent to the given equation is

wνν =
1
ν4

[η2 + ν2wν + ην(1 + 2ν)wη],

valid in any domain not containing points on the x-axis (for which ν = 0).•

Elliptic Equations

Transformation 2.125 reduces an elliptic PDE to canonical form 2.130c if functions
ν(x, y) and η(x, y) can be found to satisfy

0 = 2aνxηx + b(νxηy + νyηx) + 2cνyηy, (2.150a)
0 = a(νx

2 − ηx
2) + b(νxνy − ηxηy) + c(νy

2 − ηy
2). (2.150b)

For hyperbolic PDEs, ν(x, y) and η(x, y) satisfied first-order PDEs that were sep-
arated one from the other. Similarly, η(x, y) in the parabolic case satisfied a first-
order equation that was independent of ν(x, y). Unfortunately, equations 2.150 for
ν(x, y) and η(x, y) are coupled; both unknowns appear in both equations. In an
attempt to separate them, we multiply the first by the complex number i and add
to the second to give

a(νx + iηx)2 + b(νx + iηx)(νy + iηy) + c(νy + iηy)2 = 0.

This equation can be solved for two possible values of the ratio

νx + iηx

νy + iηy
=

−b±
√
b2 − 4ac

2a
=

−b± i
√

4ac− b2

2a
, (2.151)

since b2 − 4ac is known to be negative. Real and imaginary parts of this equation
give

νx =
−bνy ∓ ηy

√
4ac− b2

2a
, ηx =

−bηy ± νy

√
4ac− b2

2a
(2.152a)

or

2aνx + bνy = ∓ηy

√
4ac− b2, ±νy

√
4ac− b2 = 2aηx + bηy. (2.152b)

These are linear equations in νx and νy that have the following solutions in terms
of the partial derivatives ηx and ηy :

νx = − 2cηy + bηx

±
√

4ac− b2
, νy =

2aηx + bηy

±
√

4ac− b2
. (2.153)
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These equations (called the Beltrami equations) are equivalent to conditions 2.150,
but they still form a coupled set of equations in the sense that ν and η appear in
both. A second-order PDE for η(x, y) is evidently

∂

∂x

(
2aηx + bηy√

4ac− b2

)
=

∂

∂y

(
−2aηy + bηx√

4ac− b2

)
. (2.154)

If this equation is solved for η(x, y) and then used to determine ν(x, y), the original
PDE in u is transformed to the form

αwνν + αwηη = F (ν, η, w,wν , wη). (2.155)

Since 0 < (b2 − 4ac)[∂(ν, η)/∂(x, y)]2 = β2 − 4αγ = −4α2, it follows that α 6= 0,
and the elliptic PDE can be obtained in canonical form 2.130c.

The only difficulty with this procedure is that in general, PDE 2.154 for η(x, y)
may not be significantly easier to solve than the original PDE in u(x, y). Instead,
notice that the form of equation 2.151 suggests that we define a complex function
φ(x, y) of two real variables x and y,

φ(x, y) = ν(x, y) + iη(x, y), (2.156)

in which case ν(x, y) and η(x, y) can be retrieved as the real and imaginary parts
of φ(x, y). It is clear that φ(x, y) must satisfy one of the equations

φx

φy
=

−b± i
√

4ac− b2

2a
. (2.157)

To solve either one of these complex PDEs for φ(x, y), we employ the same tech-
nique used for hyperbolic and parabolic PDEs: we consider the ordinary differential
equation

dy

dx
=
b+ i

√
4ac− b2

2a
(2.158)

[or dy/dx = (b− i
√

4ac− b2)/(2a)] for y as a function of x. Because the right side is
complex, we must (temporarily) regard x and y as complex variables. If we obtain
a solution in the form

φ(x, y) = C, (2.159)

then

dy

dx
= −φx

φy
=
b+ i

√
4ac− b2

2a
, (2.160)

clearly indicating that φ(x, y) is the required function. Real and imaginary parts of
φ (once again regarding x and y as real) give ν(x, y) and η(x, y).

Because x and y in equation 2.158 are considered complex, elliptic PDEs do
not have real characteristic curves.

Example 2.10 Find regions in which

uxx + x2uyy = yuy
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is elliptic, and find an equivalent PDE in canonical form.

Solution Since b2 − 4ac = −4x2, the PDE is elliptic in any region that does not
contain points on the y-axis. To find a transformation that will reduce the PDE to
canonical form, we set

dy

dx
= −λ(x, y),

where λ(x, y) is one of the complex solutions of λ2 + x2 = 0. If we choose λ = −ix,
then

dy

dx
= ix

and y = ix2/2+C. The transformation functions ν and η are the real and imaginary
parts of y − ix2/2,

ν(x, y) = y, η(x, y) =
−x2

2
.

With this transformation,

ux = wννx + wηηx = −xwη, uy = wννy + wηηy = wν ,

uxx = −wη − x(wνηνx + wηηηx) = −wη + x2wηη,

uyy = wνννy + wνηηy = wνν .

Substitution of these into the original PDE gives

wνν + wηη =
−1
2η

(wη + νwν).

Had we chosen to set dy/dx = −ix, the transformation would have been ν(x, y) = y,
η(x, y) = x2/2, and the equivalent PDE would have been

wνν + wηη =
1
2η

(wη + νwν).•

To summarize our results, all second-order PDEs in two independent variables
that are linear in their second derivatives can be classified as hyperbolic, parabolic,
or elliptic. The one-dimensional wave equation is hyperbolic, the one-dimensional
heat equation is parabolic, and the two-dimensional Poisson equation is elliptic.
We can therefore discover properties of all second-order PDEs in two independent
variables that are linear in second derivatives by analyzing strings, heat conduc-
tion in rods, and two-dimensional electrostatic problems. Each type of equation
has properties distinct from the others; properties of hyperbolic equations differ
from those of parabolic equations, and these in turn differ from those of elliptic
equations. For instance, in Section 2.7 we saw that a disturbance (more gener-
ally, information) is transmitted by the wave equation (a hyperbolic equation) at
finite speed. Information (in the form of heat) is transmitted infinitely fast by the
heat equation (see Section 6.6). Elliptic equations represent static or steady-state
situations. Other properties of hyperbolic, parabolic, and elliptic equations are dis-
cussed throughout the book, particularly in Sections 6.6–6.8. Problems associated
with these equations are even characterized differently; all three are accompanied
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by boundary conditions, but the wave equation has two initial conditions, the heat
equation has one, and Poisson’s equation has none.

Second-order PDEs in more than two independent variables can also be clas-
sified into types, including parabolic, elliptic, and hyperbolic. However, it is not
usually possible to reduce such equations to simple canonical forms. One instance
in which a canonical form is possible is for PDEs with constant coefficients. We
shall not discuss the classification and canonical forms here, but we should point
out that in this classification, the three-dimensional Laplace equation is elliptic,
the multidimensional wave equation is hyperbolic, and the multidimensional heat
equation is parabolic.

EXERCISES 2.8

1. Show that characteristic curves of PDE 2.123, when it is hyperbolic or parabolic, have slopes
defined by the ordinary differential equation

dy

dx
= λ(x, y),

where λ(x, y) is a solution of the equation

aλ2 − bλ+ c = 0.

In Exercises 2–8 determine where the PDE is hyperbolic, parabolic, and elliptic.
Illustrate each region graphically in the xy-plane.

2. uxx + 2yuxy + 5uyy = 15x+ 2y 3. x2uxx + 4yuyy = u

4. x2yuxx + xyuxy − y2uyy = 0 5. xyuxx − xuxy + uyy = uux + 3
6. (sinx)uxx + (2 cosx)uxy + (sinx)uyy = 07. (x ln y)uxx + 4uyy = ux − 3xyu

8. uxx + xuxy + yuyy = 0
In Exercises 9–12 classify the PDE as hyperbolic, parabolic, or elliptic and find an
equivalent PDE in canonical form.

9. uxx + 2uxy + uyy = ux − xuy 10. uxx + 2uxy + 5uyy = 3ux − yu

11. 3uxx + 10uxy + 3uyy = 0 12. uxx + 6uxy + uyy = 4uux

13. Find a PDE in canonical form equivalent to the PDE in Example 2.9 that is valid in regions
not containing points on the y-axis.

14. (a) Show that the Tricomi PDE yuxx +uyy = 0 is hyperbolic when y < 0, parabolic when y = 0,
and elliptic when y > 0.

(b) Find an equivalent PDE in canonical form when y < 0.
(c) Find an equivalent PDE in canonical form when y > 0.
(d) Find an equivalent PDE in canonical form when y = 0.

15. Find regions in which the PDE x2uxx + 4uyy = u is hyperbolic, parabolic, and elliptic. In each
region, find an equivalent PDE in canonical form.

16. Show that the PDE y2uxx − 2xyuxy + x2uyy = 0 is everywhere parabolic. Find an equivalent
PDE in canonical form valid in regions not containing points on the x-axis.

17. Show that the PDE uxx + x2uxy − (x2/2 + 1/4)uyy = 0 is hyperbolic in the entire xy-plane.
Find its characteristic curves and illustrate them geometrically.



SECTION 2.8 99

18. Show that the PDE xuxy + yuyy = 0 is hyperbolic when x 6= 0. Find an equivalent PDE in
canonical form.

19. (a) In this exercise we examine the extent to which canonical forms for linear PDEs with
constant coefficients can be simplified. Show that when coefficients of linear PDE 2.122 are
constants, and the PDE is transformed to canonical form, these forms remain linear with
constant coefficients:

wνη + pwν + qwη + rw = G (hyperbolic),
wνν + pwν + qwη + rw = G (parabolic),

wνν + wηη + pwν + qwη + rw = G (elliptic).

(b) Prove that in the case of a hyperbolic equation, a change of dependent variable

z(ν, η) = eεν+ρηw(ν, η)

can, for appropriate constants ε and ρ, be used to eliminate the first-derivative terms zη and
zν .

(c) Verify that the transformation in part (b) can be used to eliminate the first derivatives for
elliptic equations also.

(d) Show that the transformation in part (b) can be used to eliminate zν and z for a parabolic
equation when q 6= 0, and to eliminate zν and zη when q = 0.

In Exercises 20–22 use the results of Exercise 19 to find a simplified canonical
representation for the linear PDE.

20. uxx + 2uxy + 5uyy = 3ux 21. uxx + 6uxy + uyy = 4ux

22. uxx + 2uxy + uyy = ux − uy
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§2.9 The Cauchy Problem on Infinite Intervals

The initial value problem associated with partial differential equation 2.123 is also
known as the Cauchy problem. It provides insight into an important property of
characteristic curves for hyperbolic and parabolic PDEs. The problem is to solve
equation

auxx + buxy + cuyy = f(x, y, u, p, q), (2.161a)

where p and q represent ux and uy, for a function u(x, y) such that the surface
u = u(x, y) takes on prescribed values along some curve C ′: x = x(τ), y = y(τ) in
the xy-plane (Figure 2.37a). In other words, u(x, y) must satisfy

u(x, y) = u(τ), when x = x(τ), y = y(τ). (2.161b)

These define a curve C in space through which the solution surface must pass (Figure
2.37b). If we use a dot · above a variable to indicate its derivative with respect to
the parameter τ , then the functions x(τ) and y(τ) must satisfy the condition that
ẋ2 + ẏ2 6= 0 in order that (ẋ, ẏ) define a tangent vector to C ′ at each point on C ′.

x

y

u

C

x

y

u

C

C

Figure 2.37a Figure 2.37b

There would be many surfaces satisfying PDE 2.161a that contain curve C. A
unique surface is obtained if we also require the surface to have a given orientation
along C. We do this by specifying values of p = ux and q = uy along C ′,

p = p(τ), q = q(τ). (2.161c)

Since the vector 〈ux, uy ,−1〉 is perpendicular to
the surface u = u(x, y), it is also perpendicular
to the tangent plane to the surface. By
prescribing p = ux and q = uy along the
curve in Figure 2.37b, we are specifying
the tangent plane to the solution surface
along this curve. We have shown this as
an infinitesimal strip in Figure 2.38. The
solution surface must pass through the curve
and be tangent to the strip. The functions x

y

u

C

C

p(τ) and q(τ) cannot be specified indepen-
dently, however. Chain rules for derivatives Figure 2.38
require

du

dτ
=
∂u

∂x

dx

dτ
+
∂u

∂y

dy

dτ
.
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Consequently, the initial functions p(τ), q(τ) and u(τ) must satisfy the strip con-
dition

u̇ = pẋ+ qẏ. (2.162)

(Although u, p and q cannot be specified independently along C ′, u and its normal
derivative to C ′ can be specified independently.) Recall that in our discussion
of nonlinear first-order PDEs in Section 1.2, the function p(t) and q(t) were both
determined. This was so because they had to satisfy not only the strip condition, but
the PDE F (x, y, u, p, q) = 0. For second-order PDEs, the strip condition remains,
but the PDE is not a restriction on p and q.

With the function u, and its first partial derivatives specified along the initial
curve C ′, suppose we attempt to find higher order derivatives of u along C ′, thus
generating a Taylor series for u(x, y) in some neighbourhood of C ′. Second order
partial derivatives must satisfy PDE 2.161a. In addition, differentiation of p(τ) =
ux[(x(τ), y(τ)] and q(τ) = uy [x(τ), y(τ)] with respect to τ gives

ṗ = uxxẋ+ uxy ẏ, q̇ = uxyẋ+ uyy ẏ.

We have three linear equations in the second derivatives of u(x, y),

auxx + buxy + cuyy = f(x, y, u, p, q), (2.163a)
uxxẋ+ uxy ẏ = ṗ, (2.163b)
uxyẋ+ uyy ẏ = q̇. (2.163c)

They have a unique solution for uxx, uxy, and uyy in terms of τ when the determinant

∆ = det



a b c
ẋ ẏ 0
0 ẋ ẏ


 6= 0

at every point on C ′. When this is the case, differentiation of equation 2.163a with
respect to x gives

auxxx + axuxx + buxyx + bxuxy + cuyyx + cxuyy = fx.

Furthermore, since uxx and uxy are now known as a functions of τ , we can write
that

u̇xx = uxxxẋ+ uxxy ẏ, u̇xy = uxyxẋ+ uxyy ẏ.

These three equations constitute a set of linear equations in the third derivatives
uxxx, uxxy , and uxyy ,

auxxx + buxxy + cuyyx = fx − axuxx − bxuxy − cxuyy, (2.164a)
ẋuxxx + ẏuxxy = u̇xx, (2.164b)
ẋuxxy + ẏuxyy = u̇xy . (2.164c)

Since the determinant of this system is once again ∆, solutions exist provided ∆ 6= 0.
The third derivative uyyy can then be found by differentiating equation 2.163a with
respect to y. This process can be continued to obtain partial derivatives of all orders
of u(x, y) and hence the Taylor series of u(x, y) in some neighbourhood of the initial
curve C ′.
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When determinant ∆ is identically equal to zero along the initial curve C ′,
higher order derivatives of u(x, y) cannot be determined along the curve. This
occurs when

aẏ2 − bẋẏ + cẋ2 = 0 =⇒ a

(
dy

dx

)2

− b

(
dy

dx

)
+ c = 0.

But this is the equation defining characteristic curves for the PDE (see Exercise 1
in Section 2.8). Hence, characteristic curves of PDE 2.161 are those curves along
which second and higher order derivatives of the solution are unattainable from the
PDE and the initial data. Other properties of characteristics will become clear as
our discussions unfold.

Hyperbolic Equations and Their Characteristic Curves
To solve first-order PDEs we use characteristic curves. To reduce a second-order

hyperbolic (or parabolic) PDE to canonical form we use characteristic curves. It is
not coincidence that we use the term characteristic curves in both situations. We
now demonstrate that characteristic curves for the wave equation can be obtained
by reducing the wave equation to a pair of first-order PDEs. We begin by factoring
the wave equation

∂2y

∂t2
= c2

∂2y

∂x2

in the following way
(
∂

∂t
+ c

∂

∂x

)(
∂y

∂t
− c

∂y

∂x

)
= 0.

If we define a new variable u by u =
∂y

∂t
− c

∂y

∂x
, the second-order wave equation is

replaced by a pair of first-order equations
∂y

∂t
− c

∂y

∂x
= u, (2.165a)

∂u

∂t
+ c

∂u

∂x
= 0. (2.165b)

Although this system is coupled, equation 2.165b can be solved independently of
2.165a. It is the unidirectional wave equation 1.18 of Section 1.3. When c is constant,
its base C-curves are straight lines x − ct = constant, one of the two families of
characteristic curves in Section 2.8. Had we factored the wave equation in the form

(
∂

∂t
− c

∂

∂x

)(
∂y

∂t
+ c

∂y

∂x

)
= 0,

the family x + ct = constant of characteristic curves would have arisen. We now
demonstrate that d’Alembert’s solution 2.119 of the wave equation on an infinite
interval can be derived with the pair of first-order PDEs 2.165. At the same time,
the second set of characteristic curves will arise naturally.

Hyperbolic Equations and Their Characteristic Curves on Infinite Inter-
vals

The Cauchy problem for the wave equation on an infinite interval adds two initial
conditions to the wave equation,
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∂2y

∂t2
= c2

∂2y

∂x2
, −∞ < x <∞, t > 0, (2.166a)

y(x, 0) = f(x), −∞ < x <∞, (2.166b)
yt(x, 0) = g(x), −∞ < x <∞. (2.166c)

Initial conditions 2.166b,c add the following initial condition to PDE 2.165b,

∂u

∂t
+ c

∂u

∂x
= 0, (2.167a)

u(x, 0) = g(x) − cf ′(x). (2.167b)

Characteristic equations for this first-order DPE are

dt =
dx

c
, du = 0.

A 2-parameter family of solutions is x = ct+α, u = β. For a 1-parameter family of
C-curves that contains the initial curve we set β = β(α), and

x = α, g(x) − cf ′(x) = β(α).

Thus, β(α) = g(α)− cf ′(α), and the 1-parameter family of C-curves generating the
solution to problem 2.167 is

x = ct+ α, u = g(α) − cf ′(α).

The explicit solution is

u(x, t) = g(x− ct) − cf ′(x− ct).

We substitute this into PDE 2.165a, and attach initial condition 2.166b,

∂y

∂t
− c

∂y

∂x
= g(x− ct)− cf ′(x− ct), (2.168a)

y(x, 0) = f(x). (2.168b)

Characteristic equations for this PDE are

dt =
dx

−c =
dy

g(x− ct) − cf ′(x− ct)
.

The first two terms give x = −ct+γ, and when this is substituted into the first and
last terms,

dy

dt
= g(γ − 2ct)− cf ′(γ − 2ct).

Integrations gives the 2-parameter family of C-curves

x = −ct+ γ, y =
∫ t

0

[g(γ − 2cv)− cf ′(γ − 2cv)] dv + β.

For a 1-parameter family of C-curves that contains the initial curve we set β = β(γ),
and

x = γ, f(x) = β(γ).
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Thus, the 1-parameter of characteristic curves generating the solution surface is

x = γ − ct, y = f(γ) +
∫ t

0

[g(γ − 2cv)− cf ′(γ − 2cv)] dv.

The explicit solution is

y(x, t) = f(x+ ct) +
∫ t

0

[g(x+ ct− 2cv) − cf ′(x+ ct− 2cv)] dv.

If we set u = x+ ct− 2cv in the integral of g(x+ ct− 2cv), we obtain

y(x, t) = f(x+ ct) +
∫ x−ct

x+ct

g(u)
(
−du

2c

)
− c

∫ t

0

f ′(x+ ct− 2cv) dv

= f(x+ ct) +
1
2c

∫ x+ct

x−ct

g(u) du− c

{
− 1

2c
f(x+ ct− 2cv)

}t

0

= f(x+ ct) +
1
2c

∫ x+ct

x−ct

g(u) du+
1
2
[f(x− ct)− f(x+ ct)]

=
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du.

This is d’Alembert’s solution that we saw in Section 2.7.

This process of factoring the differential operator in the wave equation into
first-order operators, thereby reducing the second-order wave equation to a pair
of first-order equations, is also available for parabolic and elliptic equations, but
the resulting system of first-order equations is not advantageous (see Exercises 11
and 12). Nor is it convenient if the wave equation has a damping term or a term
proportional to displacement (see Exercises 9 and 10).

In Section 2.7, we used the transformation of independent variables u = x+ ct
and v = x − ct to obtain the general solution y(x, t) = F (x + ct) + G(x − ct) of
the one-dimensional wave equation 2.166. According to Section 2.8, we now know
that this transformation reduced the wave equation to canonical form. Initial and
boundary conditions in Section 2.7 then determined the functions F and G. The
two, one-parameter families of characteristic curves for this problem are x−ct = C1

and x + ct = C2, so that specifying y(x, t) and yt(x, t) on t = 0 is specifying the
unknown function and its normal derivative along the curve t = 0, which is nowhere
tangent to a characteristic curve (Figure 2.39a).

t

x

x ct C1=-x ct C2=+

Initial Curve

t

x

x ct C1=-x ct C2=+

x,t( )

x ct+x ct-

Figure 2.39a Figure 2.39b

A point x in the string at time t is represented by a point (x, t) in the first quadrant
of Figure 2.39b. Characteristic curves through this point intersect the x-axis in
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t

x

x,t( )

x ct+x ct-
Interval of Dependence

t

x

x,t( )

x ct+x ct-
Domain of Dependence

D

Figure 2.40 Figure 2.41

points with x-coordinates x− ct and x+ ct. To find the displacement of the string
at this position and time using d’Alembert’s solution 2.168, we evaluate f(x) at
these two intercepts and integrate g(x) between the intercepts. We call this interval
along the x-axis the interval of dependence of the solution at (x, t) (Figure 2.40).
We shall see that for nonhomogeneous problems, the solution also depends on the
triangular region D bounded by the x-axis and the characteristics through (x, t)
(Figure 2.41). The triangle is called the domain of dependence of the solution
at (x, t).

If we draw the characteristic curves through a point x on the positive x-axis
(Figure 2.42), the region above the characteristics includes all points that would
have x in their domain of dependences. We call this region the range of influence
of the point x. In Figures 2.31 and 2.34 of Section 2.7, we demonstrated that
discontinuities in the initial data or its derivatives are propagated along the string
at velocities ±c. In our present context, this means that discontinuities in the initial
data or its derivatives at a point x will result in corresponding discontinuities across
the characteristic curves through x.

t

xx

Range of Influence

t

x

( )

D

x ct+

P

Q R

x ct+= 0 0x ct- x ct-= 0 0

0 0x ,t

x ct-0 0 x ct+0 0

Figure 2.42 Figure 2.43

Consider now the nonhomogeneous problem corresponding to problem 2.166,

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, −∞ < x <∞, t > 0, (2.169a)

y(x, 0) = f(x), −∞ < x <∞, (2.169b)
yt(x, 0) = g(x), −∞ < x <∞. (2.169c)

The solution of this problem is the sum of d’Alembert’s solution 2.168 to the ho-
mogeneous problem and a particular solution of nonhomogeneous PDE 2.169a that
vanishes along with its first time-derivative at t = 0. We could simply quote the
particular solution and verify its validity, but we prefer an alternative approach
that derives the particular solution and simultaneously reproduces the d’Alembert
solution. Let P (x0, t0) be any point in the first quadrant of the xt-plane and let char-
acteristics through P intersect the x-axis in points Q(x0 − ct0, 0) and R(x0 + ct0, 0)
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(Figure 2.43). We integrate both sides of PDE 2.169a over the triangular domain
of dependence D,

∫∫

D

(
∂2y

∂t2
− c2

∂2y

∂x2

)
dA =

∫∫

D

F (x, t)
ρ

dA.

Using Green’s Theorem, the double integral on the left can be replaced by a line
integral around the boundary β(D) of D,

∫∫

D

(
∂2y

∂t2
− c2

∂2y

∂x2

)
dA =

∫
©∨

β(D)

−∂y
∂t
dx− c2

∂y

∂x
dt.

When we combine these two equations, and evaluate the line integral along the three
lines forming β(D), we obtain

∫∫

D

F (x, t)
ρ

dA =
∫ R

Q

−g(x) dx+
∫ P

R

−∂y
∂t

(−c dt)− c2
∂y

∂x

(
−dx
c

)
+
∫ Q

P

−∂y
∂t

(c dt)− c2
∂y

∂x

(
dx

c

)

= −
∫ x0+ct0

x0−ct0

g(x) dx+ c
{
y(x, t)

}P

R
− c
{
y(x, t)

}Q

P

= −
∫ x0+ct0

x0−ct0

g(x) dx+ 2cy(x0, t0) − cy(x0 + ct0, 0) − cy(x0 − ct0, 0)

= −
∫ x0+ct0

x0−ct0

g(x) dx+ 2cy(x0, t0) − cf(x0 + ct0) − cf(x0 − ct0).

Since P (x0, t0) represents any point, we drop the subscripts and solve for y(x, t),

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA. (2.170)

To the d’Alembert solution of the homogeneous problem is added the double integral
of the nonhomogeneity over the domain of dependence at (x, t).

Characteristic curves are not needed in order to use d’Alembert’s solution 2.168
for displacements y(x, t) of an infinite string that is not subject to external forces
(problem 2.166). They provide some geometric interpretations of the terms in the
solution, but they are not required for evaluation of y(x, t). On the other hand,
when external forces act on the string, solution 2.170 of problem 2.169 does re-
quire characteristic curves; they define the domain of dependence D for the double
integral.

Example 2.11 An infinitely long taut string has initial displacement f(x) at time t = 0, but no
initial velocity. Find displacements of the string if gravity is taken into account.

Solution The initial value problem for displacements y(x, t) is

∂2y

∂t2
= c2

∂2y

∂x2
− g, −∞ < x <∞, t > 0, (g = 9.81),

y(x, 0) = f(x), −∞ < x <∞,

yt(x, 0) = 0, −∞ < x <∞.

According to equation 2.170, the solution of this problem is
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y(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

∫∫

D

−g dA,

where D is the triangle in Figure 2.41. Since the area of the triangle is ct2, the
solution is

y(x, t) =
1
2
[f(x− ct) + f(x+ ct)] − gt2

2
.

We have the left- and right-travelling waves due to the initial displacement and a
free-fall term due to gravity.•

Example 2.12 An infinitely long taut string is at rest on the x-axis at time t = 0. For t > 0, each
point of the string is subjected to the same sinusoidal force sin t. Use equation 2.170
to find displacements of points in the string.

Solution Displacements y(x, t) must satisfy the initial value problem

∂2y

∂t2
= c2

∂2y

∂x2
+

sin t
ρ
, −∞ < x <∞, t > 0,

y(x, 0) = 0, −∞ < x <∞,

yt(x, 0) = 0, −∞ < x <∞.

According to equation 2.170, the solution of this problem is

y(x, t) =
1
2c

∫∫

D

sin t
ρ

dA,

where D is the triangle in Figure 2.41.
To evaluate the integral, we must either
introduce subscripts on x and t, or use
alternative variables of integration. We
choose the latter by replacing x and t by
u and v (Figure 2.44). Integration now x,u

x,t( )

x ct+x ct-

D

t,v

u = x+c(t-v)u = x-c(t-v)

gives Figure 2.44

y(x, t) =
1

2cρ

∫ t

0

∫ x+c(t−v)

x−c(t−v)

sin v du dv =
1
ρ

∫ t

0

(t− v) sin v dv =
1
ρ
(t− sin t).

As expected, the solution is independent of x (the forcing term has no x’s), but
perhaps unexpectedly, displacement is the sum of a linear term and a sinusoidal
term.•

EXERCISES 2.9

1. Repeat Example 2.12 if the forcing function is e−t.

2. Repeat Example 2.12 if the forcing function is sinx instead of sin t. Use the solution to verify
that points on the string that remain stationary for all time are points where the force vanishes.

3. Find displacements of points in an infinitely long taut string if, fictitiously, the initial displace-
ment is f(x) = 5, the initial velocity is g(x) = x2, and the force on the string is F (x, t) = ex.

4. Repeat Example 2.12 if the forcing function is e−|x|.

5. Repeat Example 2.12 if the forcing function is 1/(x2 + 1).
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6. Repeat Example 2.11 if points in the string also have initial velocity g(x).

7. Can we use formula 2.170 to calculate displacements in an infinite string if the only force acting
on the string (besides tension) is a damping force proportional to velocity (see equation 2.46 in
Section 2.3)?

8. Can we use formula 2.170 to calculate displacements in an infinite string if the only force acting
on the string (besides tension) is a restoring force proportional to displacement (see equation
2.47 in Section 2.3)?

9. (a) Factor the operator in the wave equation containing a restoring force proportional to dis-
placement,

∂2y

∂t2
= c2

∂2y

∂x2
− ky

to reduce it to a pair of first-order equations.
(b) Why is this system not as convenient as system 2.165 for the undamped wave equation?

10. (a) Show that the transformation w = eβt/2y of dependent variable replaces the damped wave
equation

∂2y

∂t2
= c2

∂2y

∂x2
− β

∂y

∂t

with

∂2w

∂t2
= c2

∂2w

∂x2
+
β2

4
w.

(b) Now reduce the equation to the following pair of first-order PDEs

∂w

∂t
− c

∂w

∂x
= u,

∂u

∂t
+ c

∂u

∂x
=
β2

4
w.

(c) Why is this system not as convenient as system 2.165 for the undamped wave equation?

11. Use the complex factorization
(
∂

∂x
+ i

∂

∂y

)(
∂V

∂x
− i

∂V

∂y

)
= 0

for the two-dimensional Laplace equation

∂2V

∂x2
+
∂2V

∂y2
= 0,

to show that it can be replaced by the system

∂V

∂x
− i

∂V

∂y
= u,

∂u

∂x
+ i

∂u

∂y
= 0.

Although the second equation is independent of V , the presence of complex numbers, when u
and V must be real, makes the system an unsatisfactory replacement.

12. (a) Set v =
∂U

∂x
in the one-dimensional heat equation

∂U

∂t
= k

∂2U

∂x
,
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to replace the second-order equation with a first-order system.
(b) Why is this system not as convenient as system 2.165 for the undamped wave equation?
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§2.10 The Cauchy Problem on Semi-infinite Intervals

We now turn our attention to the wave equation on the semi-infinite interval 0 ≤
x <∞. The homogeneous problem corresponding to problem 2.166 with a Dirichlet
boundary condition at x = 0 is

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x <∞, t > 0, (2.171a)

y(0, t) = 0, t > 0, (2.171b)
y(x, 0) = f(x), 0 < x <∞, (2.171c)
yt(x, 0) = g(x), 0 < x <∞. (2.171d)

A review of the analysis of problem 2.115 in Section 2.7 indicates that the d’Alembert
solution of the wave equation and initial conditions is once again

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ, (2.172a)

This cannot be the solution of problem 2.171 since we have not taken into account
the boundary condition at x = 0, and surely the solution must depend on the
boundary condition. The reason that the solution is not complete is that functions
f(x) and g(x) are defined only for 0 ≤ x <∞, and yet for 2.172a to represent y(x, t)
for all x and t, these functions must be defined for all real numbers. The boundary
condition will show us how to extend definitions of f(x) and g(x) for negative values
of x. Boundary condition 2.171b demands that

0 =
1
2
[f(ct) + f(−ct)] + 1

2c

∫ ct

−ct

g(ζ) dζ.

This will be satisfied for all t > 0 if we separately set

f(ct) + f(−ct) = 0,
∫ ct

−ct

g(ζ) dζ = 0.

These imply that f(x) and g(x) are odd functions of x. In other words, if d’Alem-
bert’s solution 2.172a is to satisfy problem 2.171, f(x) and g(x) must be extended as
odd functions of x. Just as we did in Section 2.7, we can give a graphical derivation
of the position of the string and then a physical interpretation of what we see.
Consider the case that g(x) = 0, in which case solution 2.172a reduces to

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)].

Graphically, we have the addition of one-half the graph of f(x) shifted ct units to
the left and one-half the graph of f(x) shifted ct units to the right. Because f(x)
has been extended as an odd function, the right-shifting graph drags with it its
odd extension. Suppose, for example, that the initial displacement of the string
is that in Figure 2.31a. For t < 7/(16c), the odd extension is to the left of the
origin and therefore has no effect on the graphical determination of the position of
the string. Displacements are exactly as shown in Figures 2.31a–f in Section 2.7.
However, for t > 7/(16c), the extension must be combined with f(x+ ct)/2 to give
the displacement of the string. We have shown results in Figures 2.45a–g.
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Physically, we interpret the situation as follows. The position of the string is the
superposition of two waves, both equal to one-half f(x), one travelling to the right
and the other to the left with speed c. At the boundary x = 0, the left-travelling
wave is reflected with a reversal in sign to be combined with the original disturbance
to give deflection in the string. From then on, there are two disturbances travelling
to the right with speed c, one equal to f(x)/2 and the other equal to −f(x)/2. The
second trails the first by unit distance.
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As we did in Section 2.7, we could consider the case that f(x) = 0 and g(x) 6= 0,
the string has zero initial displacement, but nonzero initial velocity. We shall leave
consideration to the exercises. Displacement when both f(x) and g(x) are nonzero
is an addition of the separate results.

Putting the travelling waves aside for the moment, let us determine the role of
characteristic curves in problem 2.171. As long as x > ct (see Figure 2.46a), the
interval of dependence contains only points on the positive x-axis, and therefore
solution 2.172a uses only given values of f(x) and g(x). When x < ct, however,
(Figure 2.46b), the left characteristic curve intersects the x-axis at a negative value
of x. We could certainly regard the interval between x−ct and x+ct as the interval
of dependence, but an alternative approach leads to a formula for the solution of
the nonhomogeneous problem corresponding to equation 2.171. Because f(x) and
g(x) are extended as odd functions, we can write solution 2.172a in the form

y(x, t) =
1
2
[f(x+ ct)− f(ct− x)] +

1
2c

∫ x+ct

ct−x

g(ζ) dζ, (2.172b)

where ct − x > 0. We can find this point graphically by reflecting that part of
the left characteristic to the left of the t-axis in the t-axis (Figure 2.46b). We now
regard that part of the x-axis between ct−x and x+ct as the interval of dependence
of the solution at (x, t), and the quadrilateral PQRS as the domain of dependence
of the solution at a point (x, t).

t

x

x,t( )

x ct+x ct-
Interval of Dependence

x ct>x ct<

x ct= t

x

x,t( )

x ct+x ct-
Interval of Dependence

x ct>x ct<

x ct=

xct-

D

P

Q

R S

Domain of
Dependence

Figure 2.46a Figure 2.46b

Consider now the nonhomogeneous problem corresponding to problem 2.171,

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, 0 < x <∞, t > 0, (2.173a)

y(0, t) = k(t), t > 0, (2.173b)
y(x, 0) = f(x), 0 < x <∞, (2.173c)
yt(x, 0) = g(x), 0 < x <∞. (2.173d)
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For points below the characteristic curve x = ct
in Figure 2.46a, we can use solution 2.170
for the infinite problem (since the boundary
has no effect for such points). For a point
P (x0, t0) above x = ct, we integrate the
PDE over the domain of dependence D in
Figure 2.47,∫∫

D

(
∂2y

∂t2
− c2

∂2y

∂x2

)
dA =

∫∫

D

F (x, t)
ρ

dA.

t

x

( )

x ct+xct -

D

P

Q

R S

x t

+ct

x ct

x ct x ct

xct

x ct

,

=
=

=

+
--

+ -

xt c

0 0
0 0

0 0

0 0

0 0

0 0
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Using Green’s Theorem, the double integral on Figure 2.47
the left can be replaced by a line integral around
the boundary β(D) of D,

∫∫

D

(
∂2y

∂t2
− c2

∂2y

∂x2

)
dA =

∫
©∨

β(D)

−∂y
∂t
dx− c2

∂y

∂x
dt.

When we combine these two equations, and evaluate the line integral along the four
lines forming β(D), we obtain

∫∫

D

F (x, t)
ρ

dA =
∫ S

R

−g(x) dx+
∫ P

S

−∂y
∂t

(−c dt)− c2
∂y

∂x

(
−dx
c

)
+
∫ Q

P

−∂y
∂t

(c dt)− c2
∂y

∂x

(
dx

c

)

+
∫ R

Q

−∂y
∂t

(−c dt)− c2
∂y

∂x

(
−dx
c

)

= −
∫ x0+ct0

ct0−x0

g(x) dx+ c
{
y(x, t)

}P

S
− c
{
y(x, t)

}Q

P
+
{
y(x, t)

}R

Q

= −
∫ x0+ct0

ct0−x0

g(x) dx+ c[y(x0, t0)− y(x0 + ct0, 0) − y(0, t0 − x0/c)

+ y(x0, t0) + y(ct0 − x0, 0) − y(0, t0 − x0/c)]

= −
∫ x0+ct0

ct0−x0

g(x) dx+ c[2y(x0, t0) − 2k(t0 − x0/c) + f(ct0 − x0) − f(x0 + ct0)].

Since P (x0, t0) represents any point, we drop the subscripts and solve for y(x, t),

y(x, t) = k(t− x/c) +
1
2
[f(x+ ct)− f(ct− x)] +

1
2c

∫ x+ct

ct−x

g(ζ) dζ

+
1
2c

∫∫

D

F (x, t)
ρ

dA. (2.174)

Thus, the solution of problem 2.173 is

y(x, t) =





1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA, x > ct

k(t− x/c) +
1
2
[f(x+ ct)− f(ct− x)] +

1
2c

∫ x+ct

ct−x

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA, x < ct.

(2.175)
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In this form, the solution uses only values of f(x) and g(x) from their original
domain of definition x > 0 (and not their extensions as odd functions). The first
line of the solution corresponds to points x that are sufficiently far to the right
(x > ct) so that effects of the displacement at x = 0, which travel down the string
at velocity c, have yet to arrive. The domain of dependence D in this case is the
triangle in Figure 2.46a. When x < ct, effects of the boundary have reached x,
and the second line of the solution must be used. The domain of dependence is the
quadrilateral in Figure 2.46b.

EXERCISES 2.10

1. A semi-infinite string has its end at x = 0 fixed on the xaxis. At time t = 0, it has displacement
f(x), but no velocity. Find displacements of the string if gravity is taken into account.

2. Can we use formula 2.175 to calculate displacements in a semi-infinite string if the only force
acting on the string (besides tension) is a damping force proportional to velocity (see equation
2.46 in Section 2.3)?

3. Can we use formula 2.175 to calculate displacements in a semi-infinite string if the only force
acting on the string (besides tension) is a restoring force proportional to displacement (see
equation 2.47 in Section 2.3)?

4. Show that when the boundary condition in problem 2.171 is homogeneous and Neumann, equa-
tion 2.172a still represents the solution of the problem, but f(x) and g(x) must be extended as
even functions.

5. Use a graphical technique to determine the position of a semi-infinite string with zero initial
displacement and initial velocity

g(x) =





0, 0 ≤ x < 7/16,
k, 7/16 ≤ x ≤ 9/16,
0, 9/16 < x ≤ 1,

where k > 0 is a constant at the times (a) t = 1/(8c), (b) t = 1/(4c), (c) t = 3/(8c), (d)
t = 1/(2c), (e) t = 5/(8c), (f) t = 3/(4c). Assume that its end x = 0 is fixed on the x-axis.
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§2.11 The Cauchy Problem on Finite Intervals

Our final consideration is the role of characteristic curves for the wave equation on
a finite interval 0 ≤ x ≤ L. The homogeneous initial boundary value problem for
displacements of a finite string with fixed end points is

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (2.176a)

y(0, t) = 0, t > 0, (2.176b)
y(L, t) = 0, t > 0, (2.176c)
y(x, 0) = f(x), 0 < x < L, (2.176d)
yt(x, 0) = g(x), 0 < x < L. (2.176e)

For consistency, we assume that the initial displacement and velocity functions
satisfy f(0) = g(0) = f(L) = g(L) = 0. Our discussions of the semi-infinite
problem showed that the function that satisfies the PDE, the initial conditions, and
the boundary condition at x = 0 is

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ, (2.177)

where f(x) and g(x) are extended as odd functions from their original domains of
definition for positive values of x. This still continues to be the case, but because
f(x) and g(x) are only defined for 0 ≤ x ≤ L for the finite string, this extends their
domains of definition only to −L ≤ x ≤ L. The boundary condition at x = L will
extend their domains to all values of x. The boundary condition demands that

0 =
1
2
[f(L+ ct) + f(L− ct)] +

1
2c

∫ L+ct

L−ct

g(ζ) dζ.

This is satisfied if we choose

0 = f(L+ ct) + f(L− ct), 0 =
∫ L+ct

L−ct

g(ζ) dζ.

These imply that the odd extensions of f(x) and g(x) must also be 2L-periodic.
Solution 2.177 can now be used to calculate displacements in the finite string for
any x in 0 < x < L and any time t > 0. It is the d’Alembert’s solution of initial
boundary value problem 2.176.

In Section 2.7, we gave a graphical derivation of the position of an infinite string
and then a physical interpretation of what we saw as travelling waves. In Section
2.10, we gave a similar discussion for the semi-infinite string, but saw that the fixed
end of the string reflected the left-travelling wave. We now show that for the finite
string, multiple reflections of both waves occur at the ends of the string. Consider
first the case that g(x) = 0, in which cases solution 2.172 reduces to

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)]. (2.178)

Graphically, we have the addition of one-half the graph of f(x) shifted ct units to
the left and one-half the graph of f(x) shifted ct units to the right. Because f(x)
has been extended as an odd 2L-periodic function, both waves drag odd, periodic
extensions with them. Suppose, for example, that the initial displacement of the
string is as shown in Figure 2.48.
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Figure 2.48
For t < 7L/(8c), the odd, periodic extensions of f(x) do not effect the graphical
determination of the position of the string. Displacements are exactly as shown in
Figures 2.31b–f in Section 2.7, but distances must be multiplied by L and times
by L/c. For t > 7L/(16c), however, the extensions become a part of the graphical
solution for displacement of the string. We have shown results in Figures 2.49a–h.
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These graphs suggest the following physical description for the motion of the
string. Figures 2.31a–f indicate that the initial deflection f(x) in the string divides
into two parts, each equal to one-half of f(x), one traveling to the left with velocity
−c and the other traveling to the right with velocity c. Figures 2.49a–h suggest that
when these disturbances reach the fixed ends of the string at time 7L/(16c), they
are reflected there with a reversal in sign. The reflected disturbance then combines
with the original disturbance to yield the total deflection. Reflected disturbances
then travel toward one another at speed c, eventually combining at time t = L/c to
give a disturbance identical to that in Figure 2.31a, but with a reversal in sign.

For times t > L/c, the disturbances separate again, travel to the ends of the
string, are reflected there, and recombine at t = 2L/c to yield the initial position in
Figure 2.31a.

For times t > 2L/c, the two disturbances continue to travel back and forth along
the string, interfering constructively near the centre of the string and destructively
at the ends.

All of these things happed very quickly. For instance, if the tension in a 1-
metre string with density ρ = 2 g/m is 50 N, then 2L/c = 0.0126. Thus, the initial
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displacement separates into two parts, and these two disturbances travel twice the
length of the string and recombine to give the initial displacement in 0.0126 s. In
other words, all of this happens 1/0.0126 = 79 times each second, too fast for the
human eye, but not for modern cameras.

Example 2.13 Find the position of the string described by equation 2.178 at time t = 1023L/(32c)
when f(x) is as shown in Figure 2.31a.

Solution In each time interval of length 2L/c after t = 0, the initial disturbance
separates into two parts, each part travels to an end of the string and is reflected,
then travels to the other end of the string and is reflected, and the parts then
recombine to form f(x) once again. Since 1023L/(32c) = 15(2L/c)+63L/(32c), the
position of the string at time t = 1023L/(32c) is identical to that at t = 63L/(32c).
But this is 63/64 of the time for a complete cycle; that is, the two waves will be
in positions shown in Figure 2.50a. These are combined to give the position of the
string in Figure 2.50b.
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Figure 2.50a
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Figure 2.50b

An alternative procedure is to write solution 2.120 at t = 1023L/(32c) in the
form

y

(
x,

1023L
32c

)
=

1
2

[
f

(
x+

1023L
32

)
+ f

(
x− 1023L

32

)]

=
1
2

[
f

(
x+ 16(2L)− L

32

)
+ f

(
x− 16(2L) +

L

32

)]

=
1
2

[
f

(
x− L

32

)
+ f

(
x+

L

32

)]
,

since f(x) is 2L-periodic. These functions are shown in Figure 2.50a and added in
2.50b.•

The above discussion and example have illustrated that the motion of a string
with initial displacement f(x) as shown in Figure 2.48 and zero initial velocity is
easily described. For more complicated functions f(x), such as in Figure 2.51, the
principles are the same; the only difference is that reflections at the ends of the
string begin immediately. Examples of this are given in Exercises 2 and 3.
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Consider now the situation in which the string is given a nonzero initial velocity

g(x), but no initial displacement, f(x) = 0. In this case, equation 2.119 yields

y(x, t) =
1
2c

∫ x+ct

x−ct

g(ζ) dζ (2.179a)

as the displacement of the string at position x and time t. Suppose, for example,
that

g(x) =





0, 0 ≤ x < 7L/16,
k, 7L/16 < x < 9L/16,
0, 9L/16 < x ≤ L

where k > 0 is a constant (Figure 2.52). (Think of only that part of the string
7L/16 < x < 9L/16 being struck by a hammer.)

If we denote by G(x) the antiderivative

G(x) =
1
2c

∫ x

0

g(ζ) dζ,

y(x, t) can be expressed in the form

y(x, t) = G(x+ ct)−G(x− ct), (2.179b)

where, because g(x) is extended as an odd, 2L-periodic function (Figure 2.53a), the
graph of G(x) is shown in Figure 2.53b. The position of the string at any given
time can now be obtained by the destructive combination of the left-traveling wave
G(x + ct) and the right traveling wave G(x − ct). Results are shown for various
times in Figures 2.54a–i.
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When a string has both an initial displacement f(x) and an initial velocity
g(x), graphical techniques may still be used to determine the solution of problem
2.176. We express y(x, t) in the form y(x, t) = u(x, t) + v(x, t), where u(x, y) and
v(x, t) satisfy the problems

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0
u(L, t) = 0
u(x, 0) = f(x)
ut(x, 0) = 0

∂2v

∂t2
= c2

∂2v

∂x2

v(0, t) = 0
v(L, t) = 0
v(x, 0) = 0
vt(x, 0) = g(x).

Consider now the role of characteristic curves in problem 2.176 for the finite
string. The solution of the problem is

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ, (2.180)

where f(x) and g(x) are extended as odd, 2L-periodic functions. It was trivial to
find the interval and domain of dependence for the infinite string. Because there is
only one reflection at x = 0 for the semi-infinite string, determination of its interval
and domain of dependence was also quite simple. This is not the case for the finite
string with its multiple reflections at x = 0 and x = L. In other words, characteristic
curves cannot be used to the same advantage here, especially for the corresponding
nonhomogeneous problem
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∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, 0 < x < L, t > 0, (2.181a)

y(0, t) = k(t), t > 0, (2.181b)
y(L, t) = m(t), t > 0, (2.181c)
y(x, 0) = f(x), 0 < x < L, (2.181d)
yt(x, 0) = g(x), 0 < x < L. (2.181e)

We make some investigations into the situation in Exercise 6–10.

EXERCISES 2.11

1. Determine the position of the string in Figure 2.48 when (a) t = 3L/c and (b) t = 49L/(8c).

2. Use the graphical techniques of this section to determine the displacements of a string with
fixed ends on the x-axis, zero initial velocity, and initial displacement

f(x) =
{
x/8, 0 ≤ x ≤ L/2
(L− x)/8, L/2 ≤ x ≤ L

at the times (a) t = L/(8c) (b) t = L/(4c) (c) t = 3L/(8c) (d) t = L/(2c) (e) t = 5L/(8c)

(f) t = 3L/(4c) (g) t = 7L/(8c) (h) t = L/c.

3. Repeat Exercise 2 with f(x) = sin (2πx/L), 0 ≤ x ≤ L.

4. Use the graphical techniques of this section to determine the displacements of a string with
fixed ends on the x-axis, zero initial displacement, and initial velocity

g(x) =





0, 0 ≤ x < L/4
1, L/4 < x < 3L/4
0, 3L/4 < x ≤ L.

for the times in Exercise 2.

5. Repeat Exercise 4 with

g(x) =





0, 0 ≤ x < L/8
1, L/8 < x < 3L/8
0, 3L/8 < x < 5L/8
1, 5L/8 < x < 7L/8
0, 7L/8 < x ≤ L.

In Exercises 6–10 we use the figure to the right to discuss the role of characteristic
curves for the wave equation on a finite interval.
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6. Points in region 1 of the figure experience no
reflections at the boundaries. What are the
interval of dependence and domain of depen-
dence for such a point? Find solutions of the
homogeneous and the nonnhomogeneous wave
equations with Dirichlet boundary conditions
in this region?

7. Points in region 2 experience a reflection at
the boundary x = 0. What are the interval
of dependence and domain of dependence for
such a point? Find solutions, involving only
values of f(x) and g(x) in 0 ≤ x ≤ L, of the
homogeneous and the nonnhomogeneous wave
equations with Dirichlet boundary conditions
for points in this region?

t

x

x ct=

L

x ct= L-

x ct= L-

x ct= L-2

+

x ct= L- +2

x ct= L- +3

1

2 3

4

5

8. Points in region 3 experience a reflection at the boundary x = L. Repeat Exercise 7 for points
in this region.

9. Points in region 4 experience two reflections one at each boundary. Repeat Exercise 7 for points
in this region.

10. Repeat Exercise 7 for points in region 5.
11. Show that when the boundary conditions in problem 2.176 are both homogeneous and Neumann,

the solution is still 2.177, but f(x) and g(x) must be extended as 2L-periodic, even functions.
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CHAPTER 3 FOURIER SERIES

§3.1 Fourier Series

Power series play an integral part in real (and complex) analysis. Given a function
f(x) and a point x = a, it is investigated to what extent f(x) can be expressed in
the form

f(x) =
∞∑

n=0

an(x− a)n.

Perhaps one of the most important uses of such series (and one that we require
in Chapter 8) is the solution of linear ODEs with variable coefficients. In this
chapter we introduce a new type of series called a Fourier series; such series are
indispensable to the study of PDEs. Fourier series are used in a theoretical way to
determine properties of solutions of PDEs and in a practical way to find explicit
representations of solutions. Some of the terminology associated with Fourier series
is borrowed from ordinary vectors; in addition, many of the ideas in Fourier series
have their origin in vector analysis. A quick review of pertinent ideas from vector
analysis will therefore facilitate later comparisons and help to solidify underlying
concepts in the new theory.

The Cartesian components of a vector v in space are three scalars vx, vy , and
vz such that v = vx î + vy ĵ + vzk̂. Formulas for these components are

vx = v · î, vy = v · ĵ, vz = v · k̂. (3.1)

These expressions are very simple, and the reason for this is that the basis vectors
î, ĵ, and k̂ are othonormal; that is, they are mutually orthogonal (or perpendicular)
and have unit length. Given different basis vectors, say e1 = î + ĵ, e2 = î − ĵ, and
ê3 = 3k̂, which remain orthogonal, it is still possible to express v in terms of the
ej ,

v = v1e1 + v2e2 + v3e3. (3.2)

However, because the ei do not have length 1, component formulas 3.1 must be
replaced by somewhat more complicated expressions. Scalar products of represen-
tation 3.2 with e1, e2, and e3 give

v1 =
v · e1

|e1|2
, v2 =

v · e2

|e2|2
, v3 =

v · e3

|e3|2
. (3.3)

Were the ei not orthogonal, but they must be linearly independent, expressions
for components would be even more complicated, but we have no need for such
generality here.

Thus, when an orthogonal basis is used for vectors, equations 3.3 yield compo-
nents, and when the basis is orthonormal, the simpler expressions 3.1 prevail.

We now generalize these ideas to functions.

Definition 3.1 When two functions f(x) and g(x) are defined on the interval a ≤ x ≤ b, their
scalar product with respect to a weight function w(x) is defined as
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∫ b

a

w(x)f(x)g(x) dx. (3.4)

This definition is much like the definition of the scalar product of two ordinary
vectors, u · v = uxvx + uyvy + uzvz, provided we think of a function as having an
infinite number of components, its values at the points in the interval a ≤ x ≤ b.
Corresponding components of f(x) and g(x) are then multiplied together and added
in integral 3.4. The weight function in scalar products 3.1 and 3.3 is unity; definition
3.4 is more general; it permits a variable weight function w(x) which is assumed
to be nonnegative on the interval. Corresponding to the test for orthogonality of
nonzero vectors u and v , namely u · v = 0, we make the following definition for
orthogonality of functions.

Definition 3.2 Two nonzero functions f(x) and g(x) are said to be orthogonal on the interval
a ≤ x ≤ b with respect to the weight function w(x) if their scalar product vanishes:

∫ b

a

w(x)f(x)g(x) dx = 0. (3.5)

A sequence of nonzero functions {fn(x)} = f1(x), f2(x), . . . is said to be orthogonal
on a ≤ x ≤ b with respect to w(x) if every pair of functions is orthogonal:

∫ b

a

w(x)fn(x)fm(x) dx = 0, when n 6= m. (3.6)

For example, since
∫ 2π

0

sinnx sinmxdx =
∫ 2π

0

1
2
[cos (n−m)x− cos (n+m)x] dx

=
1
2

{
sin (n−m)x

n−m
− sin (n+m)x

n+m

}2π

0

= 0,

the sequence of functions {sinnx} is orthogonal on the interval 0 ≤ x ≤ 2π with
respect to the weight function w(x) = 1. The sequence is also orthogonal with the
same weight function on the interval 0 ≤ x ≤ π.

By analogy with geometric vectors, where |v|2 = v · v, we regard the scalar
product of a function f(x) with itself as the square of its length.

Definition 3.3 The length of a function on the interval a ≤ x ≤ b with respect to the weight
function w(x) is

‖f(x)‖ =

√∫ b

a

w(x)[f(x)]2 dx. (3.7)

Definition 3.4 A sequence of nonzero functions {fn(x)} is said to be orthonormal on a ≤ x ≤ b
with respect to the weight function w(x) if

∫ b

a

w(x)fn(x)fm(x) dx =
{

1, n = m
0, n 6= m. (3.8)

This condition therefore requires the functions to be mutually orthogonal and of
unit length.
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Any orthogonal sequence can be made orthonormal simply by dividing each
function by its length; that is, when {fn(x)} is orthogonal, then {fn(x)/‖fn(x)‖}
is orthonormal. For example, since

∫ π

0

(sinnx)2 dx =
π

2
,

the sequence {
√

2/π sinnx} is orthonormal with respect to the weight function
w(x) = 1 on 0 ≤ x ≤ π.

With these preliminaries out of the way, we are now ready to consider Fourier
series. In the theory of Fourier series, it is investigated to what extent a function
f(x) can be represented in an infinite series of the form

a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (3.9)

where an and bn are constants. The 2 in the first term of this series is included
simply as a matter of convenience. (The formula for an for n > 0, will then include
a0 as well.)

Because cos (nπx/L) and sin (nπx/L) have period 2L/n, it follows that any
function f(x) expressible in form 3.9 must necessarily be of period 2L (or of a
period that evenly divides 2L). That many 2L-periodic functions can be expressed
in this form is to a large extent attributable to the fact that the sine and cosine
functions satisfy the following theorem.

Theorem 3.1 The set of functions {1, cos (nπx/L), sin (nπx/L)} is orthogonal over the interval
0 ≤ x ≤ 2L with respect to the weight function w(x) = 1. Furthermore,

∫ 2L

0

12 dx = 2L;
∫ 2L

0

(
cos

nπx

L

)2

dx =
∫ 2L

0

(
sin

nπx

L

)2

dx = L. (3.10)

(See Exercise 15 for a proof of this result.)
It follows that the functions

1√
2L

,
1√
L

cos
nπx

L
,

1√
L

sin
nπx

L

are orthonormal with respect to the weight function w(x) = 1 on the interval 0 ≤
x ≤ 2L.

Suppose we neglect, for the moment, questions of convergence and formally set

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
. (3.11)

Just as vx, vy, and vz are the components of v with respect to the basis vectors
î, ĵ, and k̂ in v = vx î + vy ĵ + vzk̂, we regard the coefficients a0/2, an, and bn
as components of f(x) with respect to the basis functions 1, cos (nπx/L), and
sin (nπx/L). If we integrate both side of equation 3.11 from x = 0 to x = 2L, and
formally interchange the order of integration and summation on the right, we obtain

∫ 2L

0

f(x) dx =
a0

2
(2L) =⇒ a0 =

1
L

∫ 2L

0

f(x) dx; (3.12a)
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that is, if representation 3.11 is to hold, the constant term a0/2 must be the average
value of f(x) over the interval 0 ≤ x ≤ 2L. When we multiply both sides of 3.11 by
cos (kπx/L) and integrate from x = 0 to x = 2L, and once again interchange the
order of integration and summation,

∫ 2L

0

f(x) cos
kπx

L
dx =

∫ 2L

0

a0

2
cos

kπx

L
dx

+
∞∑

n=1

(∫ 2L

0

an cos
nπx

L
cos

kπx

L
dx+

∫ 2L

0

bn sin
nπx

L
cos

kπx

L
dx

)

= ak(L) (by the orthogonality of Theorem 3.1).

Thus,

an =
1
L

∫ 2L

0

f(x) cos
nπx

L
dx, n > 0. (3.12b)

Similarly,

bn =
1
L

∫ 2L

0

f(x) sin
nπx

L
dx, n > 0. (3.12c)

We have found, therefore, that if f(x) can be represented in form 3.11, and if
the series is suitably convergent, coefficients an and bn can be calculated according
to formulas 3.12. What we must answer is the converse question: If an and bn are
calculated according to 3.12, does series 3.11 converge to f(x)? Does it converge
pointwise, uniformly, or in any other sense? When a0, an, and bn are calculated
according to 3.12, the right side of 3.11 is called the Fourier series of f(x). Num-
bers a0, an, and bn are called the Fourier coefficients of f(x); they are, as we
have already suggested, components of f(x) with respect to the basis functions 1,
cos (nπx/L) and sin (nπx/L).

Theorem 3.2 which follows shortly, guarantees that series 3.11 essentially con-
verges to f(x) when f(x) is piecewise continuous and has a piecewise continuous
first derivative. A function f(x) is piecewise continuous on an interval a ≤ x ≤ b
if the interval can be divided into a finite number of subintervals inside each of
which f(x) is continuous and has finite limits as x approaches either end point of
the subinterval from the interior. A 2L-periodic function is said to be piecewise
continuous if it is piecewise continuous on the interval 0 ≤ x ≤ 2L. Figure 3.1a
illustrates a 2L-periodic function that is piecewise continuous; its discontinuities at
x = c and x = d are finite. Because the discontinuity at x = c in Figure 3.1b is not
finite, this 2L-periodic function is not piecewise continuous.

y

xc L
c L d L2

+2 +2d

y

xc c L+2

Figure 3.1a Figure 3.1b
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A function f(x) is said to be piecewise smooth on an interval a ≤ x ≤ b
if f(x) and f ′(x) are both piecewise continuous therein. A 2L-periodic function is
piecewise smooth if it is piecewise smooth on 0 ≤ x ≤ 2L. The periodic functions
in Figure 3.2 are both continuous; that in Figure 3.2a is piecewise smooth, that in
Figure 3.2b is not. The 2L-periodic function in Figure 3.3 is piecewise smooth.

y

xL L2 4

y

xL L2 4- L2

Figure 3.2a Figure 3.2b

y

L L2 4 x

Figure 3.3

Theorem 3.2 The Fourier series of a periodic, piecewise continuous function f(x) converges to
[f(x+)+ f(x−)]/2 at any point at which f(x) has both a left- and right-derivative.

By f(x+) we mean the right-hand limit of f(x) at x, limε→0+ f(x+ ε). Sim-
ilarly, f(x−) = limε→0+ f(x− ε). The proof of this theorem is very lengthy; it
requires verification of a number of preliminary results that, although interesting in
their own right, detract from the flow of our discussion. We have therefore included
the proof as Appendix A.

Since functions that are piecewise smooth must have right and left derivatives
at all points, we may state the following corollary to Theorem 3.2.

Corollary When f(x) is a periodic, piecewise smooth function, its Fourier series converges to
[f(x+) + f(x−)]/2.

For such functions, we therefore write

f(x+) + f(x−)
2

=
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (3.13a)

where

an =
1
L

∫ 2L

0

f(x) cos
nπx

L
dx, bn =

1
L

∫ 2L

0

f(x) sin
nπx

L
dx. (3.13b)

There is nothing sacrosanct about the limits x = 0 and x = 2L on these integrals;
all that is required is integration over one full period (of length 2L). In other words,
expressions 3.13b could be replaced by

an =
1
L

∫ c+2L

c

f(x) cos
nπx

L
dx, bn =

1
L

∫ c+2L

c

f(x) sin
nπx

L
dx, (3.13c)

where c is any number whatsoever.
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If we make the agreement that at any point of discontinuity, f(x) shall be
defined (or redefined if necessary) as the average of its right- and left-hand limits,
representation 3.13a may be replaced by

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
. (3.14)

For example, the Fourier series of the function
f(x) in Figure 3.1a converges to the function
in Figure 3.4; f(x) must be defined as the
average value of its right- and left-hand
limits at x = d+ 2nL, and redefined as the
average of its right- and left-hand limits
at x = c+ 2nL.

y

xc L
c L d L2

+2 +2d

Figure 3.4

Example 3.1 Find the Fourier series of the function f(x) that is equal to x for 0 < x < 2L and
is 2L-periodic.

Solution According to formulas 3.13b, the Fourier coefficients are

a0 =
1
L

∫ 2L

0

x dx =
1
L

{
x2

2

}2L

0

= 2L;

an =
1
L

∫ 2L

0

x cos
nπx

L
dx =

1
L

{
Lx

nπ
sin

nπx

L
+

L2

n2π2
cos

nπx

L

}2L

0

= 0, n > 0;

bn =
1
L

∫ 2L

0

x sin
nπx

L
dx =

1
L

{
−Lx
nπ

cos
nπx

L
+

L2

n2π2
sin

nπx

L

}2L

0

= −2L
nπ

, n > 0.

We may therefore write

f(x) = L+
∞∑

n=1

−2L
nπ

sin
nπx

L
= L

(
1 − 2

π

∞∑

n=1

1
n

sin
nπx

L

)
,

provided we define f(x) as L at its points of discontinuity x = 2nL. In other words,
the Fourier series converges to the function in Figure 3.5.•
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x

L

L L L2 4 6

2

L

Figure 3.5

Example 3.2 Find the Fourier series of the function f(x) that is equal to x2 for −L ≤ x ≤ L and
is of period 2L.

Solution In this example, it is more convenient to integrate over the interval
−L ≤ x ≤ L. (You can see why if you examine the graph of the function in Figure



130 SECTION 3.1

3.6.) In other words, we use formulas 3.13c with c = −L to calculate the Fourier
coefficients:

a0 =
1
L

∫ L

−L

x2 dx =
1
L

{
x3

3

}L

−L

=
2L2

3
;

an =
1
L

∫ L

−L

x2 cos
nπx

L
dx =

1
L

{(
Lx2

nπ
− 2L3

n3π3

)
sin

nπx

L
+

2L2x

n2π2
cos

nπx

L

}L

−L

=
4L2(−1)n

n2π2
, n > 0;

bn =
1
L

∫ L

−L

x2 sin
nπx

L
dx =

1
L

{(
2L3

n3π3
− Lx2

nπ

)
cos

nπx

L
+

2L2x

n2π2
sin

nπx

L

}L

−L

= 0, n > 0.

Because f(x) is continuous for all x (Figure 3.6), we may write

f(x) =
L2

3
+

∞∑

n=1

4L2(−1)n

n2π2
cos

nπx

L
=
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cos

nπx

L
.

This Fourier series can be used to find the sum of the series of constants
∑∞

n=1 1/n2.
When we set x = L, and note that f(L) = L2,

L2 =
L2

3
+

4L2

π2

∞∑

n=1

(−1)n

n2
cosnπ =

L2

3
+

4L2

π2

∞∑

n=1

1
n2
.

This equation can be solved for
∞∑

n=1

1
n2

=
π2

4L2

(
L2 − L2

3

)
=
π2

6
.

The sums of many series of constants can be obtained in this way. Unfortunately,
given a series of constants to evaluate, say

∑∞
n=1 cn, it is difficult to determine the

function f(x) whose Fourier series would contain the series
∑∞

n=1 cn.•
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Figure 3.6 Figure 3.7

Example 3.3 Find the Fourier series for the 2π-periodic function f(x) in Figure 3.7.

Solution With L = π in formulas 3.13b,

a0 =
1
π

∫ 2π

0

f(x) dx =
1
π

∫ π

0

sin x dx =
1
π

{
− cosx

}π

0
=

2
π

;

an =
1
π

∫ 2π

0

f(x) cosnxdx =
1
π

∫ π

0

sin x cosnx dx
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=
1
π





{
1
2

sin2 x

}π

0

, n = 1
{

cos (n− 1)x
2(n− 1)

− cos (n+ 1)x
2(n+ 1)

}π

0

, n > 1

=





0, n = 1

−1 + (−1)n

π(n2 − 1)
, n > 1;

bn =
1
π

∫ 2π

0

f(x) sinnxdx =
1
π

∫ π

0

sinx sinnxdx

=
1
π





{
x

2
− sin 2x

4

}π

0

, n = 1
{

sin (n− 1)x
2(n− 1)

− sin (n+ 1)x
2(n+ 1)

}π

0

n > 1

=
{

1/2, n = 1
0, n > 1.

Because f(x) is continuous for all x, we may write

f(x) =
1
π

+
∞∑

n=2

−1 + (−1)n

π(n2 − 1)
cosnx+

1
2

sinx.

Terms in the series vanish when n is odd. To display only the even terms, we replace
n by 2n:

f(x) =
1
π

+
1
2

sinx− 2
π

∞∑

n=1

cos 2nx
4n2 − 1

.•

By representation 3.14, we mean that the sequence of partial sums {Sn(x)}
of the series on the right converges to f(x) for all x; that is, were we to plot the
functions in the sequence

S0(x) =
a0

2
, S1(x) =

a0

2
+
(
a1 cos

πx

L
+ b1 sin

πx

L

)
,

S2(x) =
a0

2
+
(
a1 cos

πx

L
+ b1 sin

πx

L

)
+
(
a2 cos

2πx
L

+ b2 sin
2πx
L

)
,

and so forth, their graphs should resemble more and more closely that of f(x).
Figure 3.8 illustrates this fact with the partial sums S0(x), S1(x), S2(x), S3(x),
S4(x), and S10(x) for the function f(x) in Example 3.2. Graphs are plotted only
for −L ≤ x ≤ 3L; they would be extended periodically outside this interval.
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Figure 3.9 illustrates the same partial sums for the function f(x) in Example

3.1, but convergence in this case is much slower. This is easily explained by the fact
that the Fourier coefficients in Example 3.2 have a factor n2 in the denominator,
whereas in Example 3.1 the factor is only n. Figure 3.9 also indicates a property of
all Fourier series at points of discontinuity of the function f(x). On either side of the
discontinuity, the partial sums eventually overshoot f(x), and this overshoot does
not diminish in size as more and more terms of the Fourier series are included. This
is known as the Gibbs phenomenon; it states that for large n, Sn(x) overshoots
the curve at a discontinuity by about 9% of the size of the jump in the function.
Notice that when x is set equal to 2L in the series, all terms vanish except the first,
resulting in the value L. Each partial sum in Figure 3.9 passes through the point
(2L,L).
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Complex Form for Fourier Series

Integration formulas 3.13b for Fourier coefficients almost invariably involve in-
tegration by parts. These integrations can be combined by using what is called the
complex form for a Fourier series. With the expressions cos θ = (eiθ + e−iθ)/2 and
sin θ = (eiθ − e−iθ)/(2i), we may express the Fourier series of a function f(x) in the
form

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

=
a0

2
+

∞∑

n=1

(
an
enπxi/L + e−nπxi/L

2
+ bn

enπxi/L − e−nπxi/L

2i

)

=
a0

2
+

∞∑

n=1

(
an + ibn

2

)
e−nπxi/L +

∞∑

n=1

(
an − ibn

2

)
enπxi/L

=
a0

2
+

∞∑

n=1

(
an + ibn

2

)
e−nπxi/L +

−∞∑

n=−1

(
a−n − ib−n

2

)
e−nπx/L

or,

f(x) =
∞∑

n=−∞
cne

−nπxi/L, (3.15a)

where c0 = a0/2, cn = (an + ibn)/2 when n > 0, and cn = (a−n − ib−n)/2 when
n < 0. It is straightforward to verify using formulas 3.13b that for all n,

cn =
1

2L

∫ 2L

0

f(x)enπxi/Ldx. (3.15b)

This is called the complex form of Fourier series 3.13. Its compactness is evident,
and only one integration is required to determine the complex coefficients cn. In
addition, Fourier coefficients an and bn are easily extracted as real and imaginary
parts of cn.

Example 3.4 Use formula 3.15b to obtain the complex form for the Fourier series of the function
in Example 3.1. From the result, derive the trigonometric form of the Fourier series.

Solution According to formula 3.15b,

cn =
1

2L

∫ 2L

0

x enπxi/Ldx =
1

2L

{
Lx

nπi
enπxi/L +

L2

n2π2
enπxi/L

}2L

0

= − Li

nπ
,
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provided of course that n 6= 0. For n = 0, we obtain

c0 =
1

2L

∫ 2L

0

x dx =
1

2L

{
x2

2

}2L

0

= L.

The complex form of the Fourier series for f(x) is therefore

f(x) = L+
∞∑

n=−∞
n6=0

− Li

nπ
e−nπxi/L = L− Li

π

∞∑

n=−∞
n6=0

1
n
e−nπxi/L.

To obtain the trigonometric form of the Fourier series, we can proceed in two ways.
First, we can use the facts that a0 = 2c0, and an + ibn = 2cn. These give

a0 = 2L, an + ibn = −2Li
nπ

,

and therefore an = 0 and bn = −2L/(nπ). The trigonometric form of the Fourier
series is

f(x) = L+
∞∑

n=1

−2L
nπ

sin
nπx

L
.

Alternatively, if we separate the complex series into summations over positive and
negative values of n and change variables for the negative integers,

f(x) = L− Li

π

∞∑

n=1

1
n
e−nπxi/L − Li

π

−1∑

n=−∞

1
n
e−nπxi/L

= L− Li

π

∞∑

n=1

1
n
e−nπxi/L − Li

π

∞∑

n=1

1
−n

enπxi/L

= L+
Li

π

∞∑

n=1

1
n

(enπxi/L − e−nπxi/L) = L+
Li

π

∞∑

n=1

1
n

(
2i sin

nπx

L

)

= L− 2L
π

∞∑

n=1

1
n

sin
nπx

L
.•

EXERCISES 3.1
In Exercises 1–14 use formulas 3.13b or 3.13c to find the Fourier series for the
function f(x). Draw graphs of f(x) and the function to which the series converges
in Exercises 1–8, 13, and 14.

1. f(x) = 3x+ 2, 0 < x < 4, f(x+ 4) = f(x)

2. f(x) = 2x2 − 1, 0 ≤ x < 2L, f(x+ 2L) = f(x)

3. f(x) = 2x2 − 1, −L ≤ x ≤ L, f(x+ 2L) = f(x)

4. f(x) = 3x, 0 < x ≤ 2L, f(x+ 2L) = f(x)

5. f(x) = 3x, −L < x ≤ L, f(x+ 2L) = f(x)

6. f(x) =
{

2(L− x), 0 ≤ x ≤ L
x− L, L < x < 2L

, f(x+ 2L) = f(x)
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7. f(x) =

{ 2, 0 < x < 1
1, 1 < x < 2
0, 2 < x < 3

, f(x+ 3) = f(x)

8. f(x) =

{x, 0 ≤ x ≤ 2
2, 2 ≤ x ≤ 4
6 − x, 4 ≤ x ≤ 6

, f(x+ 6) = f(x)

9. f(x) = 1 + sinx− cos 2x 10. f(x) = 2 cosx− 3 sin 10x+ 4 cos 2x
11. f(x) = cos2 2x 12. f(x) = 3 cos 2x sin 5x

13. f(x) = ex, 0 < x < 4, f(x+ 4) = f(x)

14. f(x) =
{

sin x, 0 ≤ x ≤ π
−2 sin x, π ≤ x ≤ 2π f(x+ 2π) = f(x)

15. Verify that the functions in Theorem 3.1 are indeed orthogonal.

16. A student was once heard to say that the Fourier series of a periodic function is not unique.
For example, in Example 3.1 the Fourier series of the function in Figure 3.5 was found. The
student stated that this function also has period 4L and therefore has a Fourier series of the
form

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

2L
+ bn sin

nπx

2L

)
.

Is this series different from that found in Example 3.1?
In Exercises 17–26 use formula 3.15 to find the complex Fourier series for the given
function. Use the result to derive the trigonometric Fourier series.

17. The function in Exercise 1 18. The function in Exercise 7

19. f(x) =
{

1, 0 < x < L
−1, L < x < 2L , f(x+ 2L) = f(x)

20. f(x) =
{
x, 0 < x < L
2L− x, L < x < 2L , f(x+ 2L) = f(x)

21. The function in Example 3.2 22. The function in Exercise 8
23. The function in Exercise 2 24. The function in Exercise 13
25. The function in Exercise 6 26. The function in Example 3.3

27. Is

f(x) =
∞∑

n=−∞
dne

nπxi/L where dn =
1

2L

∫ 2L

0

f(x)e−nπxi/Ldx

an alternative to equation 3.15 for the complex form of the Fourier series of a function f(x)?
How is dn related to an and bn in this case?

28. A function f(x) is said to be odd-harmonic if f(x+ L) = −f(x), wherever it is defined.
(a) Prove that such a function is 2L-periodic.
(b) Illustrate an odd-harmonic function graphically.
(c) Show that the Fourier series for an odd-harmonic function takes the form

f(x) =
∞∑

n=1

[
an cos

(2n− 1)πx
L

+ bn sin
(2n− 1)πx

L

]
,
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where

an =
2
L

∫ L

0

f(x) cos
(2n− 1)πx

L
dx and bn =

2
L

∫ L

0

f(x) sin
(2n− 1)πx

L
dx.
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§3.2 Fourier Sine and Cosine Series

When f(x) is a 2L-periodic, piecewise smooth function, it has Fourier series repre-
sentation 3.13a with coefficients defined by 3.13b. If, in addition, f(x) is an even
function, it is a simple exercise to show that its Fourier coefficients satisfy

an =
2
L

∫ L

0

f(x) cos
nπx

L
dx, bn = 0 (3.16b)

(see, for instance, Example 3.2). Thus, the Fourier series of an even function has
only cosine terms,

f(x) =
a0

2
+

∞∑

n=1

an cos
nπx

L
, (3.16a)

and is called a Fourier cosine series.
When f(x) is an odd function, its Fourier coefficients are

an = 0, bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx, (3.17b)

and therefore the Fourier series of an odd function has only sine terms,

f(x) =
∞∑

n=1

bn sin
nπx

L
, (3.17a)

and is called a Fourier sine series.

Example 3.5 Find the Fourier series for the function f(x) in Figure 3.10a.

Solution Because f(x) is an odd function of period 2, its Fourier series must be
a sine series of the form

∞∑

n=1

bn sinnπx.

Coefficients are

bn =
2
1

∫ 1

0

f(x) sinnπxdx = 2
∫ 1/2

0

2x sinnπx dx+ 2
∫ 1

1/2

−2(x− 1) sinnπxdx

= 4
{
−x
nπ

cosnπx+
1

n2π2
sinnπx

}1/2

0

− 4
{
−(x− 1)

nπ
cosnπx+

1
n2π2

sinnπx
}1

1/2

=
8

n2π2
sin

nπ

2
.

Because f(x) is continuous for all x, the Fourier series of f(x) converges to f(x) for
all x; that is,

f(x) =
∞∑

n=1

8
n2π2

sin
nπ

2
sinnπx =

8
π2

∞∑

n=1

(−1)n−1

(2n− 1)2
sin (2n− 1)πx.

We have shown the sum of the first two terms of the series in Figure 3.10b. Even
with only two terms, we have a reasonable approximation of f(x); in other words,
convergence is very rapid, except at the points on the graph where the derivative
f ′(x) does not exist.•
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Example 3.6 Find the Fourier series for the function f(x) in Figure 3.11a.

Solution Because f(x) is an even function of period 4, its Fourier series must be
a cosine series of the form

a0

2
+

∞∑

n=1

an cos
nπx

2
.

Coefficients are

a0 =
2
2

∫ 2

0

(4 − x2) dx =
{

4x− x3

3

}2

0

=
16
3

;

an =
2
2

∫ 2

0

(4 − x2) cos
nπx

2
dx =

{
2
nπ

(4− x2) sin
nπx

2
− 8x
n2π2

cos
nπx

2
+

16
n2π3

sin
nπx

2

}2

0

=
16(−1)n+1

n2π2
.

Because f(x) is continuous for all x, we may write

f(x) =
8
3

+
∞∑

n=1

16(−1)n+1

n2π2
cos

nπx

2
=

8
3

+
16
π2

∞∑

n=1

(−1)n+1

n2
cos

nπx

2
.

Alternatively, we could have noted that this function is 4 minus the function in
Example 3.2 when L is set equal to 2. Hence,

f(x) = 4 −

[
22

3
+

4(2)2

π2

∞∑

n=1

(−1)n

n2
cos

nπx

2

]
=

8
3

+
16
π2

∞∑

n=1

(−1)n+1

n2
cos

nπx

2
.

We have shown the sum of the first five terms of the series in Figure 3.11b. Even
with only five terms, we have a reasonable approximation of f(x), except at the
points on the graph where the derivative f ′(x) does not exist.•
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Because we have treated Fourier sine and cosine series as special cases of the
full Fourier series in Section 3.1, they have been approached from the following point
of view: Can an even (or odd) 2L-periodic function f(x) be expressed in a Fourier
series of form 3.16a (or 3.17a)?

When sine and cosine series are used to solve (initial) boundary value problems,
they arise in a different way. Sine series arise from a need to answer the following
question: Suppose a function f(x) is defined for 0 < x < L and is piecewise smooth
for 0 ≤ x ≤ L. Is it possible to represent f(x) in a series of the form

f(x) =
∞∑

n=1

bn sin
nπx

L
(3.18)

valid for 0 < x < L?
Notice that f(x) is not odd and it is not periodic; it is defined only between

x = 0 and x = L. But by appropriately extending f(x) outside the interval 0 < x <
L, we shall indeed be able to write it in form 3.18. First, we recognize that equation
3.18 is identical to 3.17a, the Fourier sine series of an odd function. We therefore
extend the domain of definition of f(x) to include −L < x < 0 by demanding that
the extension be odd; that is, we define f(x) = −f(−x) for −L < x < 0. For
example, if f(x) is as shown in Figure 3.12a, it is extended as shown in Figure
3.12b. Next, we know that series 3.17a represents a 2L-periodic function. We
therefore extend the domain of definition of f(x) beyond −L < x < L by making it
2L-periodic (Figure 3.12c).

y

xL

y

xLL-

Figure 3.12a Figure 3.12b

y

xLL- LL-2 2

y

xLL- LL-2 2

Figure 3.12c Figure 3.12d

We have now extended f(x), which was originally defined only for 0 < x < L,
to an odd, 2L-periodic function. Because f(x) was piecewise smooth on 0 ≤ x ≤ L,
the extended function is piecewise smooth for all x. As a result, the extended
function can be represented in Fourier sine series 3.17a, with coefficients defined by
3.17b, and this series converges to the average value of right- and left-hand limits at
every point (Figure 3.12d). Since this extension does not affect its original values
on 0 < x < L, it follows that the Fourier sine series of the extension must represent
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f(x) on 0 < x < L. Finally, we should note that the series converges to 0 at x = 0
and x = L.

In summary, when we are required to express a function f(x), defined for
0 < x < L, in form 3.18, we use the Fourier sine series of the odd, 2L-periodic
extension of f(x).

In a similar way, if we are required to express a function f(x), defined for
0 < x < L, and piecewise smooth on 0 ≤ x ≤ L, in the form

f(x) =
a0

2
+

∞∑

n=1

an cos
nπx

L
, (3.19)

we use the Fourier cosine series of the even, 2L-periodic extension of f(x). For the
function f(x) in Figure 3.12a, this extension is as shown in Figure 3.13a. The series
converges to limx→0+ f(x) at x = 0, and to limx→L− f(x) at x = L; that is, to the
continuous function in Figure 3.13b.

y

xLL- LL-2 2

y

xLL- LL-2 2

Figure 3.13a Figure 3.13b

Example 3.7 Find coefficients bn so that

1 + 2x =
∞∑

n=1

bn sin
nπx

3

for all x in the interval 0 < x < 3.

Solution Constants bn must be the coefficients in the Fourier sine series of the
extension of 1 + 2x to an odd function of period 6 (Figure 3.14a). According to
formulas 3.17b,

bn =
2
3

∫ 3

0

(1 + 2x) sin
nπx

3
dx =

2
3

{
−3
nπ

(1 + 2x) cos
nπx

3
+

18
n2π2

sin
nπx

3

}3

0

=
2
nπ

[1 + 7(−1)n+1].

Consequently,

1 + 2x =
2
π

∞∑

n=1

1 + 7(−1)n+1

n
sin

nπx

3
, 0 < x < 3.

At x = 0 and x = 3, the series does not converge to 1+2x; it converges to zero, the
average value of right- and left-hand limits of the odd, periodic extension of 1+ 2x.
We have shown the twentieth partial sum of the series in Figure 3.14b in order to
illustrate convergence of the series to 1 + 2x. Convergence is slow at x = 0 and
x = 3 because of the discontinuities of the extension at these points. The overshoot
at x = 3 is larger than that at x = 0 because the magnitude of the discontinuity at
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x = 3 is larger (as is predicted by the Gibb’s phenomenon). Notice also that the
partial sum crosses the x-axis at x = 0 and x = 3, as does every partial sum.•
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Figure 3.14a Figure 3.14b

Example 3.8 Find coefficients an so that

1 + 2x =
a0

2
+

∞∑

n=1

an cos
nπx

3

for all x in the interval 0 < x < 3.

Solution Constants an must be the coefficients in the Fourier cosine series of the
extension of 1 + 2x to an even function of period 6 (Figure 3.15a). According to
formulas 3.16b,

a0 =
2
3

∫ 3

0

(1 + 2x) dx =
2
3

{
x+ x2

}3

0
= 8;

an =
2
3

∫ 3

0

(1 + 2x) cos
nπx

3
dx =

2
3

{
3
nπ

(1 + 2x) sin
nπx

3
+

18
n2π2

cos
nπx

3

}3

0

=
12
n2π2

[(−1)n − 1].

Consequently,

1 + 2x = 4 +
12
π2

∞∑

n=1

(−1)n − 1
n2

cos
nπx

3
.

Terms in the series vanish when n is even. To display only the odd terms, we replace
n by 2n− 1 and sum from n = 1 to infinity:

1 + 2x = 4 − 24
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

3
, 0 < x < 3.

At x = 0 and x = 3, the series converges to 1 and 7, respectively (these being
average values of right- and left-hand limits of the even, periodic extension), so that
the series actually represents 1 + 2x for 0 ≤ x ≤ 3. The third partial sum of the
series is shown in Figure 3.15b. It is practically indistinguishable from 1+2x except
at x = 0 and x = 3 where the extension has no derivative.•
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EXERCISES 3.2

In Exercises 1–5 find the Fourier series for the function f(x). Draw graphs of f(x)
and the function to which the series converges in Exercises 2–5.

1. f(x) = 2 sin 4x− 3 sinx

2. f(x) = |x|, −π < x < π, f(x+ 2π) = f(x)

3. f(x) =
{
x, −4 ≤ x ≤ 4,
8 − x, 4 ≤ x ≤ 12, , f(x+ 16) = f(x)

4. f(x) = 2x2 − 1, −L ≤ x ≤ L, f(x+ 2L) = f(x)

5. f(x) =
{

cosx, −π/2 ≤ x ≤ π/2
0, π/2 < x < 3π/2 f(x+ 2π) = f(x)

In Exercises 6–10 expand f(x) in terms of the functions {sin (nπx/L)}. Suppose the
domain of f(x) is extended to 0 ≤ x ≤ L by making it continuous from the right
at x = 0 and continuous from the left at x = L. Determine whether the series
converges to f(0) and f(L) in Exercises 6–9. Do this algebraically and also by using
properties of Fourier series.

6. f(x) = −x, 0 < x < L

7. f(x) =





1, 0 < x < L/3
0, L/3 < x < 2L/3
−1, 2L/3 < x < L

8. f(x) =





L/4, 0 < x ≤ L/4
L/2 − x, L/4 < x ≤ L/2
x− L/2, L/2 < x < 3L/4
L/4, 3L/4 ≤ x < L

9. f(x) = Lx− x2, 0 < x < L

10. f(x) = sin (πx/L) cos (πx/L)
In Exercises 11–15 expand f(x) in terms of the functions {1, cos (nπx/L)}. Suppose
the domain of f(x) is extended to 0 ≤ x ≤ L by making it continuous from the
right at x = 0 and continuous from the left at x = L. Determine whether the series
converges to f(0) and f(L) in Exercises 11–13. Do this algebraically and also by
using properties of Fourier series.

11. f(x) = −x, 0 < x < L
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12. f(x) =
{

1, 0 < x < L/2
0, L/2 < x < L

13. f(x) = Lx− x2, 0 < x < L 14. f(x) = 1, 0 < x < L

15. f(x) = sin (πx/L) cos (πx/L), 0 < x < L

16. Find the Fourier series for the function f(x) = | sinx| by using the fact that the function has
period π. What series is obtained if period 2π is used?

17. Under what additional condition is it possible to express a function f(x) that is piecewise smooth
on 0 ≤ x ≤ L in the form

f(x) =
∞∑

n=1

an cos
nπx

L
?

18. In this exercise, we summarize results seen in Exercises 6–9 and 11–13. Illustrate with graphs
that when a function f(x), defined on the interval 0 ≤ x ≤ L, is continuous (from the right) at
x = 0,
(a) the Fourier cosine series of the even, 2L-periodic extension of f(x) always converges to f(0)

at x = 0;
(b) the Fourier sine series of the odd, 2L-periodic extension of f(x) converges to f(0) at x = 0

if and only if f(0) = 0.
(c) Are similar statements to those in parts (a) and (b) correct at x = L?

19. (a) Find the Fourier series for the function

f(x) =
{
x, 0 ≤ x ≤ L
2L− x, L < x ≤ 2L , f(x+ 2L) = f(x).

Use this result to find Fourier series for the following functions:
(b) f1(x) = L− |x|, −L ≤ x ≤ L, f1(x+ 2L) = f1(x)
(c) f2(x) = 2L− |2L− x|, 0 < x < 4L, f2(x+ 4L) = f2(x)
(d) f3(x) = x, −L < x < L, f3(L+ x) = f3(L− x), f3(x+ 4L) = f3(x)

20. (a) A function f(x) is said to be odd and odd-harmonic if it satisfies the conditions

f(−x) = −f(x), f(L+ x) = f(L− x).

Show that such a function is 4L-periodic.
(b) Illustrate an odd, odd-harmonic function graphically. Is it symmetric about the line x = L?
(c) Show that the Fourier series of an odd, odd-harmonic function takes the form

f(x) =
∞∑

n=1

bn sin
(2n− 1)πx

2L
where bn =

2
L

∫ L

0

f(x) sin
(2n− 1)πx

2L
dx.

(d) Is an odd and odd-harmonic function odd-harmonic according to Exercise 28 in Section 3.1?

21. (a) A function f(x) is said to be even and odd-harmonic if it satisfies the conditions

f(−x) = f(x), f(L+ x) = −f(L− x).

Show that such a function is 4L-periodic.
(b) Illustrate an even, odd-harmonic function graphically. Is it antisymmetric about the line

x = L?
(c) Show that the Fourier series of an even, odd-harmonic function takes the form
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f(x) =
∞∑

n=1

an cos
(2n− 1)πx

2L
where an =

2
L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx.

(d) Is an even and odd-harmonic function odd-harmonic according to Exercise 28 in Section
3.1?
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§3.3 Uniform Convergence and Convergence in the Mean

In Sections 3.1 and 3.2, we indicated that the Fourier series of a piecewise smooth
function f(x) converges on a point-by-point basis to [f(x+) + f(x−)]/2. In this
section, we introduce two other types of convergence that are particularly impor-
tant for Fourier series, but do so in a general setting rather than in the restricted
environment of Fourier series. We discuss them in the context of Fourier series in
Section 3.4.

Uniform Convergence

A series of functions
∑∞

n=1 un(x) converges to (or has sum) S(x) if its sequence
of partial sums {Sn(x)} converges to S(x). This is true if, given any ε > 0, there
exists an integer N such that |Sn(x) − S(x)| < ε whenever n > N . Usually N is a
function of ε and x; in particular, the choice of N may vary from x to x. What this
means is that convergence of {Sn(x)} to S(x) may be faster for some x’s than others.
If it is possible to find an N , independent of x, such that |Sn(x)− S(x)| < ε for all
n > N and all x in some interval I, then

∑∞
n=1 un(x) is said to converge uniformly

to S(x) in I. The word uniform is perhaps a misnomer. When N is independent of
x, convergence is not necessarily uniformly fast for all x’s; the rate of convergence
may still, and does, vary from x to x. What we can say is that convergence does not
become indefinitely slow for some x’s in I. In practice, what often happens is that
there is an x0 in I at which convergence is slowest; for all other x’s, convergence is
more rapid than at this x0. In this case, convergence is uniform. The most widely
used test for uniform convergence of a series is the Weierstrass M -test.

Theorem 3.3 (Weierstrass M-test) If a convergent series of (positive) constants
∑∞

n=1Mn

can be found such that |Sn(x)| ≤Mn for each n and all x in I, then
∑∞

n=1 un(x) is
uniformly convergent in I.

An excellent example to illustrate these ideas is the geometric series
∑∞

n=0 x
n.

It is well known that this series converges to 1/(1−x) on the interval −1 < x < 1. In
Figure 3.16 we show the five partial sums S1(x) = 1, S2(x) = 1+x, S3(x) = 1+x+x2,
S4(x) = 1+x+x2 +x3, and S5(x) = 1+x+x2 +x3 +x4, as well as S(x) = 1/(1−x).
They indicate that convergence of the partial sums Sn(x) to S(x) is rapid for values
of x close to zero, but as x approaches ±1, convergence becomes much slower. We
can demonstrate this algebraically by noting that

S(x) − Sn(x) =
1

1 − x
− 1 − xn

1 − x
=

xn

1 − x
.

This is the difference between the sum of the series and its nth partial sum. As x
approaches 1, the difference becomes very large; near x = −1, it oscillates back and
forth between numbers close to ±1/2.
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When x is confined to the interval |x| ≤ a < 1, we can state that |xn| ≤ an, and
since

∑∞
n=0 a

n converges, it follows that the geometric series
∑∞

n=0 x
n converges

uniformly on |x| ≤ a < 1. Convergence is slowest at x = a; at all other points
in |x| ≤ a, it converges more rapidly than it does at x = a. The series does
not, however, converge uniformly on the interval |x| < 1; convergence becomes
indefinitely slow as x→ ±1.

The Weierstrass M -test is easily generalized to series whose terms are functions
of more than one variable. For example,

∑∞
n=1 un(x, y) is uniformly convergent for

points (x, y) in a region R of the xy-plane if there exists a convergent series of
constants

∑∞
n=1 Mn such that for each n and all (x, y) in R, |un(x, y)| ≤Mn.

Series of the following form arise in almost all phases of our work:
∞∑

n=1

Xn(x)Yn(y),

that is, series in which each term is a function Xn(x) of x multiplied by a function
Yn(y) of y. We find Abel’s test useful in establishing uniform convergence of such
series.
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Theorem 3.4 (Abel’s Test) A series
∑∞

n=1Xn(x)Yn(y) converges uniformly in a region R of
the xy-plane if:
(1) the series

∑∞
n=1Xn(x) converges uniformly with respect to x for all x such that

(x, y) is in R;
(2) the functions Yn(y) are uniformly bounded* for all y such that (x, y) is in R;
(3) for each y such that (x, y) is in R, the sequence of constants {Yn(y)} is nonin-

creasing.

As further explanation of these conditions,
suppose R is the closed region in Figure 3.17
consisting of the area R inside the curve plus
the bounding curve β(R). Condition 1 requires∑∞

n=1Xn(x) to be uniformly convergent for
a ≤ x ≤ b. Conditions 2 and 3 must be satisfied
for c ≤ y ≤ d. Of course, the roles of Xn(x)

y

x

RR
( )b

d

c

a b

and Yn(y) could be reversed. Figure 3.17

Example 3.9 Show that the series
∞∑

n=0

xnyn is uniformly convergent on the rectangle |x| ≤ a < 1,

|y| ≤ 1.

Solution We have already seen that the series
∑∞

n=0 x
n is uniformly convergent

for |x| ≤ a < 1. The sequence of functions {yn} is uniformly bounded by 1 for
|y| ≤ 1, and for each fixed y in |y| ≤ 1, the sequence is nonincreasing. Hence, by
Abel’s test, the series is uniformly convergent. Alternatively, since |xnyn| ≤ an and∑∞

n=0 a
n converges, the given series converges uniformly by the Weierstrass M-test.•

It is a well-known fact that the sum of finitely many continuous functions is
a continuous function. On the other hand, the sum of infinitely many continuous
functions may not be a continuous function. Fourier series are prime examples;
each term in a Fourier series is continuous, but the sum of the terms may well be
discontinuous (see Example 3.1). When convergence is uniform, the following result
indicates that this cannot happen.

Theorem 3.5 A uniformly convergent series of continuous functions converges to a continuous
function.

This means that convergence of the Fourier series of a discontinuous function cannot
be uniform over any interval that contains a point of discontinuity.

In many applications of series, it is necessary to integrate a series term-by-
term. According to the following theorem, this is possible when the series converges
uniformly.

Theorem 3.6 When a series
∞∑

n=1

un(x) of continuous functions converges uniformly to S(x) on an

interval a ≤ x ≤ b,

* A sequence of functions {Yn(y)} is said to be uniformly bounded on an interval I if
there exists a constant M such that |Yn(y)| ≤M for all x in I and all n.
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∫ b

a

S(x) dx =
∞∑

n=1

∫ b

a

un(x) dx. (3.20)

More important to our discussions of Fourier series and partial differential equa-
tions are sufficient conditions for term-by-term differentiation of a series. These are
given in the next theorem.

Theorem 3.7 Suppose
∞∑

n=1

un(x) = S(x) for a ≤ x ≤ b. Then

S′(x) =
∞∑

n=1

un
′(x), a ≤ x ≤ b, (3.21)

provided each un
′(x) is continuous for a ≤ x ≤ b and the series

∑∞
n=1 un

′(x) is
uniformly convergent on a ≤ x ≤ b.

Convergence in the Mean

Suppose that a series
∑∞

n=1 un(x) converges to f(x) on some interval a ≤ x ≤ b.
For any x in a ≤ x ≤ b, the difference f(x)−

∑n
k=1 uk(x), is the error in using the

first n terms of the series to approximate f(x) at that x. It might be positive; it
might be negative; it might even be zero. One possibility to assign an overall error
in the approximation of f(x) by its nth partial sum on a ≤ x ≤ b would be to define
it as

max
a ≤ x ≤ b

∣∣∣∣∣f(x)−
n∑

k=1

uk(x)

∣∣∣∣∣ .

Overall error is error where the approximation is worst. Although this may be
reasonable as an overall error, it turns out to be difficult to implement. Much more
practical is what is called the mean square error, defined as follows.

Definition 3.5 Suppose f(x) =
∞∑

n=1

un(x) on the interval a ≤ x ≤ b. The mean square error in

approximating f(x) by its nth partial sum, with respect to a weight function p(x),
is

En =
∫ b

a

[
f(x)−

n∑

k=1

uk(x)

]2

p(x) dx. (3.22)

We will see the necessity for a weight function, which is always nonnegative, when
we study Sturm-Liouville systems in Chapter 5. For ordinary Fourier series, the
weight function is unity, and therefore we assume that p(x) = 1 for the remainder
of this chapter. Mean square error regards the square of the difference between f(x)
and its partial sum as the error at each value of x, and adds, in integral form, errors
at all points in the interval. We say the series converges in the mean to f(x) if

lim
n→∞

En = lim
n→∞

∫ b

a

[
f(x)−

n∑

k=1

uk(x)

]2

p(x) dx = 0. (3.23)
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When a series converges in the mean, the mean square error becomes less and less
as n gets larger and larger. The partial sums of the series approximate the sum
better and better over the entire interval as more and more terms are included.

EXERCISES 3.3

In Exercises 1–5 show that the series is uniformly convergent on the given region R.

1.
∞∑

n=0

xnyn R: x2 + y2 ≤ a2, 0 < a < 1

2.
∞∑

n=0

n2xnyn R: |x| ≤ a < 1, |y| ≤ 1

3.
∞∑

n=0

xnyn lnx
2n

0 < x ≤ a < 1, |y| ≤ 2

4.
∞∑

n=0

e−ny sinnx −∞ < x <∞, y ≥ a > 0

5.
∞∑

n=1

coshnπy sinnπx
sinhnπ

0 ≤ x ≤ 1, 0 ≤ y ≤ a < 1
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§3.4 Properties of Fourier Series

In Sections 3.1 and 3.2, we indicated that the Fourier series of a piecewise
smooth function f(x) converges on a point-by-point basis to [f(x+)+ f(x−)]/2. In
this section, we discuss conditions that guarantee that the Fourier series convergence
uniformly to its sum, and also convergences in the mean to its sum. In addition,
we take the opportunity to develop properties of Fourier series that are pertinent
to our discussions on partial differential equations.

Theorem 3.7 in Section 3.3 states that a series can be differentiated term-by-
term if the differentiated series converges uniformly. The following theorem gives
conditions on a function f(x), rather than its differentiated series, that determine
when its Fourier series can be differentiated term-by-term.

Theorem 3.8 If f(x) is a continuous function of period 2L with piecewise continuous derivatives
f ′(x) and f ′′(x), the Fourier series of f(x),

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

can be differentiated term-by-term to yield

f ′(x) =
f ′(x+) + f ′(x−)

2
=
π

L

∞∑

n=1

n
(
−an sin

nπx

L
+ bn cos

nπx

L

)
. (3.24)

Proof Because f ′(x) is piecewise smooth, its Fourier series converges to [f ′(x+)+
f ′(x−)]/2 for each x,

f ′(x+) + f ′(x−)
2

=
A0

2
+

∞∑

n=1

(
An cos

nπx

L
+ Bn sin

nπx

L

)
,

where

A0 =
1
L

∫ 2L

0

f ′(x) dx =
1
L

{
f(x)

}2L

0
= 0;

An =
1
L

∫ 2L

0

f ′(x) cos
nπx

L
dx =

1
L

{
f(x) cos

nπx

L

}2L

0
+
nπ

L2

∫ 2L

0

f(x) sin
nπx

L
dx =

nπ

L
bn;

Bn =
1
L

∫ 2L

0

f ′(x) sin
nπx

L
dx =

1
L

{
f(x) sin

nπx

L

}2L

0
− nπ

L2

∫ 2L

0

f(x) cos
nπx

L
dx = −nπ

L
an.

Consequently,

f ′(x+) + f ′(x−)
2

=
π

L

∞∑

n=1

n
(
−an sin

nπx

L
+ bn cos

nπx

L

)
.

Example 3.10 The function in Figure 3.18a is the derivative of the function in Figure 3.7 (for
Example 3.3). Find its Fourier series.
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y

x- 2 3 4

1

p p p p p

-1

y

x- 2 3 4

1

p p p p p

-1

Figure 3.18a Figure 3.18b

Solution The function in Figure 3.7 is continuous and has Fourier series

f(x) =
1
π

+
1
2

sin x− 2
π

∞∑

n=1

cos 2nx
4n2 − 1

.

Since f ′(x) and f ′′(x) are piecewise continuous, we may differentiate this series
term-by-term and write

f ′(x) =
1
2

cosx− 2
π

∞∑

n=1

−2n sin 2nx
4n2 − 1

=
1
2

cosx+
4
π

∞∑

n=1

n

4n2 − 1
sin 2nx,

provided we understand that f ′(x) is the function in Figure 3.18b; that is, provided
we define f ′(nπ) = (−1)n/2.•

According to the corollary to Theorem 3.2, the Fourier series of a periodic,
piecewise smooth function f(x) converges to [f(x+) + f(x−)]/2. Convergence is
faster at some points, slower at others. In particular, our examples have shown that
convergence is slow near points of discontinuity of the function. According to Theo-
rem 3.5, a Fourier series cannot converge uniformly over an interval that contains a
discontinuity because a uniformly convergent series of continuous functions always
converges to a continuous function. Theorem 3.10 guarantees uniform convergence
when f(x) is continuous and has a piecewise continuous first derivative. In order to
verify this, we require the following result.

Theorem 3.9 If f(x) is a piecewise continuous funtion on 0 ≤ x ≤ 2L, its Fourier coefficients must
satisfy Bessel’s inequality

a0
2

2
+

n∑

k=1

(ak
2 + bk

2) ≤ 1
L

∫ 2L

0

[f(x)]2 dx. (3.25)

Proof: The mean square error when a function f(x) is approximated by the first
2n+ 1 terms in its Fourier series is

En =
∫ 2L

0

[
f(x)− a0

2
−

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)]2

dx

=
∫ 2L

0

[f(x)]2 dx− 2
∫ 2L

0

f(x)

[
a0

2
+

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)]
dx

+
∫ 2L

0

{
a2
0

4
+

n∑

k=1

[
a2

k cos2
kπx

L
+ b2k sin2 kπx

L

]
+ a0

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)
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+ 2
n∑

i,j=1

aibj cos
iπx

L
sin

jπx

L
+ 2

n∑

i>j=1

(
aiaj cos

iπx

L
cos

jπx

L
+ bibj sin

iπx

L
sin

jπx

L

)}
dx

=
∫ 2L

0

[f(x)]2 dx− a0(La0)− 2
n∑

k=1

[ak(Lak) + bk(Lbk)] +
a2
0

4
(2L) +

n∑

k=1

[a2
k(L) + b2k(L)]

=
∫ 2L

0

[f(x)]2 dx− L

[
a2
0

2
+

n∑

k=1

(a2
k + b2k)

]
.

Bessel’s inequality is an immediate consequence of the fact that this quantity must
be nonnegative.

Since Bessel’s inequality must be valid for any positive integer n, we can also
state that

a0
2

2
+

∞∑

n=1

(an
2 + bn

2) ≤ 1
L

∫ 2L

0

[f(x)]2 dx. (3.26)

In Theorem 3.11 it is shown that, with more restrictive conditions on the function
f(x), inequality 3.26 may be replaced by an equality, the result being known as
Parseval’s theorem, and this leads to convergence in the mean of Fourier series. But
first we discuss uniform convergence of Fourier series.

Theorem 3.10 If a 2L-periodic function f(x) is continuous and has a piecewise continuous first
derivative, its Fourier series converges uniformly and absolutely to f(x).

Proof The conditions on f(x) and f ′(x) ensure pointwise convergence of the
Fourier series of f(x) to f(x) for each x,

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
.

Since each term in this series may be expressed in the form

an cos
nπx

L
+ bn sin

nπx

L
=
√
an

2 + bn
2 sin

(nπx
L

+ φn

)
,

it follows that

∣∣∣a0

2

∣∣∣+
∞∑

n=1

∣∣∣an cos
nπx

L
+ bn sin

nπx

L

∣∣∣ ≤ |a0|
2

+
∞∑

n=1

√
an

2 + bn
2. (3.27)

Uniform and absolute convergence of the Fourier series of f(x) will be established
once the series

∑∞
n=1

√
an

2 + bn
2 is shown to be convergent. If

A0

2
+

∞∑

n=1

(
An cos

nπx

L
+Bn sin

nπx

L

)

is the Fourier series for f ′(x), its Fourier coefficients are related to those of f(x) by
the equations

An =
nπ

L
bn, Bn =

−nπ
L

an
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(see the proof of Theorem 3.8). Thus,

m∑

n=1

√
an

2 + bn
2 =

m∑

n=1

L

nπ

√
An

2 +Bn
2 =

L

π

m∑

n=1

√
An

2 +Bn
2

n
. (3.28)

To proceed further, we require a result called Schwarz’s inequality. It states that
for arbitrary finite sequences {cn} and {dn} of nonnegative numbers,

m∑

n=1

cndn ≤

(
m∑

n=1

cn
2

)1/2( m∑

n=1

dn
2

)1/2

. (3.29)

This is verified in Exercise 5. When it is applied to the series
∑m

n=1

√
An

2 +Bn
2/n

on the right side of equation 3.28, we obtain

m∑

n=1

√
an

2 + bn
2 ≤ L

π

(
m∑

n=1

1
n2

)1/2 [ m∑

n=1

(An
2 + Bn

2)

]1/2

.

Since
∑m

n=1 1/n2 <
∑∞

n=1 1/n2 = π2/6 (see Example 3.2), it follows that

m∑

n=1

√
an

2 + bn
2 ≤ L√

6

[
m∑

n=1

(An
2 + Bn

2)

]1/2

.

But Bessel’s inequality 3.26 applied to the Fourier series for f ′(x) gives
m∑

n=1

(An
2 + Bn

2) <
∞∑

n=1

(An
2 +Bn

2) ≤ 1
L

∫ 2L

0

[f ′(x)]2 dx− A0
2

2
.

Consequently,

m∑

n=1

√
an

2 + bn
2 ≤ L√

6

(
1
L

∫ 2L

0

[f ′(x)]2 dx− A0
2

2

)1/2

.

Because this inequality is valid for any integer m whatsoever, it follows that the
series

∑∞
n=1

√
an

2 + bn
2 converges. Inequality 3.27 then indicates that the Fourier

series of f(x) converges uniformly and absolutely.

As mentioned prior to the theorem, continuity of f(x) is indispensable for
uniform convergence. A Fourier series cannot converge uniformly over an interval
that contains a discontinuity because a uniformly convergent series of continuous
functions always converges to a continuous function (Theorem 3.5). If f(x) is defined
only on the interval 0 ≤ x ≤ 2L, continuity of its periodic extension requires that
f(2L) = f(0).

When f(x) satisfies the conditions of Theorem 3.10, Bessel’s inequality 3.26
may be replaced by an equality. This result is contained in the next theorem.

Theorem 3.11 (Parseval’s Thoerem) If f(x) is a 2L-periodic function that is continuous and
has a piecewise continuous first derivative, its Fourier coefficients satisfy

a0
2

2
+

∞∑

n=1

(an
2 + bn

2) =
1
L

∫ 2L

0

[f(x)]2 dx. (3.30)
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Proof With the conditions cited on f(x), the Fourier series of f(x),

f(x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

is uniformly convergent (Theorem 3.10). It may therefore be multiplied by f(x) and
integrated term-by-term between 0 and 2L to yield

∫ 2L

0

[f(x)]2 dx =
a0

2

∫ 2L

0

f(x) dx+
∞∑

n=1

[
an

∫ 2L

0

f(x) cos
nπx

L
dx+ bn

∫ 2L

0

f(x) sin
nπx

L
dx

]

=
a0

2
(a0L) +

∞∑

n=1

[an(Lan) + bn(Lbn)].

Thus,

a0
2

2
+

∞∑

n=1

(an
2 + bn

2) =
1
L

∫ 2L

0

[f(x)]2 dx.

This theorem can also be proved (albeit by different methods) when f(x) is only
piecewise smooth and 2L-periodic. With Parseval’s Theorem, it is now possible to
verify that Fourier series converge in the mean. We state it for functions mentioned
in the previous sentence.

Theorem 3.12 The Fourier series of a 2L-periodic, piecewise smooth function f(x) converges in the
mean to f(x).

Proof: According to Theorem 3.9, the mean square error when a 2L-periodic,
piecewise continuous function f(x) is approximated by the first 2n+ 1 terms of its
Fourier series is

∫ 2L

0

[
f(x)− a0

2
−

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)]2

dx

=
∫ 2L

0

[f(x)]2 dx− L

[
a2
0

2
+

n∑

k=1

(a2
k + b2k)

]
.

If we take limits as n → ∞, and invoke Parseval’s Theorem (assuming now that
f(x) is piecewise smooth), we obtain

lim
n→∞

∫ 2L

0

[
f(x)− a0

2
−

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)]2

dx = 0.

This is definition 3.23 for convergence in the mean of the Fourier series of f(x).
It is worth noting that Theorems 3.9, 3.11, and 3.12 involve f(x) in integral

form. When f(x) has discontinuities, it does not matter therefore whether we
use original values of f(x) at these discontinuities or averages of right- and left-
hand limits [f(x+) + f(x−)]/2. In particular, corresponding to Theorem 3.12, we
could say that the Fourier series of a 2L-periodic, piecewise smooth function f(x)
converges in the mean to [f(x+) + f(x−)]/2.
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EXERCISES 3.4

1. Verify that Fourier coefficients for the function f(x) in Example 3.1 satisfy equation 3.30. (You
will need the fact that

∑∞
n=1 1/n2 = π2/6.)

2. Use equation 3.30 and the Fourier coefficients in Example 3.2 to prove that
∑∞

n=1 1/n4 = π4/90.

3. Use equation 3.30 and the Fourier coefficients in Example 3.8 to prove that
∑∞

n=1 1/(2n− 1)4 =
π4/96.

4. Use equation 3.30 and the Fourier coefficients in Example 3.7 to prove that
∑∞

n=1 (−1)n/n2 =
π2/12. (You will need the fact that

∑∞
n=1 1/n2 = π2/6.)

5. In this exercise we verify Schwarz’s inequality 3.29.
(a) Show that inequality 3.29 becomes an equality when terms in the sequences {cn} and {dn}

are proportional, that is, when dn = λcn for all n (λ > 0).
(b) Now suppose that the sequences {cn} and {dn} are not proportional. Consider the finite

series
m∑

n=1

(cnx+ dn)2 = x2
m∑

n=1

cn
2 + 2x

m∑

n=1

cndn +
m∑

n=1

dn
2.

Establish that the quadratic expression on the right has no zeros, and use this to verify
inequality 3.29.

6. (a) Prove that if a 2L-periodic function is continuous with a piecewise continuous first derivative,
its Fourier coefficients satisfy

lim
n→∞

nan = 0 = lim
n→∞

nbn.

(Hint: See Theorem 3.10.)
(b) Does the result in part (a) hold if the function is only piecewise continuous?

7. Show that when f(x) is a piecewise continuous function on 0 ≤ x ≤ L,

a0
2

2
+

∞∑

n=1

an
2 =

2
L

∫ L

0

[f(x)]2 dx,
∞∑

n=1

bn
2 =

2
L

∫ L

0

[f(x)]2 dx

when the an are calculated according to formula 3.16b and the bn according to 3.17b.

8. Suppose that f(x) is continuous on the interval 0 ≤ x ≤ L with piecewise continuous derivatives
f ′(x) and f ′′(x).
(a) Show that the Fourier sine series of the odd, 2L-periodic extension fo(x) of f(x) can be

differentiated term-by-term to give a cosine series that converges to [f ′
o(x+) + f ′

0(x−)]/2 if
f(0) = f(L) = 0. Does the differentiated series converge to f ′(0+) at x = 0 and f ′(L−) at
x = L when f(0) = f(L) = 0?

(b) Show that the Fourier cosine series of the even, 2L-periodic extension fe(x) of f(x) can
always be differentiated term-by-term to give a sine series that converges to [f ′

e(x+) +
f ′

e(x−)]/2. Does the differentiated series converge to f ′(0+) at x = 0 and f ′(L−) at x = L?

9. (a) Suppose a function f(x) is continuous on the interval 0 ≤ x ≤ 2L and has a piecewise
continuous first derivative. Does the Fourier series of the 2L-periodic extension of f(x)
converge uniformly?
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(b) Suppose a function f(x) is continuous on the interval 0 ≤ x ≤ L and has a piecewise
continuous first derivative. Does the Fourier sine series of the odd, 2L-periodic extension of
f(x) converge uniformly?

(c) Is your conclusion in part (b) the same for the Fourier cosine series of the even, 2L-periodic
extension of f(x)?

10. Suppose you are to approximate a piecewise continuous function f(x) of period 2L by a sum of
the form

Sn(x) =
α0

2
+

n∑

k=1

(
αk cos

kπx

L
+ βk sin

kπx

L

)
.

You are to choose coefficients α0, αk, and βk so that the series is the best approximation to
f(x) in the mean square sense; that is, coefficients are to be chosen so that

∫ 2L

0

[
f(x)− α0

2
−

n∑

k=1

(
αk cos

kπx

L
+ βk sin

kπx

L

)]2

dx

is as small as possible. Show that the best choices for the coefficients are the Fourier coefficients
defined by equations 3.12.
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CHAPTER 4 SEPARATION OF VARIABLES

§4.1 Linearity and Superposition

Separation of variables is one of the most fundamental techniques for solving PDEs.
It is a method that can by itself yield solutions to many initial boundary value
problems; in addition, it is the basis for more advanced techniques that must be
used on more complicated problems. Separation of variables is applied to linear
PDEs. A PDE is said to linear if it is linear in the unknown function and all its
derivatives (but not necessarily in the independent variables). For example, the
most general linear second-order PDE for a function u(x, y) of two independent
variables is

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u = F (x, y);

(4.1)

it is a linear combination of u and its partial derivatives, the coefficients being func-
tions of only the independent variables x and y. Linear PDEs may be represented
symbolically in the form

Lu = F, (4.2)

where L is a linear differential operator. In particular, for PDE 4.1, L = a∂2/∂x2 +
b∂2/∂x∂y+c∂2/∂y2+d∂/∂x+e∂/∂y+f . Operator L is said to be linear because it
satisfies the property that for any two functions u(x, y) and v(x, y), with continuous
second partial derivatives, and any constants C1 and C2,

L(C1u+ C2v) = C1(Lu) + C2(Lv). (4.3)

When F (x, y) ≡ 0 in equation 4.1, the PDE is said to be homogeneous;
otherwise, it is said to be nonhomogeneous.

The study of linear ordinary differential equations is based on the idea of su-
perposition — when solutions to a linear, homogeneous ODE are added together,
new solutions are obtained. These same principles are the basis for separation of
variables in PDEs. We set them forth in the following two theorems.

Theorem 4.1 (Superposition Principle 1) If uj (j = 1, . . . , n) are solutions of the same
linear, homogeneous PDE, then so also is any linear combination of the uj ,

u =
n∑

j=1

cjuj , cj = constants.

Furthermore, if each uj satisfies the same linear, homogeneous boundary and/or
initial conditions, then so also does u.

Proof: Suppose the uj satisfy the homogeneous linear PDE Lu = 0. We can use
property 4.3 to write

Lu = L




n∑

j=i

cjuj


 =

n∑

j=1

L(cjuj) =
n∑

j=1

cj [L(uj)] =
n∑

j=1

cj(0) = 0.
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A proof for homogeneous linear boundary conditions is similar when they are rep-
resented in the form Bu = 0.

As an illustration, suppose that y1(x, t) and y2(x, t) are solutions of the one-
dimensional wave equation ytt = (τ/ρ)yxx and the boundary conditions y(0, t) = 0
and y(L, t) = 0. Then y(x, t) = c1y1 +c2y2 must also satisfy the PDE and boundary
conditions for any constants c1 and c2. Let us actually show this, even though
Theorem 4.1 guarantees it. For the PDE,

∂2y

∂t2
=

∂2

∂t2
(c1y1 + c2y2) = c1

∂2y1
∂t2

+ c2
∂2y2
∂t2

= c1
τ

ρ

∂2y1
∂x2

+ c2
τ

ρ

∂2y2
∂x2

=
τ

ρ

∂2

∂x2
(c1y1 + c2y2) =

τ

ρ

∂2y

∂x2
.

For the boundary conditions,

y(0, t) = c1y1(0, t) + c2y2(0, t) = c1(0) + c2(0) = 0,
y(L, t) = c1y1(L, t) + c2y2(L, t) = c1(0) + c2(0) = 0.

Thus, y(x, t) satisfies the same linear, homogeneous PDE and boundary conditions
as y1 and y2.

In short, superposition principle 1 states that linear combinations of solutions
to linear, homogeneous PDEs and linear, homogeneous subsidiary conditions are
solutions of the same PDE and conditions. Superposition principle 2 addresses
nonhomogeneous PDEs. It states that nonhomogeneous terms in a PDE may be
handled individually, if it is desirable to do so.

Theorem 4.2 (Superposition Principle 2) If uj (j = 1, . . . , n) are, respectively, solutions
of linear, nonhomogeneous PDEs Lu = Fj , then u =

∑n
j=1 uj is a solution of

Lu =
∑n

j=1 Fj .

Proof: Verification requires only property 4.3,

Lu = L




n∑

j=1

uj


 =

n∑

j=1

Luj =
n∑

j=1

Fj .

For example, if U1(x, y, t) and U2(x, y, t) satisfy the two-dimensional heat con-
duction equations

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
k

κ
g1(x, y, t),

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
k

κ
g2(x, y, t),

respectively, then U(x, y, t) = U1(x, y, t) + U2(x, y, t) satisfies

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
k

κ
[g1(x, y, t) + g2(x, y, t)].

This principle can also be extended to incorporate nonhomogeneous boundary con-
ditions. To illustrate, consider the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), 0 < x < L, 0 < y < L′,
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V (0, y) = g1(y), 0 < y < L′,

V (L, y) = g2(y), 0 < y < L′,

V (x, 0) = h1(x), 0 < x < L,

V (x,L′) = h2(x), 0 < x < L,

for potential in the rectangle of Figure 4.1. The solution is the sum of the func-
tions V1(x, y), V2(x, y), and V3(x, y) satisfying the PDEs in Figure 4.2 together
with indicated boundary conditions. The problem in Figure 4.2b could be further
subdivided into two problems, each of which contained only one nonhomogeneous
boundary condition (as could the problem in Figure 4.2c). In Section 4.2 we show
that this is not necessary.
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= 2( )

1

1

V h x= ( )

g y( )V=

Figure 4.1
y

x

V1 0=

V1 0=

V1 0=

V1 0=

L

L

y

x

V =

V 0=

V =

V 0=

L

L

2

2

2

2

2( )

1

h x

( )h x

y

x

V 0=

V 0=

V =

L

L

3

3

3

1( )g y V =3 2( )g y

∂2V1

∂x2
+
∂2V1

∂y2
= F (x, y)

∂2V2

∂x2
+
∂2V2

∂y2
= 0

∂2V3

∂x2
+
∂2V3

∂y2
= 0

Figure 4.2a Figure 4.2b Figure 4.2c

EXERCISES 4.1
In Exercises 1–10 determine whether the PDE is linear. Which of the linear equa-
tions are homogeneous and which are nonhomogeneous?

1.
∂2y

∂x2
=
∂2y

∂t2
+
∂y

∂t
+ y 2.

∂2U

∂x2
= 3

∂U

∂t
+ U2 + t2x

3.
∂2y

∂x2

∂2y

∂t2
=
∂y

∂t
+
∂y

∂x
4.

∂2y

∂x2
+
∂2y

∂t2
=
∂y

∂t

∂y

∂x

5.
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= F (x, y, z)V 6. x2 ∂V

∂x
+ x

∂2V

∂y2
= xy

7. 2
∂y

∂t
= xt

∂2y

∂x2
+ et ∂y

∂x
+ t 8.

∂2U

∂t2
+ 2

∂2U

∂x∂t
+
∂2U

∂x2
= U

(
∂U

∂x
+
∂U

∂t

)

9.
∂2U

∂x2
− ∂2U

∂y2
= 0 10.

∂2V

∂x2
+
∂2V

∂y2
+
∂V

∂x
− ∂V

∂y
= 3V

11. Based on superposition principle 2, how would you subdivide the problem consisting of Poisson’s
equation ∇2V = F (x, y, z) inside the box 0 < x < L, 0 < y < L′, 0 < z < L′′, subject to the
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following boundary conditions?

V (0, y, z) = f1(y, z), 0 < y < L′, 0 < z < L′′,

V (L, y, z) = f2(y, z), 0 < y < L′, 0 < z < L′′,

V (x, 0, z) = g1(x, z), 0 < x < L, 0 < z < L′′,

V (x,L′, z) = g2(x, z), 0 < x < L, 0 < z < L′′,

V (x, y, 0) = h1(x, y), 0 < x < L, 0 < y < L′,

V (x, y, L′′) = h2(x, y), 0 < x < L, 0 < y < L′.

12. (a) Show that u1(x, y) = ex+y and u2(x, y) = ex−y are solutions of the PDE
(
∂u

∂x

)2

+
(
∂u

∂y

)2

= 2u2.

(b) Is u1 + u2 a solution. Would you expect it to be?



SECTION 4.2 161

§4.2 Separation of Variables

Before considering specific initial boundary value problems, we illustrate the basic
idea of separation of variables on the PDE

∂2y

∂x2
=
∂y

∂t
. (4.4)

Separation of variables determines functions y(x, t) satisfying equation 4.4 that are
functions X(x) of x multiplied by functions T (t) of t; that is, it determines solutions
of the form

y(x, t) = X(x)T (t). (4.5)

When this representation for y(x, t) is substituted into the PDE,

d2X

dx2
T (t) = X(x)

dT

dt
,

and division by X(x)T (t) gives

1
X(x)

d2X

dx2
=

1
T (t)

dT

dt
. (4.6)

The right side of this equation is a function of t only, and the left side is a function
of x only. In other words, variables x and t have been separated from each other.
Now, the only way this equation can hold for a range of value of x and t is for both
sides to be equal to some constant, say α, which we take as real*; that is, we may
write

1
X

d2X

dx2
= α =

1
T

dT

dt
. (4.7)

We call this the separation principle.** This equation gives rise to two ordinary
differential equations for X(x) and T (t),

d2X

dx2
− αX = 0, and

dT

dt
− αT = 0. (4.8)

Thus, by assuming that a function y(x, t) = X(x)T (t) with variables separated
satisfies equation 4.4, the PDE is replaced by the two ODEs 4.8. Boundary and/or
initial conditions accompanying PDE 4.4 may give rise to subsidiary conditions to
accompany ODEs 4.8. We shall see these in the examples to follow.

There is no reason to expect a prior that the solution to an initial boundary
value problem should separate in form 4.5. In fact, separation of variables, by itself,

* That α must be real for the problems of this chapter is proved in Exercise 46. That
α must always be real is verified in Chapter 5.

** That the separation principle is valid can also be seen by differentiating 4.6 with
respect to x. The result is

d

dx

(
1
X

d2X

dx2

)
= 0,

and this implies that (1/X)d2X/dx2 must be equal to a numerical constant.
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seldom yields the solution to an initial boundary value problem. However, separated
functions can often be combined to yield the solution to an initial boundary value
problem. We illustrate these ideas with the initial boundary value problem for
transverse vibrations of a taut string in the following example.

Example 4.1 Solve the following initial boundary value problem for vibrations of a taut string
with fixed ends at x = 0 and x = L (Figure 4.3). The string has initial displacement
(at time t = 0) of f(x) and zero initial velocity.

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (4.9a)

y(0, t) = 0, t > 0, (4.9b)
y(L, t) = 0, t > 0, (4.9c)
y(x, 0) = f(x), 0 < x < L, (4.9d)
yt(x, 0) = 0, 0 < x < L, (4.9e)

Solve the problem for three initial displacement functions:

(a) 3 sin
πx

L
(b) 3 sin

πx

L
− sin

2πx
L

(c) x(L− x)

y

xL

Figure 4.3

Solution We begin by searching for separated functions that satisfy the (linear)
homogeneous PDE, the (linear) homogenous boundary conditions 4.9b,c, and the
(linear) homogeneous initial condition 4.9e. We do not consider initial condition
4.9d; it is nonhomogeneous. As a general principle, then, separated functions are
sought to satisy only linear and homogeneous PDEs, boundary conditions, and
initial conditions.

When we substitute a separated function y(x, t) = X(x)T (t) into PDE 4.9a,

XT ′′ = c2X ′′T =⇒ X ′′

X
=

T ′′

c2T
,

where the ′′ on X ′′ indicates derivatives with respect to x, whereas on T ′′, it rep-
resents derivatives with respect to t. By the separation principle, we may set each
side of this equation equal to a constant, say α, which is independent of both x and
t. This results in two ODEs for X(x) and T (t),

X ′′ − αX = 0, T ′′ − αc2T = 0. (4.10)

Homogeneous boundary condition 4.9b implies that

X(0)T (t) = 0, t > 0.

Because T (t) ≡ 0/ (why not?), it follows that X(0) = 0. Similarly, homogeneous
boundary condition 4.9c and initial condition 4.9e require X(L) = 0 and T ′(0) = 0.
Thus, X(x) and T (t) must satisfy
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X ′′ − αX = 0, 0 < x < L, (4.11a)
X(0) = 0, (4.11b)
X(L) = 0; (4.11c)

T ′′ − αc2T = 0, t > 0, (4.12a)
T ′(0) = 0. (4.12b)

Notice once again that we do not consider nonhomogeneous condition 4.9d at this
time. For a separated function y(x, t) = X(x)T (t), it would imply that X(x)T (0) =
f(x), but this would give no information about X(x) and T (t) separately. This is
always the situation; nonhomogeneous boundary and/or initial conditions are never
considered in conjunction with separation of the PDE.

Solutions of ODEs 4.11 and 4.12 depend on whether α is positive, negative, or
zero. On purely physical grounds, a positive or zero value can be eliminated, for in
these cases the time dependence of y is given by

T (t) = Aec
√

αt +Be−c
√

αt and T (t) = At+B,

respectively, and these certainly do not yield oscillatory motions. Alternatively, for
positive α, a general solution of ODE 4.11a is

X(x) = Ae
√

αx + Be−
√

αx,

and boundary conditions 4.11b,c imply thatA = B = 0, and this in turn implies that
y(x, t) = 0. Therefore, α cannot be positive. For α = 0, we obtain X(x) = Ax+B,
and the boundary conditions again imply thatA = B = 0. Because α must therefore
be negative, we set α = −λ2 (λ > 0) and replace systems 4.11 and 4.12 with

X ′′ + λ2X = 0, 0 < x < L, (4.13a)
X(0) = 0, (4.13b)
X(L) = 0; (4.13c)

T ′′ + c2λ2T = 0, t > 0, (4.14a)
T ′(0) = 0. (4.14b)

Boundary conditions 4.13b,c on the general solution X(x) = A cosλx+B sinλx of
4.13a yield

0 = A, 0 = B sinλL.

Since we cannot set B = 0 (else X(x) = 0), we must therefore set sinλL = 0, and
this implies that λL = nπ, where n is an integer. Thus,

X(x) = B sin
nπx

L
.

Condition 4.14b on the general solution T (t) = F cos
nπct

L
+G sin

nπct

L
of 4.14a

yields

0 =
nπc

L
G =⇒ G = 0.

We have now determined that the separated function

y(x, t) = X(x)T (t) =
(
B sin

nπx

L

)(
F cos

nπct

L

)
= b sin

nπx

L
cos

nπct

L
(4.15)

for an arbitrary constant b and any integer n is a solution of the one-dimensional
wave equation 4.9a and conditions 4.9b,c,e. The initial displacement condition 4.9d
requires b and n to satisfy
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f(x) = b sin
nπx

L
, 0 < x < L. (4.16)

We now consider the three cases for the initial displacement f(x) following equation
4.9e, namely, 3 sin (πx/L), 3 sin (πx/L)− sin (2πx/L), and x(L− x). When f(x) =
3 sin (πx/L), condition 4.16 becomes

3 sin
πx

L
= b sin

nπx

L
, 0 < x < L.

Obviously, we should choose b = 3 and n = 1, in which case the solution of initial
boundary value problem 4.9 is

y(x, t) = 3 sin
πx

L
cos

πct

L
.

This function is drawn for various value of t in Figure 4.4. The string oscillates back
and forth between its initial position and the negative thereof, doing so once every
2L/c seconds.
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We have shown, then, that when the initial position of the string is 3 sin (πx/L),
separation of variables leads to the solution of problem 4.9.

When f(x) = 3 sin (πx/L) − sin (2πx/L), condition 4.16 is

3 sin
πx

L
− sin

2πx
L

= b sin
nπx

L
, 0 < x < L.

It is not possible to choose values for b and n to satisfy this equation. In other
words, the solution of 4.9 is not separable when f(x) = 3 sin (πx/L) − sin (2πx/L).
Does this mean that we must abandon separation? Fortunately, the answer is no.
Because PDE 4.9a, boundary conditions 4.9b,c, and initial condition 4.9e are all
linear and homogeneous, superposition principle 1 states that linear combinations
of solutions of 4.9a,b,c,e are also solutions. In particular, the function

y(x, t) = b sin
nπx

L
cos

nπct

L
+ d sin

mπx

L
cos

mπct

L

satisfies 4.9a,b,c,e for arbitrary integers n and m and any constants b and d. If we
apply initial condition 4.9d to this function, b, d, n and m must satisfy

3 sin
πx

L
− sin

2πx
L

= b sin
nπx

L
+ d sin

mπx

L
, 0 < x < L.
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Clearly, we should choose b = 3, d = −1, n = 1 and m = 2, in which case the
solution of problem 4.9 is

y(x, t) = 3 sin
πx

L
cos

πct

L
− sin

2πx
L

cos
2πct
L

.

This is not a separated solution; it is the sum of two separated functions. The motion
of the string has two terms, called modes. The first term 3 sin (πx/L) cos (πct/L)
is called the fundamental mode; it is shown in Figure 4.4. The second mode is
− sin (2πx/L) cos (2πct/L); it is illustrated in Figure 4.5 for the same times. Oscil-
lations of this mode occur twice as fast as those for the fundamental mode. The
addition of these two modes gives the position of the string in Figure 4.6.
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Finally, we consider the case in which the initial displacement in the string is
parabolic, f(x) = x(L− x). It is definitely not possible to satisfy condition 4.16,

x(L− x) = b sin
nπx

L
, 0 < x < L,

for any choice of b and n. Furthermore, no finite linear combination of terms of the
form b sin (nπx/L) can satisfy this condition. Does this mean the ultimate demise
of separation of variables? Again the answer is no. We superpose an infinity of
separated functions in the form

y(x, t) =
∞∑

n=1

bn sin
nπx

L
cos

nπct

L
, (4.17)

where the constants bn are arbitrary. No advantage is gained by including terms
with negative values of n, for if we had a term in −n (n positive), say

X−n(x) = b−n sin
(
−nπx
L

)
,

we could combine it with

Xn(x) = bn sin
nπx

L

and write

Xn +X−n = (bn − b−n) sin
nπx

L
= Bn sin

nπx

L
,
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which is of the same form as Xn(x).
Initial condition 4.9d requires the bn in representation 4.17 to satisfy

x(L− x) =
∞∑

n=1

bn sin
nπx

L
, 0 < x < L. (4.18)

This equation is satisfied if the bn are chosen as the coefficients in the Fourier sine
series of the odd extension of x(L − x) to a function of period 2L. According to
formula 3.17b,

bn =
2
L

∫ L

0

x(L− x) sin
nπx

L
dx,

and integration by parts leads to

bn =
4L2[1 + (−1)n+1]

n3π3

(see Exercise 9 in Section 3.2). Substitution of these into representation 4.17 gives
displacements of the string when the initial position is f(x) = x(L− x):

y(x, t) =
∞∑

n=1

4L2[1 + (−1)n+1]
n3π3

sin
nπx

L
cos

nπct

L

=
8L2

π3

∞∑

n=1

1
(2n− 1)3

sin
(2n− 1)πx

L
cos

(2n− 1)πct
L

. (4.19)

Each term in this series is called a mode of vibration of the string. The position of
the string is the sum of an infinite number of modes, lower modes contributing more
significantly than higher ones. We shall have more to say about them in Section
6.2.•

You would be wise in questioning whether the representation of y(x, t) as an
infinite series in equation 4.19 is really a solution of problem 4.9. Certainly it
satisfies boundary conditions 4.9b,c, and, because x(L − x) is continuously differ-
entiable, our theory of Fourier series implies that initial condition 4.9d must also
be satisfied. Conditions 4.9a,e present difficulties, however. First of all, because
representation 4.17 is the superposition of an infinity of separated functions, and
superposition principle 1 discusses only finite combinations, an infinite combination
must be suspect. Second, because representation 4.19 is an infinite series, there is
a question of its convergence. Does it, for instance, converge for 0 < x < L and
t > 0, and do its derivatives satisfy wave equation 4.9a and initial condition 4.9e?
Each of these questions must be answered, and we shall do so, but not at this time.
In this chapter, we wish to illustrate the technique of separation of variables and
some of its adaptations to more difficult problems. Verification that the resulting
series are truly solutions of initial boundary value problems is discussed in Sections
6.6–6.8. To remind us that these series have not yet been verified as solutions of
their respective problems, we call them formal solutions.

As a final consideration in this example, we show that the series solution can
be expressed in closed form, d’Alembert’s solution of Section 2.11. Using a trigono-
metric identity, we may write
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y(x, t) =
∞∑

n=1

4L2[1 + (−1)n+1]
n3π3

1
2

[
sin

nπ(x+ ct)
L

+ sin
nπ(x− ct)

L

]
.

Because the above calculation showed that

f(x) = x(L− x) =
∞∑

n=1

4L2[1 + (−1)n+1]
n3π3

sin
nπx

L
,

it follows that

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)].

This is d’Alembert’s form of the solution. As noted earlier, f(x) is now defined for
all real values of x since it has been extended as an odd, 2L-periodic function.

The one-dimensional wave equation 4.9a is a hyperbolic second-order equation
(see Section 2.8). In the following two examples we show that separation of variables
can be used on parabolic and elliptic equations as well.

Example 4.2 Solve the following initial boundary value problem for temperature in a homoge-
neous isotropic rod with insulated sides and no internal heat generation (Figure
4.7):

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (4.20a)

Ux(0, t) = 0, t > 0, (4.20b)
Ux(L, t) = 0, t > 0, (4.20c)
U(x, 0) = x, 0 < x < L. (4.20d)

The ends of the rod are also insulated (conditions 4.20b,c), and its initial tempera-
ture increases linearly from U = 0 at x = 0 to U = L at x = L.

Solution The assumption of a separated function U(x, t) = X(x)T (t) satisfying
PDE 4.20a leads to

XT ′ = kX ′′T =⇒ X ′′

X
=

T ′

kT
.

The separation principle implies that both sides
of the last equation must be equal to a constant,
say α, in which case xx x L=0 =

Insulation

X ′′ − αX = 0, T ′ − αkT = 0. Figure 4.7

Homogeneous boundary conditions 4.20b,c imply that X ′(x) = 0 = X ′(L), so that
X(x) and T (t) must satisfy

X ′′ − αX = 0, 0 < x < L, (4.21a)
X ′(0) = 0, (4.21b)
X ′(L) = 0; (4.21c)

T ′ − αkT = 0, t > 0. (4.22)

For positive α, a general solution of ODE 4.21a is

X(x) = Ae
√

αx + Be−
√

αx,

and boundary conditions 4.21b,c require
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0 = A− B, 0 = Ae
√

αL −Be−
√

αL.

From these, A = B = 0, and therefore α cannot be positive. For α = 0, we obtain
X(x) = Ax+B, and the boundary conditions imply that A = 0. Thus, when α = 0,
solutions of systems 4.21 and 4.22 are

X(x) = B = constant and T (t) = D = constant.

What we have shown, then, is that U(x, t) = X(x)T (t) = constant satisfies PDE
4.20a and boundary conditions 4.20b,c.

When α is negative, we set α = −λ2 (λ > 0), in which case systems 4.21 and
4.22 are replaced by

X ′′ + λ2X = 0, 0 < x < L, (4.23a)
X ′(0) = 0, (4.23b)
X ′(L) = 0; (4.23c)

T ′ + kλ2T = 0, t > 0. (4.24)

Boundary conditions 4.23b,c on the general solution X(x) = A cosλx+B sinλx of
ODE 4.23a require

0 = B, 0 = λA sin λL.

Since we cannot set A = 0 (else X(x) = 0), we must therefore set sinλL = 0, and
this implies that λL = nπ, n an integer. Thus,

X(x) = A cos
nπx

L
.

A general solution of ODE 4.24 is

T (t) = De−n2π2kt/L2
.

Consequently, besides constant functions, we also have separated functions

X(x)T (t) =
(
A cos

nπx

L

)
(De−n2π2kt/L2

) = ae−n2π2kt/L2
cos

nπx

L
,

which satisfy 4.20a,b,c for integers n > 0 and arbitrary a. Notice that when n = 0,
this function reduces to the constant function corresponding to α = 0. In other
words, all separated functions satisfying 4.20a,b,c can be expressed in the form

ae−n2π2kt/L2
cos

nπx

L
, n ≥ 0.

(It is not necessary to include n < 0, since such separated functions are identical
to those when n > 0.) Initial condition 4.20d would require a separated function to
satisfy

x = a cos
nπx

L
, 0 < x < L,

an impossibility. But because the heat equation and boundary conditions are linear
and homogeneous, we superpose separated functions and take

U(x, t) =
a0

2
+

∞∑

n=1

ane
−n2π2kt/L2

cos
nπx

L

with arbitrary constants an. Initial condition 4.20d requires the an to satisfy
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x =
a0

2
+

∞∑

n=1

an cos
nπx

L
, 0 < x < L.

This equation is satisfied if the an are chosen as the coefficients in the Fourier cosine
series of the even extension of the function f(x) = x to a function of period 2L.
According to formula 3.16b,

an =
2
L

∫ L

0

x cos
nπx

L
dx,

and integration gives

a0 = L, an =
2L[(−1)n − 1]

n2π2
, n > 0.

The formal solution of heat conduction problem 4.20 is therefore

U(x, t) =
L

2
+

∞∑

n=1

2L[(−1)n − 1]
n2π2

e−n2π2kt/L2
cos

nπx

L

=
L

2
− 4L
π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/L2
cos

(2n− 1)πx
L

. (4.25)

An interesting feature of this solution is its limit as time t becomes very large:

lim
t→∞

U(x, t) =
L

2
.

In other words, for large times, the temperature of the rod becomes constant
throughout. But this is exactly what we should expect. Because the rod is to-
tally insulated after t = 0, the original amount of heat in the rod will redistribute
itself until a steady-state situation is achieved, the steady-state temperature being
a constant value equal to the average of the initial temperature distribution. Since
initially the temperature varies linearly from U = 0 at one end to U = L at the
other, its average value is L/2, precisely that predicted by the above limit.•

For a copper rod of length 1 m and diffusivity k = 114× 10−6 m2/s, represen-
tation 4.25 becomes

U(x, t) =
1
2
− 4
π2

∞∑

n=1

1
(2n− 1)2

e−114×10−6(2n−1)2π2t cos (2n− 1)πx,

This function is plotted in Figure 4.8
for various values of t to illustrate the
transition from initial temperature
U(x, 0) = x to final temperature 1/2.
These curves indicate that U(x, t) is
always an increasing function of x,
and therefore heat always flows from
right to left. Notice also that each
curve is horizontal at x = 0 and x = 1.
This reflects boundary conditions 4.20b,c.

y
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Figure 4.8
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Example 4.3 Solve the following boundary value problem for
potential in the rectangular plate of Figure 4.9
when the sides are maintained at the potentials
shown:

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′, (4.26a)

V (0, y) = 0, 0 < y < L′, (4.26b)
V (L, y) = 0, 0 < y < L′, (4.26c)
V (x,L′) = 0, 0 < x < L, (4.26d)
V (x, 0) = 1, 0 < x < L. (4.26e)

y

x

VL

L

=0

1

V=0V=0

V=

Figure 4.9

Solution When we assume that a function with variables separated, V (x, y) =
X(x)Y (y), satisfies PDE 4.26a,

X ′′Y +XY ′′ = 0 =⇒ X ′′

X
= −Y

′′

Y
.

The separation principle requires X ′′/X and −Y ′′/Y both to equal a constant α,
so that

X ′′ − αX = 0, Y ′′ + αY = 0.

Homogeneous boundary conditions 4.26b,c,d imply thatX(0) = X(L) = Y (L′) = 0,
and therefore X(x) and Y (y) must satisfy

X ′′ − αX = 0, 0 < x < L, (4.27a)
X(0) = 0, (4.27b)
X(L) = 0; (4.27c)

Y ′′ + αY = 0, 0 < y < L′, (4.28a)
Y (L′) = 0. (4.28b)

System 4.27 is identical to 4.11; nontrivial solutions exist only when α is negative.
If we set α = −λ2 (λ > 0), then λ = nπ/L, and the solution of 4.27 is

X(x) = B sin
nπx

L

for arbitrary B and n an integer. With α = −λ2 = −n2π2/L2, a general solution
of ODE 4.28a is

Y (y) = D cosh
nπy

L
+E sinh

nπy

L
.

We could also have expressed Y (y) in terms of exponentials enπy/L and e−nπy/L, but
hyperbolic functions turn out to be more convenient for problems on finite intervals.
Exponentials are more suitable on infinite intervals as we shall see in Chapter 11.
Condition 4.28b requires

0 = D cosh
nπL′

L
+ E sinh

nπL′

L
.

We solve this for E in terms of D, in which case

Y (y) = D cosh
nπy

L
−D

cosh (nπL′/L)
sinh (nπL′/L)

sinh
nπy

L

=
D

sinh (nπL′/L)

(
sinh

nπL′

L
cosh

nπy

L
− cosh

nπL′

L
sinh

nπy

L

)
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= F sinh
nπ(L′ − y)

L
, where F =

D

sinh (nπL′/L)
.

We have now determined that separated functions

X(x)Y (y) = b sin
nπx

L
sinh

nπ(L′ − y)
L

(b = BF )

for any constant b and any integer n are solutions of Laplace’s equation 4.26a and
boundary conditions 4.26b,c,d. Since these conditions and PDE are linear and
homogeneous, we superpose separated functions and take

V (x, y) =
∞∑

n=1

bn sin
nπx

L
sinh

nπ(L′ − y)
L

(4.29)

with arbitrary constants bn. Boundary condition 4.26e requires the bn to satisfy

1 =
∞∑

n=1

bn sin
nπx

L
sinh

nπL′

L
=

∞∑

n=1

Cn sin
nπx

L
, 0 < x < L,

where Cn = bn sinh (nπL′/L). But this equation is satisfied if the numbers Cn

are chosen as the coefficients in the Fourier sine series of the odd extension of the
function f(x) = 1 to a function of period 2L. Hence

Cn = bn sinh
nπL′

L
=

2
L

∫ L

0

(1) sin
nπx

L
dx =

2[1 + (−1)n+1]
nπ

.

Formal solution 4.29 of potential problem 4.26 is therefore

V (x, y) =
∞∑

n=1

2[1 + (−1)n+1]

nπ sinh
nπL′

L

sin
nπx

L
sinh

nπ(L′ − y)
L

=
4
π

∞∑

n=1

1

(2n− 1) sinh
(2n− 1)πL′

L

sin
(2n− 1)πx

L
sinh

(2n− 1)π(L′ − y)
L

.•(4.30)

These three examples have illustrated the essentials of the method of separa-
tion of variables and Fourier series for boundary value and initial boundary value
problems. In each, functions with variables separated are found to satisfy the linear,
homogeneous PDE and the linear, homogeneous boundary and/or initial conditions.
These separated functions invariably involve an arbitrary multiplicative constant
and an integer parameter. To satisfy the one nonhomogeneous boundary or initial
condition, these functions are superposed into an infinite series.

Our next example illustrates that separation of variables is not restricted to
second-order PDEs.

Example 4.4 Transverse vibrations of a uniform beam with simply supported ends (Figure 4.10)
are described by the initial boundary value problem

∂2y

∂t2
+ c2

∂4y

∂x4
= 0, 0 < x < L, t > 0, (4.31a)

y(0, t) = yxx(0, t) = 0, t > 0, (4.31b)
y(L, t) = yxx(L, t) = 0, t > 0, (4.31c)

y(x, 0) = x sin
πx

L
, 0 < x < L, (4.31d)

yt(x, 0) = 0, 0 < x < L, (4.31e)
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where c2 = EI/ρ. The force of gravity
on the beam has been assumed negligible
relative to internal forces (see
Section 2.5). Conditions 4.31d,e
indicate an initial displacement
x sin (πx/L) and zero initial velocity.

y

xL

Solve this problem. Figure 4.10

Solution Substitution of a function y(x, t) = X(x)T (t) with variables separated
into PDE 4.31a gives

XT ′′ + c2X ′′′′T = 0 =⇒ X ′′′′

X
=

−T ′′

c2T
.

The separation principle implies that

X ′′′′ − αX = 0 and T ′′ + αc2T = 0

for some constant α. When α < 0 and α = 0, general solutions for T (t) are

T (t) = A cosh c
√
−αt+B sinh c

√
−αt and T (t) = At+B,

respectively. Because the motion of the beam must be oscillatory, and neither of
these functions displays this characteristic, we conclude that α must be positive.
(The same conclusion can be obtained from the ODE X ′′′′ − αX = 0 in conjunc-
tion with boundary conditions 4.31b,c, but not so easily.) When we set α = λ4

(λ > 0) and use separation on homogeneous boundary conditions 4.31b,c and initial
condition 4.31e, X(x) and T (t) must satisfy the systems

X ′′′′ − λ4X = 0, 0 < x < L, (4.32a)
X(0) = X ′′(0) = 0, (4.32b)
X(L) = X ′′(L) = 0; (4.32c)

T ′′ + c2λ4T = 0, t > 0, (4.33a)
T ′(0) = 0. (4.33b)

Boundary conditions 4.32b,c on the general solution

X(x) = A cos λx+ B sinλx+ C coshλx+D sinhλx

of ODE 4.32a yield

0 = A+ C,

0 = A cosλL+ B sinλL+ C coshλL+D sinhλL,
0 = −λ2A+ λ2C,

0 = −λ2A cosλL− λ2B sin λL+ λ2C coshλL+ λ2D sinhλL.

The first and third of these imply that A = C = 0, while the second and fourth
require

B sinλL = 0, D sinhλL = 0.

Since λ > 0, we must set D = 0, in which case B 6= 0. It follows, then, that
λL = nπ, where n is an integer, and

X(x) = B sin
nπx

L
.

Condition 4.33b on the general solution
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T (t) = E cos
n2π2ct

L2
+ F sin

n2π2ct

L2

of ODE 4.33 yields

0 =
n2π2c

L2
F,

from which F = 0. We have now determined that separated functions

X(x)T (t) = b sin
nπx

L
cos

n2π2ct

L2

for an arbitrary constant b and any integer n are solutions of PDE 4.31a, its bound-
ary conditions 4.31b,c, and initial condition 4.31e. Since the PDE and these condi-
tions are linear and homogeneous, we superpose separated functions and take

y(x, t) =
∞∑

n=1

bn sin
nπx

L
cos

n2π2ct

L2

with arbitrary constants bn. Condition 4.31d requires the bn to satisfy

x sin
πx

L
=

∞∑

n=1

bn sin
nπx

L
, 0 < x < L.

The bn are therefore the coefficients in the Fourier sine series of the odd extension
of x sin (πx/L) to a function of period 2L. Hence,

bn =
2
L

∫ L

0

x sin
πx

L
sin

nπx

L
dx,

and integration leads to

b1 =
L

2
, bn =

−4nL[1 + (−1)n]
(n2 − 1)2π2

, n > 1.

Transverse vibrations of the beam are therefore described formally by

y(x, t) =
L

2
sin

πx

L
cos

π2ct

L2
+

∞∑

n=2

−4nL[1 + (−1)n]
(n2 − 1)2π2

sin
nπx

L
cos

n2π2ct

L2

=
L

2
sin

πx

L
cos

π2ct

L2
− 16L

π2

∞∑

n=1

n

(4n2 − 1)2
sin

2nπx
L

cos
4n2π2ct

L2
.• (4.34)

You may have noticed that with the exception of Example 4.2, separation con-
stant α was always negative, in which case, we set α = −λ2. This is not coincidence.
In Chapter 5, we prove that α is indeed always negative except when both boundary
conditions are Neumann, in which case α = 0 is also acceptable. With this in mind,
we suggest setting α = −λ2 immediately in any exercises giving rise to second order
PDEs.

EXERCISES 4.2
Part A Heat Conduction

1. Determine U(x, t) in Example 4.2 if the initial temperature is constant throughout.
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2. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature f(x), 0 ≤ x ≤ L,
at time t = 0. For time t > 0, its ends (at x = 0 and x = L) are held at temperature 0◦C. Find
a formula for the temperature U(x, t) in the rod for 0 < x < L and t > 0.

3. (a) Find the temperature U(x, t) of the rod in Exercise 2 when

f(x) =
{
x, 0 ≤ x ≤ L/2
L− x, L/2 ≤ x ≤ L.

(b) The amount of heat per unit area per unit time flowing from left to right across the cross
section of the rod at position x and time t is the x-component of the heat flux vector (this
being the only component) q(x, t) = −κ∂U/∂x (see Section 2.2). Find the heat flow rate for
cross sections at positions x = 0, x = L/2, and x = L by calculating

lim
x→0+

q(x, t), q

(
L

2
, t

)
, lim

x→L−
q(x, t).

(c) Calculate limits of the heat flows in part (b) as t→ 0+ and t→ ∞.

4. Repeat Exercise 3 if f(x) = 10, 0 ≤ x ≤ L. In addition,
(d) Calculate

lim
x→0+

U(x, 0) and lim
t→0+

U(0, t).

(e) Draw what you feel U(x, t) would look like as a function of x for various fixed values of t.

5. (a) Find the rate of flow of heat across the cross section at position x = L/2 for the rod in
Example 4.2.

(b) What is the limit of your answer in part (a) as t→ 0+?

6. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature f(x), 0 ≤ x ≤ L,
at time t = 0. For time t > 0, its ends (at x = 0 and x = L) are insulated. Find a formula for
the temperature U(x, t) in the rod for 0 < x < L and t > 0. What is the limit of U(x, t) as
t→ ∞?

7. A cylindrical, homogeneous, isotropic rod with insulated sides has temperatureL−x, 0 ≤ x ≤ L,
at time t = 0. For time t > 0, its right end, x = L, is held at temperature zero and its left end,
x = 0, is insulated. Use the result of Exercise 21 in Section 3.2 to find the temperature U(x, t)
in the rod for 0 < x < L and t > 0.

8. Repeat Exercise 7 with an unspecified initial temperature f(x).

9. A cylindrical, homogeneous, isotropic rod with insulated sides has temperatureL−x, 0 ≤ x ≤ L,
at time t = 0. For time t > 0, its left end, x = 0, is held at temperature zero and its right end,
x = L, is insulated. Use the result of Exercise 20 in Section 3.2 to find the temperature U(x, t)
in the rod for 0 < x < L and t > 0.

10. Repeat Exercise 9 with an unspecified initial temperature f(x).

11. (a) A fuel rod of length L in neutron diffusion theory produces neutrons by fission. When
the diffusion constant is k, and the ends of the rod are perfectly reflecting, the distribution
U(x, t) of neutrons in the rod must satisfy the initial boundary value problem

∂U

∂t
= k

∂2U

∂x2
+ κU, 0 < x < L, t > 0,

Ux(0, t) = Ux(L, t) = 0, t > 0,
U(x, 0) = f(x), 0 < x < L,
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where κ > 0 is a constant, and f(x) is the initial distribution of neutrons in the rod. Find
U(x, t) for 0 < x < L and t > 0, assuming that κ 6= n2π2k/L2 for any positive integer n.

(b) Simplify the solution when f(x) = a constant.
(c) Simplify the solution when f(x) = x.

12. In Chapter 9 we deal with problems in polar, cylindrical, and spherical coordinates. Heat
conduction problems in a sphere where temperature depends only on time and the radial coor-
dinate r can be transformed into problems of the type that we have already considered when
the temperature is specified on the bounding sphere. The initial boundary value problem for
temperature in a sphere of radius a which has initial temperature f(r) at time t = 0 and whose
boundary is held at temperature 0◦C for t > 0 is

∂U

∂t
= k

(
∂2U

∂r2
+

2
r

∂U

∂r

)
, 0 < r < a, t > 0,

U(a, t) = 0, t > 0,
U(r, 0) = f(r), 0 < r < a.

(a) Show that with a change of dependent variable V (r, t) = r U(r, t), the function V (r, t) must
satisfy the initial boundary value problem

∂V

∂t
= k

∂2V

∂r2
, 0 < r < a, t > 0,

V (0, t) = 0, t > 0,
V (a, t) = 0, t > 0,
V (r, 0) = rf(r), 0 < r < a.

Note: You will need to use the fact that because U(r, t) is to be continuous at r = 0, the
function V (r, t) must satisfy the condition V (0, t) = 0 for t > 0.

(b) Solve the problem in part (a) and hence find U(r, t).

13. What happens if the transformation of Exercise 12 is applied to the problem when the surface
of the sphere is insulated?

14. Two identical rods with the same thermal properties both have length L/2. One has constant
temperature U0 throughout, and the other has constant temperature U1. At time t = 0 they
are placed end-to-end along the positive x-axis, the one with temperature U0 having its left end
at x = 0. Their sides are insulated and heat flows freely through the contact face at x = L/2.
If the ends at x = 0 and x = L are held at temperature zero for t > 0, find the temperature in
the combined rod for t > 0.

15. Show that when the temperature f(x) of the rod in Exercise 2 is symmetric about x = L/2
(i.e., f(L/2 − x) = f(L/2 + x)), then no heat crosses the cross section at x = L/2. Is U(x, t)
symmetric about x = L/2 for all t?

16. A cylindrical, homogeneous, isotropic rod with insulated sides and length L is initially at tem-
perature f(x). For t > 0, its ends x = 0 and x = L are held at temperature zero. Suppose
that heat generation at each point of the rod is proportional to the temperature at the point;
that is, suppose that g(x, t) in the heat conduction equation 2.26 is relaced by aU , where a is
a constant. Find the temperature in the rod as a function of x and t. For what values of a
will the temperature of the rod remain finite for large t? Assume that a 6= n2π2κ/L2 for any
positive integer n.
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17. Repeat Exercise 16 if both boundary conditions are homogeneous, Neumann.

Part B Vibrations

18. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial
displacement

f(x) =
{
x/5, 0 ≤ x ≤ L/2
(L− x)/5, L/2 ≤ x ≤ L

at time t = 0, but no initial velocity.
(a) Find a series representation for displacement of the string for t > 0 and 0 < x < L.
(b) What is d’Alembert’s solution for displacement of the string?

19. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial velocity
g(x) = x(L− x), 0 ≤ x ≤ L at time t = 0, but no initial displacement.
(a) Find a series representation for displacement of the string for t > 0 and 0 < x < L.
(b) What is d’Alembert’s solution for displacement of the string?

20. Suppose the string in Exercises 18 and 19 is given both the initial displacement f(x) and the
initial velocity g(x) at time t = 0. Find its displacement for t > 0 and 0 < x < L in two ways:
(a) using superposition principle 2;
(b) using separation of variables.

21. (a) Find a series representation for displacement of the string in Exercise 20 if an external force
(per unit x-length) F = −ky (k > 0) acts at each point in the string.

(b) Is there a d’Alembert solution?

22. Solve Exercise 21 if the external force F = −ky is replaced by F = −β∂y/∂t. Assume that
β < 2ρπc/L.

23. A taut string is given initial displacement f(x), 0 ≤ x ≤ L at time t = 0 and initial velocity
g(x), 0 ≤ x ≤ L. The ends x = 0 and x = L of the string are free to slide vertically without
friction.
(a) Find a series repesentation for displacement of the string for t > 0 and 0 < x < L.
(b) What is d’Alembert’s solution for displacement of the string?

24. A taut string has its right end x = L fixed on the x-axis. Its left end x = 0 is looped around
a vertical support and slides without friction along the support. If its initial displacement at
time t = 0 is f(x) and it has no initial velocity, find displacements for 0 ≤ x ≤ L and t > 0.
Hint: See Exercise 21 in Section 3.2. Is there a d’Alembert solution for displacements?

25. In Chapter 9 we deal with problems in polar, cylindrical, and spherical coordinates. Vibration
problems in a sphere where displacement depends only on time and the radial coordinate r can be
transformed into problems of the type that we have already considered when the displacement
and velocity are specified on the bounding sphere. The initial boundary value problem for
displacement in a sphere of radius a which has initial displacement f(r) and initial velocity g(r)
at time t = 0 and whose bounding sphere is held fixed for t > 0 is

∂2W

∂t2
= c2

(
∂2W

∂r2
+

2
r

∂W

∂r

)
, 0 < r < a, t > 0,

W (a, t) = 0, t > 0,
W (r, 0) = f(r), 0 < r < a,

Wt(r, 0) = g(r), 0 < r < a.
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(a) Show that with a change of dependent variable V (r, t) = rW (r, t), the functionW (r, t) must
satisfy the initial boundary value problem

∂V

∂t
= c2

∂2V

∂r2
, 0 < r < a, t > 0,

V (0, t) = 0, t > 0,
V (a, t) = 0, t > 0,
V (r, 0) = rf(r), 0 < r < a,

Vt(r, 0) = rg(r).

Note: You will need to use the fact that because W (r, t) is to be continuous at r = 0, the
function V (r, t) must satisfy the condition V (0, t) = 0 for t > 0.

(b) Solve the problem in part (a) and hence find W (r, t).

26. What happens if the transformation of Exercise 25 is applied to the problem when the surface
of the sphere satisfies a homogeneous Neumann condition?

27. A circular bar of natural length L is clamped at both ends and stretched until its length is
L∗. At time t = 0 the left end of the bar is at position x = 0, and both clamps are removed.
Subsequent horizontal vibrations occur along a frictionless surface.
(a) Find a series representation for displacements of cross sections of the bar.
(b) What is the d’Alembert solution for displacements of cross sections?
(c) Use the result in part (b) to find the velocity of the left end of the bar. Does it move

smoothly?

28. A circular bar of natural length L is clamped at both ends and stretched until its length is L∗.
At time t = 0 the left end of the bar is at position x = 0, and the clamp on the right end is
removed. Subsequent horizontal vibrations occur along a frictionless surface.
(a) Find a series representation for displacements of cross sections of the bar. Hint: See Exercise

20 in Section 3.2.
(b) Is there a d’Alembert solution for displacements of cross sections?
(c) Use the result in part (b) to find the velocity of the right end of the bar. Does it move

smoothly?

29. Solve the telegraphy equation of Exercise 27 in Section 2.3 for potential in a cable of length M
when potential is zero at the ends of the cable, the initial potential in the cable is f(x), and
Vt(x, 0) = 0.

Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

30. A region A (in the xy-plane) is bounded by the lines x = 0, y = 0, x = L, and y = L′. If the
edges y = 0, y = L′, and x = L are held at potential zero, and x = 0 is at potential equal to
100, find the potential in A.

31. Solve exercise 30 if edges x = 0 and y = 0 are at potential 100, while x = L and y = L′ are at
zero potential. (Hint: See the extension of superposition principle 2 in Figure 4.2.)

32. Solve Exercise 30 if edges x = 0 and x = L are at potential 100, while y = 0 and y = L′ are at
zero potential.

33. Solve Exercise 30 if the condition V (0, y) = 100 along x = 0 is replaced by ∂V (0, y)/∂x = 100,
0 < y < L′.
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34. Solve Exercise 30 if the boundary conditions are

−∂V (0, y)
∂x

= −100, 0 < y < L′,

∂V (L, y)
∂x

= 100, 0 < y < L′,

∂V (x, 0)
∂y

=
∂V (x,L′)

∂y
= 0, 0 < x < L.

Is the solution unique? What is the solution if V (L/2, L′/2) = 0?

35. Can Exercise 34 be solved if the condition along x = L is ∂V (L, y)/∂x = −100, 0 < y < L′?
Explain.

36. A thin rectangular plate occupies the region described by 0 ≤ x ≤ L, 0 ≤ y ≤ L′. Its top
and bottom surfaces are insulated. If edges x = 0 and x = L are held at temperature 0◦C,
while y = 0 and y = L′ have temperatures x(L − x) and −x(L − x), respectively, what is the
steady-state temperature of the plate?

37. Solve Exercise 36 if edges x = 0, x = L, and y = L′ are held at temperature 0◦C while heat is
added along the edge y = 0 at a constant rate q W/m2.

38. Solve Exercise 37 if heat is added to both edges y = 0 and y = L′ at rate q W/m2 while edges
x = 0 and x = L are held at temperature 10◦C.

39. A membrane is stretched tightly over the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′. Its edges are given
deflections described by the following boundary conditions:

z(0, y) = kL(y − L′)/L′, 0 < y < L′,

z(L, y) = 0, 0 < y < L′,

z(x, 0) = k(x− L), 0 < x < L,

z(x,L′) = 0, 0 < x < L,

(k > 0 a constant). Find static deflections of the membrane when all external forces are
negligible compared with tensions in the membrane.

40. Find a formula for the solution of Laplace’s equation inside the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′

of Figure 4.1 when (a) g1(y) = g2(y) = h2(x) = 0 (b) g1(y) = g2(y) = h1(x) = 0 (c) g1(y) =
g2(y) = 0
(d) h1(x) = h2(x) = 0.

41. Solve Exercise 36 if edges x = 0 and y = L′ are insulated, x = L is held at temperature 0◦C,
and y = 0 has temperature (L− x)2, 0 ≤ x ≤ L. (Hint: Use Exercise 21 in Section 3.2.)

42. Explain why Superposition Principle 2 cannot, in general, be used to solve the Neumann problem
associated with Laplace’s equation in a rectangle

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′,

−∂V (0, y)
∂x

= f1(y), 0 < y < L′,

∂V (L, y)
∂x

= f2(y), 0 < y < L′,
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−∂V (x, 0)
∂y

= f3(x), 0 < x < L,

∂V (x,L′)
∂y

= f4(x), 0 < x < L.

43. Find potential in the semi-infinite strip 0 < x < L, y > 0 if potential is zero along the vertical
sides and x(L− x) along the horizontal side.

Part D General Results

44. Prove that a second-order, linear, homogeneous PDE in two independent variables with constant
coefficients is always separable. (A more general result is proved in the next exercise.)

∗45. (a) Show that the homogeneous PDE

a(x, y)
∂2u

∂x2
+ b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂x
+ e(x, y)

∂u

∂y
+ f(x, y)u = 0

is separable if a(x, y) = a(x), b(x, y) = constant, c(x, y) = c(y), d(x, y) = d(x), e(x, y) =
e(y), and f(x, y) = f1(x) + f2(y).

(b) Are the conditions in part (a) necessary for separation?

46. Verify that we cannot have a complex separation constant α for problems 4.11 and 4.21.
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§4.3 Nonhomogeneities and Variation of Constants

In Section 4.2 we stressed the fact that separation of variables is carried out on
linear, homogeneous PDEs and linear, homogeneous boundary and/or initial condi-
tions. Separated functions are then superposed in order to satisfy nonhomogeneous
conditions. When nonhomogeneities are present in the PDE, or in the boundary
conditions of time-dependent problems, separation by itself fails. To illustrate, we
reconsider vibration problem 4.9 for displacement of a taut string with fixed end
points, but take gravity into account:

∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0, (g = 9.81), (4.35a)

y(0, t) = 0, t > 0, (4.35b)
y(L, t) = 0, t > 0, (4.35c)
y(x, 0) = f(x), 0 < x < L, (4.35d)
yt(x, 0) = 0, 0 < x < L. (4.35e)

Only the partial differential equation is affected; it becomes nonhomogeneous. The
boundary conditions remain homogeneous. Substitution of a separated function
y(x, t) = X(x)T (t) into PDE 4.35a gives

XT ′′ = c2X ′′T − g.

Our usual procedure of dividing by X(x)T (t) does not lead to a separated equation;
in fact, this equation cannot be separated. Likewise, were boundary condition 4.35b
not homogeneous, say y(0, t) = f(t), in which case the left end of the string would
be forced to undergo specific motion, substitution of y(x, t) = X(x)T (t) would not
lead to information about X(x) and T (t) separately.

In this section we illustrate two methods for handling nonhomogeneities. The
first method uses steady-state solutions for heat conduction problems and static
deflections for vibration problems. It applies, however, only to time-independent
nonhomogeneities. The second method is called variation of constants; it applies to
time-dependent as well as time-independent nonhomogeneities.

Time-Independent Nonhomogeneities

Partial differential equation 4.35a has a time-independent nonhomogeneity (it is
also independent of x, but that is immaterial). To solve this problem, we define a
new dependent variable z(x, t) according to

y(x, t) = z(x, t) + ψ(x), (4.36)

where ψ(x) is the solution of the corresponding static-deflection problem

0 = c2
d2ψ

dx2
− g, 0 < x < L, (4.37a)

ψ(0) = 0, ψ(L) = 0. (4.37b)

Differential equation 4.37a implies that

ψ(x) =
gx2

2c2
+Ax+B,
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and boundary conditions 4.37b require

0 = B, 0 =
gL2

2c2
+AL+B.

From these we obtain the position of the string were it to hang motionless under
gravity:

ψ(x) =
gx

2c2
(x− L). (4.38)

We expect that the string will vibrate about this position and that z(x, t) repre-
sents displacements from this position. A PDE satisfied by z(x, t) can be found by
substituting representation 4.36 into PDE 4.35a:

∂2

∂t2
[z(x, t) + ψ(x)] = c2

∂2

∂x2
[z(x, t) + ψ(x)] − g.

This equation simplifies to the following homogeneous PDE when we note that ψ(x)
is only a function of x that satisfies ODE 4.37a:

∂2z

∂t2
= c2

∂2z

∂x2
, 0 < x < L, t > 0. (4.39a)

Boundary conditions for z(x, t) are obtained by setting x = 0 and x = L in repre-
sentation 4.36 and using boundary conditions 4.35b,c for y(x, t):

z(0, t) = y(0, t)− ψ(0) = 0, t > 0, (4.39b)
z(L, t) = y(L, t) − ψ(L) = 0, t > 0. (4.39c)

Finally, by setting t = 0 in 4.36 and its partial derivative with respect to t, and
using initial conditions 4.35d,e for y(x, t), we obtain initial conditions for z(x, t):

z(x, 0) = y(x, 0) − ψ(x) = f(x) +
gx

2c2
(L− x), 0 < x < L, (4.39d)

zt(x, 0) = yt(x, 0) = 0, 0 < x < L. (4.39e)

We have therefore replaced problem 4.35, which has a nonhomogeneous PDE, with
problem 4.39, which has a homogeneous PDE. We have complicated one of the initial
conditions, but this is a small price to pay. If a function with variables separated
is to satisfy PDE 4.39a, boundary conditions 4.39b,c, and initial condition 4.39e, it
must be of the form

b sin
nπx

L
cos

nπct

L
,

for arbitrary b and n an integer (see problem 4.9). Because PDE 4.39a and condi-
tions 4.39b,c,e are linear and homogeneous, we superpose these functions and take

z(x, t) =
∞∑

n=1

bn sin
nπx

L
cos

nπct

L
. (4.40)

Initial condition 4.39d requires the constants bn to satisfy

f(x) +
gx

2c2
(L− x) =

∞∑

n=1

bn sin
nπx

L
, 0 < x < L.
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Consequently, the bn are coefficients in the Fourier sine series of the odd extension
of f(x) + gx(L− x)/(2c2) to a function of period 2L; that is,

bn =
2
L

∫ L

0

[
f(x) +

gx

2c2
(L− x)

]
sin

nπx

L
dx. (4.41)

The formal solution of vibration problem 4.35 is therefore

y(x, t) =
gx

2c2
(x− L) +

∞∑

n=1

bn sin
nπx

L
cos

nπct

L
, (4.42)

where the bn are given by the integral in equation 4.41.
This technique of spliting off static deflections can be applied to any nonhomo-

geneity that is only a function of position, be it in the PDE or in a boundary condi-
tion. We illustrate nonhomogeneities in boundary conditions in the next example.
Before doing so, however, we express solution 4.42 of problem 4.35 in d’Alembert’s
form, by first writing

y(x, t) =
gx

2c2
(x− L) +

∞∑

n=1

bn
2

[sin
nπ(x+ ct)

L
+ sin

nπ(x− ct)
L

].

Since

f(x)− ψ(x) = f(x) − gx

2c2
(x− L) =

∞∑

n=1

bn sin
nπx

L
,

it follows that

y(x, t) = ψ(x) +
1
2
[f(x+ ct) − ψ(x+ ct) + f(x− ct)− ψ(x− ct)]

=
1
2

[f(x+ ct) + f(x− ct)] +
1
2

[2ψ(x) − ψ(x+ xt) − ψ(x− ct)] .

This function is defined for all 0 < x < L and t > 0 since f(x) and ψ(x) are both
extended as odd, 2L-periodic functions.

Example 4.5 Solve the initial boundary value problem for temperature in a homogeneous, isotro-
pic rod with insulated sides when the ends of the rod are held at constant temper-
atures

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (4.43a)

U(0, t) = U0, t > 0, (4.43b)
U(L, t) = UL, t > 0, (4.43c)
U(x, 0) = f(x), 0 < x < L. (4.43d)

Solution We define a new dependent variable V (x, t) by

U(x, t) = V (x, t) + ψ(x), (4.44)

where ψ(x) is the solution of the associated steady-state problem
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0 = k
d2ψ

dx2
, 0 < x < L, (4.45a)

ψ(0) = U0, (4.45b)
ψ(L) = UL. (4.45c)

Differential equation 4.45a implies that ψ(x) = Ax + B, and boundary conditions
4.45b,c require

U0 = B, UL = AL+B.

From these, we obtain the steady-state solution

ψ(x) = U0 +
(UL − U0)x

L
(4.46)

(the temperature in the rod after a very long time). With this choice for ψ(x), the
PDE for V (x, t) can be found by substituting representation 4.44 into 4.43a:

∂

∂t
[V (x, t) + ψ(x)] = k

∂2

∂x2
[V (x, t) + ψ(x)].

Because ψ(x) is only a function of x that has a vanishing second derivative, this
equation simplifies to

∂V

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0. (4.47a)

Boundary conditions for V (x, t) are obtained from representation 4.44 and boundary
conditions 4.43b,c for U(x, t):

V (0, t) = U(0, t) − ψ(0) = U0 − U0 = 0, t > 0, (4.47b)
V (L, t) = U(L, t) − ψ(L) = UL − UL = 0, t > 0. (4.47c)

Finally, V (x, t) must satisfy the initial condition

V (x, 0) = U(x, 0) − ψ(x) = f(x)− U0 −
(UL − U0)x

L
, 0 < x < L. (4.47d)

Separation of variables V (x, t) = X(x)T (t) on 4.47a,b,c leads to the ordinary dif-
ferential equations

X ′′ + λ2X = 0, 0 < x < L, (4.48a)
X(0) = X(L) = 0; (4.48b)

T ′′ + kλ2T = 0, t > 0. (4.49)

These give separated functions

be−n2π2kt/L2
sin

nπx

L

for arbitrary b and n an integer. To satisfy the initial condition, we superpose
separated functions and take

V (x, t) =
∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
. (4.50)

Initial condition 4.47d requires the constants bn to satisfy
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f(x)− U0 −
(UL − U0)x

L
=

∞∑

n=1

bn sin
nπx

L
, 0 < x < L.

Consequently, the bn are the coefficients in the Fourier sine series of the odd exten-
sion of f(x)− U0 − (UL − U0)x/L to a function of period 2L:

bn =
2
L

∫ L

0

[
f(x)− U0 −

(UL − U0)x
L

]
sin

nπx

L
dx. (4.51)

The formal solution of problem 4.43 is therefore

U(x, t) = V (x, t) + U0 +
(UL − U0)x

L
, (4.52)

where V (x, t) is given by the series in 4.50 and bn by the integral in 4.51. Function
V (x, t) represents the transient part of the temperature function, which, because of
the exponential factor e−n2π2kt/L2

, decreases with time. Temperature approaches
the steady-state solution.•

It is interesting and informative to analyze solution 4.52 further for two specific
initial temperature distributions f(x). First, suppose that the initial temperature
of the rod is 0◦C throughout; that is, f(x) ≡ 0. In this case, equations 4.50–4.52
yield, for the temperature in the rod,

U(x, t) = U0 +
(UL − U0)x

L
+

∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
,

where

bn =
2
L

∫ L

0

[
−U0 − (UL − U0)

x

L

]
sin

nπx

L
dx =

−2
nπ

[U0 + (−1)n+1UL].

This function is plotted for various fixed values of t in Figure 4.11 (using a diffusivity
of k = 12.4 × 10−6 m2/s). What is important to notice is the smooth transition
from initial temperature 0◦C to final steady-state temperature at every point in the
rod except for its ends x = 0 and x = L. Here the transition is instantaneous, as
is dictated by problem 4.43 when f(x) is chosen to vanish identically. Physically,
this is an impossibility, but the mathematics required to describe a very quick but
smooth change in temperature from 0◦C at x = 0 and x = L to U0 and UL would
complicate the problem enormously. In practice, then, we are willing to live with
the anomaly of the solution at time t = 0 for x = 0 and x = L in order to avoid
these added complications. This anomaly is manifested in heat transfer across the
ends of the rod at time t = 0. According to equation 2.19 in Section 2.2, the amount
of heat flowing left to right through any cross section of the rod is

q(x, t) = −κ∂U
∂x

= −κ

(
UL − U0

L
+
π

L

∞∑

n=1

nbne
−n2π2kt/L2

cos
nπx

L

)

=
κ

L

{
U0 − UL + 2

∞∑

n=1

[U0 + (−1)n+1UL]e−n2π2kt/L2
cos

nπx

L

}
.

The series in this expression diverges (to infinity) when x = 0 at t = 0. In other
words, the instantaneous temperature change at time t = 0 from 0◦C to U0

◦C is
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predicated on an infinite heat flux at that time. A similar situation occurs at the
end x = L.

y

xL

UL

U

U x( ,60 000)

0

U x( ,6000)

U x( ,600) U x( ,60)

U x( ,0)

L
2

y

L

UL

U0

U x( ,60 000)

U x( ,6000)

U x( ,0)

L
2

x

Figure 4.11 Figure 4.12

The second initial temperature function we consider is f(x) = U0(1−x2/L2)+
ULx/L, a distribution that does not give rise to abrupt temperature changes at
time t = 0 since f(0) = U0 and f(L) = UL. In this case, coefficients bn in 4.51 are
bn = 4U0[1 + (−1)n+1]/(n3π3), and

U(x, t) = U0 +
(UL − U0)x

L
+

8U0

π3

∞∑

n=1

1
(2n− 1)3

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

.

As shown in Figure 4.12, the transition from initial to steady-state temperature is
smooth for all 0 ≤ x ≤ L. Supporting this is the heat flux vector

q(x, t) =
κ

L

[
U0 − UL − 8U0

π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/L2
cos

(2n− 1)πx
L

]
.

The series herein converges uniformly for 0 ≤ x ≤ L and t ≥ 0. If we take limits as
x→ 0+ and t→ 0+, we find the initial heat flux across the end x = 0,

q(0+, 0+) =
κ

L

[
U0 − UL − 8U0

π2

∞∑

n=1

1
(2n− 1)2

]

=
κ

L

[
U0 − UL − 8U0

π2

(
π2

8

)]
= −κUL

L

(since
∑∞

n=1 1/(2n− 1)2 = π2/8). Perhaps unexpectedly, we find that the direction
of heat flow across x = 0 at time t = 0 is completely dictated by the sign of UL.
When UL < 0, heat flows into the rod, and when UL > 0, heat flows out. This is
most easily seen by calculating the derivative of the initial temperature distribution
in the rod at x = 0, f ′(0) = UL/L. If UL < 0, points in the rod near x = 0 have
temperature less than those in the end x = 0, and heat flows into the rod; if UL > 0,
points near x = 0 are at a higher temperature than those at x = 0, and heat flows
out of the rod.
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Time-Dependent Nonhomogeneities

When the nonhomogeneity in a PDE is time dependent, it is necessary to adopt
a different approach. The technique used is called variation of constants. Because
variation of constants resembles the method of variation of parameters for ODEs,
we digress for a quick review of variation of parameters. Consider the ODE

y′′ + y = f(x), (4.53a)

where f(x) is as yet an unspecified function. The general solution of the associated
homogeneous equation y′′ + y = 0 is y(x) = A cosx + B sin x, to which must be
added a particular solution of 4.53a. When f(x) is a polynomial, a sine, a cosine,
an exponential, or a combination of these, various techniques (such as undetermined
coefficients, or operators) yield this particular solution. Variation of parameters also
gives a particular solution in these cases, but it realizes its true potential when f(x)
is not one of these, or when a general solution is required for arbitrary f(x). The
method assumes that a general (or particular) solution of 4.53a can be found in the
form A cos x + B sin x, but where A and B are functions of x; that is, it assumes
that a general solution of the nonhomogeneous equation is y(x) = A(x) cosx +
B(x) sinx. To obtain A(x) and B(x), this function is substituted into the differential
equation. Because this imposes only one condition on two functions A(x) and B(x),
the opportunity is taken to impose a second condition, and this condition is always
taken as A′(x) cosx + B′(x) sinx = 0. The result is the following system of linear
equations in A′(x) and B′(x):

A′(x) cosx+B′(x) sinx = 0, (4.54a)
−A′(x) sinx+B′(x) cosx = f(x). (4.54b)

These can be solved for

A′(x) = −f(x) sinx, B′(x) = f(x) cosx,

from which

A(x) = −
∫
f(x) sinx dx+ C1, B(x) =

∫
f(x) cosx dx+ C2,

where C1 and C2 are constants of integration. The general solution of ODE 4.53a
is therefore

y(x) =
[
C1 −

∫
f(x) sinx dx

]
cosx+

[
C2 +

∫
f(x) cosx dx

]
sin x. (4.55)

(If C1 and C2 are omitted, this is a particular solution of the differential equation.)
A simplified form results if we express the antiderivatives as definite integrals:

y(x) = C1 cosx+ C2 sinx− cosx
∫ x

0

f(t) sin t dt+ sinx
∫ x

0

f(t) cos t dt

= C1 cosx+ C2 sinx+
∫ x

0

f(t) sin (x− t) dt. (4.56)

In this form, any initial conditions

y(0) = y0, y′(0) = y′0, (4.53b)
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that might accompany ODE 4.53a are easily incorporated. They require that

y0 = C1, y′0 = C2,

and therefore the final solution of differential equation 4.53a subject to initial con-
ditions 4.53b is

y(x) = y0 cosx+ y′0 sin x+
∫ x

0

f(t) sin (x− t) dt. (4.57)

We now develop the analogous method for solving initial boundary value prob-
lems that have time-dependent nonhomogeneities in their PDEs. The one-dimen-
sional vibration problem for displacement of a taut string with a time-dependent
forcing function F (x, t) = e−t is a convenient vehicle:

∂2y

∂t2
= c2

∂2y

∂x2
+
e−t

ρ
, 0 < x < L, t > 0, (4.58a)

y(0, t) = 0, t > 0, (4.58b)
y(L, t) = 0, t > 0, (4.58c)
y(x, 0) = f(x), 0 < x < L, (4.58d)
yt(x, 0) = 0, 0 < x < L. (4.58e)

We have taken a forcing function that does not depend on x to simplify calculations,
but the technique works when the forcing function is a function of x as well as t.
If the forcing term were absent, the PDE would be homogeneous, and according to
our solution to problem 4.9, separation of variables on 4.58a,b,c,e would lead to a
superposed solution of the form

y(x, t) =
∞∑

n=1

Cn sin
nπx

L
cos

nπct

L
,

where the Cn are arbitrary constants (see equation 4.17). To incorporate a nonzero
forcing term, we use a method called variation of constants. This method is
much like variation of parameters for ODEs; we attempt to find a solution in this
form, but where Cn = Cn(t) are functions of t,

y(x, t) =
∞∑

n=1

Cn(t) sin
nπx

L
cos

nπct

L
. (4.59)

Because the Cn(t) are unknown functions at this point, it is more convenient, and
no less general, to group Cn(t) and cos (nπct/L) together as the unknown function,
say dn(t) = Cn(t) cos (nπct/L). In other words, we replace the above solution with

y(x, t) =
∞∑

n=1

dn(t) sin
nπx

L
. (4.60)

For any choice of dn(t) whatsoever, representation 4.60 satisfies boundary con-
ditions 4.58b,c. To satisfy initial condition 4.58e, we must have

∞∑

n=1

d′n(0) sin
nπx

L
= 0, 0 < x < L.
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This requires the unknown functions dn(t) to have vanishing first derivatives at
t = 0, d′n(0) = 0.

To determine whether a function of form 4.60 can satisfy PDE 4.58a, we sub-
stitute 4.60 into 4.58a and formally differentiate term-by-term:

∞∑

n=1

d′′n(t) sin
nπx

L
= c2

∞∑

n=1

−n
2π2

L2
dn(t) sin

nπx

L
+
e−t

ρ
. (4.61)

In its present form, this equation is intractable, but the fact that two of the terms
are series in sin (nπx/L) suggests that the function e−t/ρ be expressed in this way
also; that is, we should write

e−t

ρ
=

∞∑

n=1

Fn sin
nπx

L
. (4.62a)

We have seen equations of this form before; they are Fourier sine series representa-
tions for the function on the left. However, should not the function on the left be a
function of x, not t? Indeed it should, but e−t/ρ is trivially a function of x, and in
addition it is a function of t. In other words, it is not that e−t/ρ is a function of the
wrong variable; it is a function of both x and t, and we wish to express this function
of x and t as a Fourier sine series in x for any given t. Clearly, this can happen only
if coefficients are functions of t; that is, we really want to express e−t/ρ in the form

e−t

ρ
=

∞∑

n=1

Fn(t) sin
nπx

L
. (4.62b)

For each fixed t, 4.62 is the Fourier sine series of the odd, 2L-periodic extension of
the constant function e−t/ρ (of x). According to equation 3.17b then,

Fn(t) =
2
L

∫ L

0

1
ρ
e−t sin

nπx

L
dx =

2e−t[1 + (−1)n+1]
nπρ

,

and therefore

e−t

ρ
=

2e−t

ρπ

∞∑

n=1

[1 + (−1)n+1]
n

sin
nπx

L
. (4.63)

If representation 4.63 is now substituted into equation 4.61, the result is
∞∑

n=1

d′′n(t) sin
nπx

L
=

∞∑

n=1

−n
2π2c2

L2
dn(t) sin

nπx

L
+

2e−t

ρπ

∞∑

n=1

[1 + (−1)n+1]
n

sin
nπx

L

or,
∞∑

n=1

[
d′′n(t) +

n2π2c2

L2
dn(t) − 2e−t[1 + (−1)n+1]

ρnπ

]
sin

nπx

L
= 0.

But for each fixed t, the series on the left side of this equation is the Fourier sine
series of the function on the right, the function that is identically equal to zero. It
follows that all coefficients must be zero; that is,

d′′n(t) +
n2π2c2

L2
dn(t) − 2e−t[1 + (−1)n+1]

ρnπ
= 0.
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In other words, each unknown function dn(t) must satisfy the differential equation

d2dn

dt2
+
n2π2c2

L2
dn =

2e−t[1 + (−1)n+1]
ρnπ

.

A general solution of this equation is

dn(t) = bn cos
nπct

L
+ an sin

nπct

L
+

2L2[1 + (−1)n+1]e−t

nπρ(L2 + n2π2c2)
,

where an and bn are constants. The condition d′n(0) = 0 implies that

an =
2L3[1 + (−1)n+1]

n2π2ρc(L2 + n2π2c2)
,

and therefore

dn(t) = bn cos
nπct

L
+

2L2[1 + (−1)n+1]
n2π2ρc(L2 + n2π2c2)

(
nπce−t + L sin

nπct

L

)
.

Substitution of this expression into representation 4.60 gives

y(x, t) =
∞∑

n=1

[
bn cos

nπct

L
+

2L2[1 + (−1)n+1]
n2π2ρc(L2 + n2π2c2)

(
nπce−t + L sin

nπct

L

)]
sin

nπx

L
. (4.64)

Initial condition 4.58d requires

f(x) =
∞∑

n=1

[
bn +

2L2[1 + (−1)n+1]
nπρ(L2 + n2π2c2)

]
sin

nπx

L
, 0 < x < L,

from which

bn +
2L2[1 + (−1)n+1]
nπρ(L2 + n2π2c2)

=
2
L

∫ L

0

f(x) sin
nπx

L
dx. (4.65)

The formal solution of problem 4.58 is now complete; it is 4.64 with the bn defined
by 4.65.

Perhaps a summary of the variation of constants technique would be valuable at
this juncture. When a PDE has a nonhomogeneity, the method proceeds as follows:

1. Find separated functions satisfying the homogeneous boundary conditions (and ho-
mogeneous initial conditions) and the corresponding homogeneous PDE. Suppose
we denote the functions of x by Xn(x). (Xn(x) = sin (nπx/L) in our previous
problem.)

2. Represent the unknown function in a series of the form
∞∑

n=1

dn(t)Xn(x)

with unknown coefficients dn(t).
3. Substitute the series of step 2 into the PDE, at the same time expanding the non-

homogeneity in terms of the functions Xn(x).
4. Obtain and solve ordinary differential equations for the dn(t).
5. Use initial conditions on the PDE to determine any constants of integration in step

4.
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When time-dependent nonhomogeneities are present in boundary conditions,
they are transformed into nonhomogeneities in the PDE. They can then be handled
by variation of constants. This is illustrated in the following example.

Example 4.6 Solve the following initial boundary value problem for temperature in a homoge-
neous, isotropic rod with insulated sides:

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (4.66a)

U(0, t) = φ0(t), t > 0, (4.66b)
U(L, t) = φL(t), t > 0, (4.66c)
U(x, 0) = f(x), 0 < x < L. (4.66d)

The rod is free of internal heat generation, and its ends are kept at prescribed
temperatures.

Solution We define a new dependent variable V (x, t) according to

U(x, t) = V (x, t) + ψ(x, t), (4.67)

where ψ(x, t) is to be chosen so that V (x, t) will satisfy homogeneous boundary
conditions. Boundary conditions 4.66b,c require

V (0, t) = φ0(t)− ψ(0, t), V (L, t) = φL(t)− ψ(L, t).

Consequently, V (x, t) will satisfy homogeneous boundary conditions

V (0, t) = 0, t > 0, (4.68a)
V (L, t) = 0, t > 0, (4.68b)

if ψ(x, t) is chosen so that

ψ(0, t) = φ0(t), ψ(L, t) = φL(t).

These are accommodated if ψ(x, t) is chosen as the following linear function in x

ψ(x, t) = φ0(t) +
x

L
[φL(t)− φ0(t)]. (4.69)

This is not the only choice for ψ(x, t), but it is perhaps the simplest. With this
choice

U(x, t) = V (x, t) + φ0(t) +
x

L
[φL(t) − φ0(t)]. (4.70)

The PDE for V (x, t) can be obtained by substituting representation 4.70 into PDE
4.66a,

∂

∂t

[
V (x, t) + φ0(t) +

x

L
[φL(t)− φ0(t)]

]
= k

∂2

∂x2

[
V (x, t) + φ0(t) +

x

L
[φL(t)− φ0(t)]

]
,

or,

∂V

∂t
= k

∂2V

∂x2
+G(x, t), (4.68c)

where
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G(x, t) = −φ′0(t) −
x

L
[φ′L(t)− φ′0(t)]. (4.68d)

Initial condition 4.66d yields the initial condition for V (x, t),

V (x, 0) = f(x)− φ0(0)− x

L
[φL(0)− φ0(0)], 0 < x < L. (4.68e)

Our problem now is to solve PDE 4.68c,d subject to homogeneous boundary condi-
tions 4.68a,b and initial condition 4.68e; that is, V (x, t) must satisfy

∂V

∂t
= k

∂2V

∂x2
+G(x, t), 0 < x < L, t > 0, (4.71a)

V (0, t) = 0, t > 0, (4.71b)
V (L, t) = 0, t > 0, (4.71c)

V (x, 0) = f(x)− φ0(0)− x

L
[φL(0)− φ0(0)], 0 < x < L, (4.71d)

where

G(x, t) = −φ′0(t)−
x

L
[φ′L(t) − φ′0(t). (4.71e)

What we have done is transform the nonhomogeneities in boundary conditions
4.66b,c into PDE 4.71a. But this presents no difficulty; variation of constants han-
dles nonhomogeneous PDEs. WereG(x, t) not present, separation of variables would
lead to a solution of the form

V (x, t) =
∞∑

n=1

Cne
−n2π2kt/L2

sin
nπx

L
.

We therefore assume a solution for nonhomogeneous problem 4.71 in the form

V (x, t) =
∞∑

n=1

dn(t) sin
nπx

L
, (4.72)

where the exponential has been absorbed into the unknown function dn(t). This
function satisfies boundary conditions 4.71b,c and will satisfy PDE 4.71a if

∞∑

n=1

d′n(t) sin
nπx

L
= k

∞∑

n=1

−n
2π2

L2
dn(t) sin

nπx

L
+G(x, t). (4.73)

To simplify this equation, we extend G(x, t) as an odd, 2L-periodic function and
expand it in a Fourier sine series

G(x, t) =
∞∑

n=1

Gn(t) sin
nπx

L
, where Gn(t) =

2
L

∫ L

0

G(x, t) sin
nπx

L
dx. (4.74)

Substitution of this series into equation 4.73 gives
∞∑

n=1

[
d′n(t) +

n2π2k

L2
dn(t) −Gn(t)

]
sin

nπx

L
= 0.

But for each fixed t, the series on the left of this equation is the Fourier sine series
of the function on the right, the function that is identically zero. It follows that all
coefficients must vanish; that is,
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d′n(t) +
n2π2k

L2
dn(t) = Gn(t).

A general solution of this linear, first-order ODE is

dn(t) = bne
−n2π2kt/L2

+
∫ t

0

Gn(u)en2π2k(u−t)/L2
du,

where bn is a constant. Substitution of this into 4.72 gives

V (x, t) =
∞∑

n=1

[
bne

−n2π2kt/L2
+
∫ t

0

Gn(u)en2π2k(u−t)/L2
du

]
sin

nπx

L
. (4.75)

To satisfy initial condition 4.71d, we must have

f(x)− φ0(0)− x

L
[φL(0)− φ0(0)] =

∞∑

n=1

bn sin
nπx

L
, 0 < x < L,

and this implies that

bn =
2
L

∫ L

0

[
f(x)− φ0(0)− x

L
[φL(0)− φ0(0)]

]
sin

nπx

L
dx. (4.76)

The formal solution of problem 4.66 is therefore

U(x, t) = V (x, t) + φ0(t) +
x

L
[φL(t) − φ0(t)],

with V (x, t) given by 4.75, 4.76, and 4.74.•
Let us summarize the techniques for handling nonhomogeneities.

1. When nonhomogeneous boundary conditions are associated with Laplace’s equa-
tion, all that is needed is superposition principle 2. The problem is divided into
two or more subproblems, each of which can be solved by separation of variables,
and the solutions of these subproblems are then added together. (For example,
when F (x, y) ≡ 0 in the problem of Figure 4.1, V (x, y) is the sum of V1(x, y) and
V2(x, y).) Nonhomogeneities that turn Laplace’s equation into Poisson’s equation
require variation of constants (see Exercise 28).

2. When time-independent nonhomogeneities occur in initial boundary value problems
(be they in the boundary conditions or in the PDE), it is advantageous to split off
steady-state or static solutions. The remaining part of the solution then satisfies a
homogeneous PDE and homogeneous boundary conditions.

3. When nonhomogeneities in boundary conditions of initial boundary value problems
are time dependent, they can be transformed into time-dependent nonhomogeneities
in the PDE. (See, for example, transformation 4.70 in Example 4.6.) Variation of
constants then takes care of time-dependent nonhomogeneities in PDEs.

Because time-independent nonhomogeneities (in technique 2) are trivially func-
tions of time, it is natural to ask whether technique 2 is necessary now that we have
technique 3. To answer this question, we use technique 3 on problem 4.35. Sepa-
ration of variables on 4.35a,b,c,e in the absence of the nonhomogeneity leads to a
superposition of separated functions in the form

y(x, t) =
∞∑

n=1

Cn sin
nπx

L
cos

nπct

L
.
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Variation of constants suggests a solution of problem 4.35 (with g now present) in
the form

y(x, t) =
∞∑

n=1

dn(t) sin
nπx

L
.

When this solution is pursued, the result obtained is

y(x, t) =
∞∑

n=1

[
an cos

nπct

L
− 2gL2[1 + (−1)n+1]

n3π3c2

(
1 − cos

nπct

L

)]
sin

nπx

L
, (4.77a)

where

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (4.77b)

This does not appear to be the same as solution 4.42 of problem 4.35, namely,

y(x, t) =
gx(x− L)

2c2
+

∞∑

n=1

bn sin
nπx

L
cos

nπct

L
, (4.42)

where

bn =
2
L

∫ L

0

[
f(x) +

gx(L− x)
2c2

]
sin

nπx

L
dx. (4.41)

They do, however, represent the same function as we now show. Integration by
parts gives

bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx+

2
L

∫ L

0

gx(L− x)
2c2

sin
nπx

L
dx = an +

2gL2[1 + (−1)n+1]
n3π3c2

and therefore 4.42 may be expressed as

y(x, t) =
gx(x− L)

2c2
+

∞∑

n=1

[
an +

2gL2[1 + (−1)n+1]
n3π3c2

]
cos

nπct

L
sin

nπx

L
.

If we divide the summation in 4.77 into two parts, this function may be written in
the form

y(x, t) =
∞∑

n=1

−2gL2[1 + (−1)n+1]
n3π3c2

sin
nπx

L
+

∞∑

n=1

[
an +

2gL2[1 + (−1)n+1]
n3π3c2

]
cos

nπct

L
sin

nπx

L
.

These expressions are indeed identical, since the first series in the latter equation is
the Fourier sine series of the odd, 2L-periodic extension of gx(x− L)/(2c2),

gx(x− L)
2c2

=
∞∑

n=1

−2gL2[1 + (−1)n+1]
n3π3c2

sin
nπx

L
, 0 ≤ x ≤ L.

Although this example illustrates that variation of constants can also be used to
solve problems when nonhomogeneities are time independent, we would not suggest
abandoning technique 2. There is a definite advantage to solution 4.42 over 4.77.
Contained in 4.42 is a closed-form part, gx(x − L)/(2c2). This is also a part of
4.77a, but it is in the form of a Fourier series. This is the advantage of technique
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2; it always splits off, in closed form, a steady-state or static part of the solution.
Technique 3 does not; it delivers steady-state or static parts in series form. Given
only the Fourier series for steady-state or static solutions, it could be very difficult
to recognize their closed forms.

It is not just for cosmetic reasons that it is preferable to split off closed form
solutions. The series part of the solution converges much more rapidly when the
closed form part has been removed. This is effectively illustrated with the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
+
kG

κ
, 0 < x < L, t > 0, (4.78a)

U(0, t) = 0, t > 0, (4.78b)
U(L, t) = 0, t > 0, (4.78c)
U(x, 0) = 0, 0 < x < L, (4.78d)

for temperature in a rod with zero initial and end temperatures and constant heat
generation represented by G. When the steady-state temperature ψ(x) = Gx(L−
x)/(2κ) is split off from U(x, t), the solution is found to be

U(x, t) =
Gx(L− x)

2κ
+

2GL2

π3κ

∞∑

n=1

1
n3

[(−1)n − 1]e−n2π2kt/L2
sin

nπx

L
. (4.79)

On the other hand, when variation of constants is used, the solution takes the form

U(x, t) =
2GL2

π3κ

∞∑

n=1

1
n3

[1 + (−1)n+1][1 − e−n2π2kt/L2
] sin

nπx

L
. (4.80)

Both series contain the factor 1/n3. The series in solution 4.79 also contains the
exponential e−n2π2kt/L2

which enhances convergence for large n and/or t. Series so-
lution 4.80, on the other hand, contains the factor 1−e−n2π2kt/L2

which approaches
unity for large n and/or t. Convergence is much more rapid when the closed form
solution is removed from the series.

In Sections 4.2 and 4.3 we have shown how the method of separation of vari-
ables leads to the use of Fourier series in the solution of various initial boundary
value problems. We have considered problems with one and more than one nonho-
mogeneous condition, many second-order equations, and one fourth-order equation.
All equations contained two independent variables in order that the method not be
obscured by overly complicated calculations. Certainly, however, the method can,
and will be used for problems in several independent variables.

We do not yet know whether we have solved any of the initial boundary value
problems in these sections; we have found only what we call formal solutions. They
are formal because of the questionable validity of superposing an infinity of separated
functions. Each formal solution must therefore be verified as a valid solution to its
initial boundary value problem. We do this in Sections 6.6–6.8 when we take up
detailed analyses of convergence properties of formal solutions.

In problems 4.9, 4.26, 4.35, 4.43, and 4.66, separation of variables led to the
system
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X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X(L),

and in problem 4.20 to the system

X ′′ + λ2X = 0, 0 < x < L,

X ′(0) = 0 = X ′(L).

Each of these problems is a special case of a general mathematical system called a
Sturm-Liouville system. It consists of an ordinary differential equation

d

dx

[
r(x)

dy

dx

]
+ [λp(x) − q(x)]y = 0 (4.81a)

on some interval a < x < b, together with two boundary conditions

−l1y′(a) + h1y(a) = 0, (4.81b)
l2y

′(b) + h2y(b) = 0, (4.81c)

where λ is a parameter and h1, h2, l1, and l2 are constants.
In Chapter 5 we discuss Sturm-Liouville systems in a general context and obtain

properties of solutions of such systems. These systems lead to generalized Fourier
series containing not only trigonometric functions but many other types of functions,
such as Bessel functions and Legendre polynomials.

Finally, it is obvious that the steps in the solutions of boundary value and
initial boundary value problems in Sections 4.2 and 4.3, and even the wording of
the steps, are almost identical. Surely, then, we should be able to devise a method
that would eliminate the tedious repetition of these steps in every problem. Indeed,
finite Fourier transforms associated with Sturm-Liouville systems can be used for
this purpose. They are discussed in Chapter 7.

EXERCISES 4.3
Part A Heat Conduction

1. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature 20◦C throughout
(0 ≤ x ≤ L) at time t = 0. For t > 0, a constant electric current I is passed along the length of
the rod, creating heat generation g(x, t) = I2/(A2σ), where σ is the electrical conductivity of
the rod and A is its cross-sectional area (see Exercise 42 in Section 2.2). If the ends of the rod
are held at temperature 0◦C for t > 0, find the temperature in the rod for t > 0 and 0 < x < L.

2. Repeat Exercise 1 if the ends of the rod are held at temperature 100◦C for t > 0.

3. Repeat Exercise 1 if the ends x = 0 and x = L of the rod are held at constant temperatures U0

and UL, respectively, for t > 0.

4. Repeat Exercise 1 if the electric current is a function of time I = e−αt. Assume that α 6=
n2π2k/(2L2) for any positive integer n.
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5. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature 100◦C through-
out (0 ≤ x ≤ L) at time t = 0. For t > 0, its left end (x = 0) is held at temperature zero and its
right end has temperature 100e−t. Find the temperature in the rod for t > 0 and 0 < x < L.
Assume first that k 6= L2/(n2π2) for any integer n, and secondly that k = L2/(m2π2) for some
positive integer m.

6. Repeat Exercise 1 if the ends of the rod are insulated for t > 0.

7. Repeat Exercise 1 if the ends of the rod are insulated and I = e−αt.

8. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature zero
throughout (0 ≤ x ≤ L). For t > 0, its ends x = 0 and x = L continue to be held at temperature
zero, and heat generation at each point of the rod is described by g(x, t) = e−αt sin (mπx/L),
where α > 0, and m is a positive integer. Find the temperature in the rod as a function of x
and t. Consider the cases that (a) α 6= m2π2k/L2, and (b) α = m2π2k/L2.

9. The general one-dimensional heat conduction problem for a homogeneous, isotropic rod with
insulated sides is

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t), 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = f1(t), x = 0, t > 0,

l2
∂U

∂x
+ h2U = f2(t), x = L, t > 0,

U(x, 0) = f(x), 0 < x < L.

Show that when the nonhomogeneities g(x, t) f1(t), and f2(t) are independent of time, the
change of dependent variable U(x, t) = V (x, t) + ψ(x), where ψ(x) is the solution of the corre-
sponding steady-state problem, leads to an initial boundary value problem in V (x, t) that has
a homogeneous PDE and homogeneous boundary conditions.

10. Explain how to solve Exercise 1 if the current is turned on for only 100 seconds beginning at
time t = 0. Do not solve the problem; just explain the steps that you would take to solve it.

11. Suppose that heat generation in the thin wire of Exercise 41 in Section 2.2 is caused by an
electric current I. When the temperature of the material surrounding the wire is a constant
0◦C and σ is the electrical conductivity of the material in the wire, temperature at points in
the wire must satisfy the PDE

∂U

∂t
= k

∂2U

∂x2
− hU +

kI2

κσA2
, 0 < x < L, t > 0

(see Exercise 42 in Section 2.2).
(a) Assuming that the ends of the wire are held at temperature 0◦C and the initial temperature

in the wire at time t = 0 is also 0◦C, show that when U(x, t) is split into steady-state and
transient parts, U(x, t) = V (x, t) + ψ(x),

ψ(x) =
kI2

κhσA2

[
1 −

sinh
√
h/kx+ sinh

√
h/k(L− x)

sinh
√
h/kL

]
.

(b) Find V (x, t) and hence U(x, t).

12. Use variation of constants to solve Example 4.5.
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13. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature zero
throughout. For time t > 0, there is located at cross section x = a (0 < a < L) a plane
heat source of constant strength g. If the ends x = 0 and x = L of the rod are kept at zero
temperature, the initial boundary value problem for temperature in the rod is

∂U

∂t
= k

∂2U

∂t2
+
kg

κ
δ(x− a), 0 < x < L, t > 0,

U(0, t) = 0, t > 0,
U(L, t) = 0, t > 0,
U(x, 0) = 0, 0 < x < L,

where δ(x− a) is the Dirac delta function. Solve this problem for U(x, t).
14. Replace the delta function in Exercise 13 with [h(x−a)−h(x−b)]/(b−a), where h(x−a) is the

Heaviside unit step function, so that the heat source is distributed over the interval a ≤ x ≤ b.
Solve the problem and then take the limit as b approaches a to arrive at the same solution as
with the delta function.

15. Suppose that constant heat generation occurs at each point in the sphere of Exercise 12 in
Section 4.2. Show that temperature in the sphere can be obtained using the transformation
V = rU and the steady-state solution of the resulting problem in V (r, t).

16. Repeat Exercise 8 if g(x, t) = e−αt, (α > 0), and the initial temperature in the rod is 10◦C
throughout. Consider the cases that (a) α 6= n2π2k/L2 for any positive integer n, and (b)
α = m2π2k/L2 for some positive integer m.

Part B Vibrations

17. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial
displacement at time t = 0 of f(x), 0 ≤ x ≤ L, and an initial velocity g(x), 0 ≤ x ≤ L.
(a) If an external force per unit length of constant magnitude acts vertically downward at every

point on the string, find a series representation for displacements in the string for t > 0 and
0 < x < L.

(b) Find the d’Alembert solution for displacements of the string.

18. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial
displacement at time t = 0 of f(x), 0 ≤ x ≤ L, but no initial velocity.
(a) If a concentrated mass m is fastened to the string at point x = a, 0 < a < L, find a series

representation for displacements in the string for t > 0 and 0 < x < L. Use the Dirac delta
function to represent the concentrated mass.

(b) Find the d’Alembert solution for displacements of the string.

19. A taut string has an end at x = 0 fixed on the x-axis, but the end at x = L is removed a small
amount yL away from the x-axis and kept at this position.
(a) If the string has initial position f(x) and velocity g(x) (at time t = 0), find a series repre-

sentation for displacements for t > 0 and 0 < x < L.
(b) Find the d’Alembert solution for displacements of the string.

20. A horizontal cyindrical bar is originally at rest and unstrained along the x-axis between x = 0
and x = L. For time t > 0, the left end is fixed and the right end is subjected to a constant
elongating force per unit area F parallel to the bar. Displacements y(x, t) of cross sections then
satisfy the initial boundary value problem
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∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
∂y(L, t)
∂x

=
F

E
, t > 0,

y(x, 0) = yt(x, 0) = 0, 0 < x < L.

(a) Can this problem be solved by separation of variables [y(x, t) = X(x)T (t)] and superposi-
tion? It has only one nonhomogeneous condition.

(b) Replace this initial boundary value problem by one in z(x, t) in which y(x, t) = z(x, t)+ψ(x)
and ψ(x) is the solution of the associated static deflection problem.

(c) If separation of variables and superposition are used on the problem for z(x, t), what form
does the series take? Finish the problem using the result of Exercise 20 in Section 3.2.

(d) Find a closed form for the solution.

21. A taut string, with ends x = 0 and x = L fixed on the x-axis, is at rest along the x-axis at time
t = 0. A pulsating force per unit length F0 sinωt, F0 a constant, acts at every point on the
string for t > 0.
(a) Derive the following series representation for displacements of the string in the case that

ω 6= nπc/L, for any odd, positive integer n,

y(x, t) =
4F0L

2

ρπ

∞∑

n=1

1
(2n− 1)[(2n− 1)2π2c2 − ω2L2]

[
sinωt− ωL

(2n− 1)πc
sin

(2n− 1)πct
L

]
sin

(2n− 1)πx
L

.

(b) Show that the terms involving sinωt can be expressed in closed form by finding the Fourier
sine series of the odd, 2L-periodic extension of the function

ψ(x) = sec
ωL

2c
sin

ωx

2c
sin

ω(L− x)
2c

, 0 ≤ x ≤ L.

The resonant case when ω = nπc/L for some odd integer will be discusssed in Exercise 26
of Section 7.2.

22. Repeat part (a) of Exercise 21 if the pulsating force acts only on that part of the string between
x = a and x = b (a < b).

23. Repeat part (a) of Exercise 21 if the pulsating force acts only on the point x = x0 of the string.

24. A beam of uniform cross section and length L has its ends simply supported at x = 0 and
x = L. The beam has constant density ρ kg/m and is subjected to an additional uniform
load of k kg/m. If the beam is released from rest at a horizontal position at time t = 0, find
subsequent displacements.

25. Repeat Exercise 24 if the beam is at rest at time t = 0 with displacement f(x), 0 ≤ x ≤ L.

26. Repeat Exercise 9 for the general one-dimensional vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, 0 < x < L, t > 0,

−l1
∂y

∂x
+ h1y = f1(t), x = 0, t > 0,

l2
∂y

∂x
+ h2y = f2(t), x = L, t > 0,
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y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L.

Part C Potential, Steady-State Heat Conduction, Static Deflections of Mem-
branes

27. Find a formula for the solution of Laplace’s equation inside the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′

when the boundary conditions are as indicated in Figure 4.1.

28. Nonhomogeneities in Laplace’s equation ∇2V = 0 convert it into Poisson’s equation. For
example, suppose a charge distribution with density σ(x, y) coulombs per cubic metre occupies
the volume R in space bounded by the planes x = 0, y = 0, x = L, and y = L′.
(a) If the bounding planes are maintained at zero potential, what is the boundary value problem

for potential in R?
(b) Use variation of constants to solve the boundary value problem in part (a) when σ is constant.

Find two series, one in terms of sin (nπx/L) and the other in terms of sin (nπy/L′). Is either
series preferred?

(c) Solve the problem in part (a) when σ is constant by setting V (x, y) = U(x, y)+ψ(x), where
ψ(x) satisfies

d2ψ

dx2
=

−σ
ε0
, 0 < x < L,

ψ(0) = ψ(L) = 0.

Is this the same solution as in (b)?
(d) If σ = σ(x) is a function of x only, which type of expansion in part (b) is preferred? Find

the potential in this case.
(e) Find the potential when σ = xy.

29. Solve Exercise 41 in Section 4.2 if heat is generated at a constant rate at every point in the
plate.

30. Solve Exercise 42 in Section 4.2 by using variation of constants with functions in terms of
x. Assume for simplicity of calculations, (but not out of necessity for the procedure), that
f ′
1(0) = f ′

1(L′) = f ′
2(0) = f ′

2(L′) = f3(0) = f3(L) = f4(0) = f4(L) = 0.
31. Solve the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= −k1, 0 < x < 1, 0 < y < 1,

U(0, y) = 0, 0 < y < 1,
Ux(1, y) = k2, 0 < y < 1,
Uy(x, 0) = 0, 0 < x < L,

U(x, 1) = 0, 0 < x < L,

where k1 and k2 are constants.
32. Solve the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= k, −L < x < L, −L < y < L,

U(−L, y) = U(L, y) = 0, −L < y < L,

U(x,−L) = U(x,L) = 0, −L < x < L,

where k is a constant.
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CHAPTER 5 STURM-LIOUVILLE SYSTEMS

§5.1 Eigenvalues and Eigenfunctions

When separation of variables was carried out on linear (initial) boundary value
problems in Chapter 4, we repeatedly encountered boundary value problems for the
ODE X ′′ + λ2X = 0 for a function X(x). When the initial boundary problem had
two Dirichlet boundary conditions, we were led to the system

d2X

dx2
+ λ2X = 0, 0 < x < L, (5.1a)

X(0) = 0, (5.1b)
X(L) = 0; (5.1c)

and when the problem had two Neumann boundary conditions, we were led to

d2X

dx2
+ λ2X = 0, 0 < x < L, (5.2a)

X ′(0) = 0, (5.2b)
X ′(L) = 0. (5.2c)

These are examples of what are called Sturm-Liouville systems. In this chapter we
undertake a general study of such systems. The results obtained are then applied to
Sturm-Liouville systems that arise from (initial) boundary value problems that have
combinations of Dirichlet, Neumann, and Robin boundary conditions, and also from
initial boundary value problems in polar, cylindrical, and spherical coordinates.

Nontrivial solutions of systems 5.1 and 5.2 do not exist for arbitrary λ. On the
contrary, only for specific values of λ, namely λ = nπ/L, do nontrivial solutions
exist, and to each value there corresponds a solution (unique to a multiplicative
constant).

In general, a Sturm-Liouville system consists of a linear, second-order, ho-
mogeneous differential equation, together with two linear, homogeneous boundary
conditions for an unknown function y(x):

d

dx

[
r(x)

dy

dx

]
+ [λp(x) − q(x)]y = 0, a < x < b, (5.3a)

−l1y′(a) + h1y(a) = 0, (5.3b)
l2y

′(b) + h2y(b) = 0. (5.3c)

Constants h1, h2, l1, and l2 are real and independent of parameter λ. When func-
tions p, q, r, and r′ are real and continuous for a ≤ x ≤ b, and p > 0 and r > 0 for
a ≤ x ≤ b, the Sturm-Liouville system is said to be regular. The negative signs in
5.3a,b are chosen simply as a matter of convenience for applications.

The differential equation associated with a Sturm-Liouville system may not
always be given in form 5.3a. When R(x) > 0 for a ≤ x ≤ b, any linear second
order differential equation

R(x)
d2y

dx2
+ S(x)

dy

dx
+ [λP (x) −Q(x)]y = 0
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can be expressed in form 5.3a. Since R(x) > 0, we may divide this equation by
R(x) to express it in the form

d2y

dx2
+ T (x)

dy

dx
+ [λU(x) − V (x)]y = 0.

If each term is multiplied by the function e
∫

T (x) dx,

e
∫

T (x) dx d
2y

dx2
+ e
∫

T (x) dxT (x)
dy

dx
+
[
λe
∫

P (x) dxU(x) − e
∫

T (x)dxV (x)
]
y = 0,

and this can be written in form 5.3a,

d

dx

[
e
∫

T (x) dx dy

dx

]
+
[
λe
∫

T (x) dxU(x) − e
∫

T (x) dxV (x)
]
y = 0.

No matter what the value of λ, the trivial function y(x) ≡ 0 always satisfies
5.3, but for certain values of λ, called eigenvalues, the system has nontrivial solu-
tions. We shall see that there is always a countable (but infinite) number of such
eigenvalues, which we denote by λn (n = 1, 2, . . .). A solution of 5.3 corresponding
to an eigenvalue λn is called an eigenfunction and is denoted by yn(x). Eigen-
functions are to satisfy the usual conditions for solutions of second-order differential
equations, namely that yn and dyn/dx be continuous for a ≤ x ≤ b. The second
derivative d2yn/dx

2 will also be continuous for regular Sturm-Liouville systems since
5.3a implies that

d2yn

dx2
=

1
r(x)

{[−λp(x) + q(x)]yn(x)− r′(x)y′n(x)]} .

When λ = 0 is an eigenvalue of a Sturm-Liouville system, it is customary to
denote it by λ0 = 0. Such is the case for system 5.2.

Eigenfunctions sin (nπx/L) of system 5.1 form the basis for Fourier sine series,
and in Chapter 3 we saw that they were orthogonal on the interval 0 ≤ x ≤ L.
Eigenfunctions cos (nπx/L) of system 5.2 are also orthogonal on this interval. This
is not coincidence; the following theorem verifies orthogonality for eigenfunctions of
every Sturm-Liouville system. (See equation 3.6 in Section 3.1 for the definition of
orthogonality of a sequence of functions.)

Theorem 5.1 Eigenvalues of a regular Sturm-Liouville system are real, and eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal with respect to the weight function
p(x),

∫ b

a

p(x)yn(x)ym(x) dx = 0. (5.4)

Proof If [λn, yn(x)] and [λm, ym(x)] are eigenpairs of Sturm-Liouville system 5.3,
where λn 6= λm, then

(ry′n)′ = −(λnp− q)yn, (ry′m)′ = −(λmp− q)ym.

Multiplication of the first by ym and the second by yn, and subtraction of the two
equations, eliminates q:

ym(ry′n)′ − yn(ry′m)′ = −λnpynym + λmpymyn



202 SECTION 5.1

or,

(λn − λm)pynym = (ry′m)′yn − (ry′n)′ym.

We now integrate both sides of this equation over the interval a ≤ x ≤ b and use
integration by parts on the right,

(λn − λm)
∫ b

a

pynym dx =
∫ b

a

[(ry′m)′yn − (ry′n)′ym] dx

=
{

(ry′m)yn − (ry′n)ym

}b

a
−
∫ b

a

[(ry′m)y′n − (ry′n)y′m] dx

= r(b)[y′m(b)yn(b) − y′n(b)ym(b)] − r(a)[y′m(a)yn(a) − y′n(a)ym(a)]

= r(b)
∣∣∣∣
yn(b) ym(b)
yn

′(b) ym
′(b)

∣∣∣∣− r(a)
∣∣∣∣
yn(a) ym(a)
yn

′(a) ym
′(a)

∣∣∣∣ .

Since yn(x) and ym(x) both satisfy boundary condition 5.3b,

−l1yn
′(a) + h1yn(a) = 0,

−l1ym
′(a) + h1ym(a) = 0.

Because at least one of h1 and l1 is not zero, these equations (regarded as homoge-
neous, linear equations in l1 and h1) must have nontrivial solutions. Consequently,
the determinant of their coefficients must vanish:∣∣∣∣

yn
′(a) yn(a)

ym
′(a) ym(a)

∣∣∣∣ = 0.

A similar discussion with boundary condition 5.3c indicates that
∣∣∣∣
yn

′(b) yn(b)
ym

′(b) ym(b)

∣∣∣∣ = 0.

It follows now that

(λn − λm)
∫ b

a

p(x)yn(x)ym(x) dx = 0,

and because λn 6= λm, orthogonality condition 5.4 has been established.
To prove that eigenvalues are real, we assume to the contrary that λ = α+ βi

(β 6= 0) is a complex eigenvalue with eigenfunction y(x). This eigenfunction could
be complex, but if it is, it is a complex-valued function of the real variable x. If
we divide y(x) into real and imaginary parts, y(x) = u(x) + v(x)i, the complex
conjugate of dy/dx is

dy

dx
=

d

dx
(u+ vi) =

du

dx
+
dv

dx
i =

du

dx
− dv

dx
i =

d

dx
(u− vi) =

dy

dx
.

With this result it is straightforward to take complex conjugates of equation 5.3.
Because the functions r(x), p(x), and q(x) are real, as are the constants h1, h2, l1,
and l2, we find that λ and y(x) must satisfy

(ry′)′ + (λp− q)y = 0,

−l1y(a)
′
+ h1y(a) = 0, l2y(b)

′
+ h2y(b) = 0.
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These imply that y(x) is an eigenfunction of Sturm-Liouville system 5.3 correspond-
ing to the eigenvalue λ. Since λ 6= λ, the eigenfunctions y(x) and y(x) must therefore
be orthogonal; that is,

∫ b

a

p(x)y(x)y(x) dx = 0.

But this is impossible because p(x) > 0 for a < x < b, and y(x)y(x) = |y(x)|2 ≥ 0.
Consequently, λ canot be complex.

It is evident from the above proof that the theorem is also valid under the
circumstances in the following corollary.

Corollary The results of Theorem 5.1 are valid when:
1. r(a) = 0 (boundary condition 5.3b then being unnecessary);
2. r(b) = 0 (boundary condition 5.3c then being unnecessary);
3. r(a) = r(b) if boundary conditions 5.3b,c are replaced by the periodic conditions

y(a) = y(b), y′(a) = y′(b). (5.5)

A Sturm-Liouville system is said to be singular if either or both of its boundary
conditions is absent; it is said to be periodic if r(a) = r(b) and boundary conditions
5.3b,c are replaced by periodic boundary conditions 5.5. Theorem 5.1 and its corol-
lary state that eigenfunctions of regular and periodic Sturm-Liouville systems are
always orthogonal. They are also orthogonal for singular systems when boundary
conditions 5.3b or 5.3c or both are absent, provided either r(a) = 0 or r(b) = 0, or
both, respectively. We consider only regular and periodic Sturm-Liouville systems
in this chapter; singular systems are discussed in Chapter 8.

Example 5.1 Find eigenvalues and eigenfunctions of the Sturm-Liouville system

d2X

dx2
+ λX = 0, 0 < x < L,

X(0) = 0 = X ′(L).

Solution When λ < 0, a general solution of the differential equation is

X(x) = Ae
√
−λx + Be−

√
−λx.

The boundary conditions require

0 = X(0) = A+B, 0 = X ′(L) = A
√
−λe

√
−λL −B

√
−λe−

√
−λL,

the only solution of which is A = B = 0.
When λ = 0, X(x) = Ax + B, and the boundary conditions once again imply

that A = B = 0.
Thus, eigenvalues of the Sturm-Liouville system must be positive, and when

λ > 0, the boundary conditions require constants A and B in the general solution
X(x) = A cos

√
λx+ B sin

√
λx of the differential equation to satisfy

0 = X(0) = A, 0 = X ′(L) = −A
√
λ sin

√
λL+B

√
λ cos

√
λL.

With A vanishing, the second condition reduces to B
√
λ cos

√
λL = 0. Since neither

B nor λ can vanish, cos
√
λL must be zero. Hence,

√
λL must be equal to −π/2
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plus an integer multiple of π; that is, permissible values of λ are λn where
√
λnL =

nπ − π/2, and n is an integer. Corresponding eigenfunctions are

Xn(x) = B sin
√
λnx = B sin

(2n− 1)πx
2L

.

But the set of functions for n ≤ 0 is identical to that for n > 0. In other words,
eigenvalues of the Sturm-Liouville system are λn = (2n− 1)2π2/(4L2), n ≥ 1, with
corresponding eigenfunctions Xn(x) = B sin [(2n− 1)πx/(2L)].•

Example 5.2 Discuss the periodic Sturm-Liouville system

y′′ + λy = 0, −L < x < L, (5.6a)
y(−L) = y(L), (5.6b)
y′(−L) = y′(L). (5.6c)

Solution If λ > 0, a general solution of the differential equation is

y(λ, x) = A cos
√
λx+B sin

√
λx.

The boundary conditions require

A cos
√
λL−B sin

√
λL = A cos

√
λL+B sin

√
λL,√

λA sin
√
λL+

√
λB cos

√
λL = −

√
λA sin

√
λL+

√
λB cos

√
λL.

These equations require sin
√
λL = 0, and this implies that

√
λL = nπ. In other

words, eigenvalues of the Sturm-Liouville system are λn = n2π2/L2, where n is
an integer that we take as positive. Corresponding to these eigenvalues are the
eigenfunctions

yn(x) = A cos
nπx

L
+B sin

nπx

L
.

When λ = 0, y(x) = A + Bx, and the boundary conditions require B = 0. Thus,
corresponding to the eigenvalue λ0 = 0, we have the eigenfunction y0(x) = A. The
only solution when λ < 0 is the trivial solution.

Theorem 5.1 guarantees that for nonnegative integers m and n (n 6= m), the
eigenfunctions

yn(x) = A cos
nπx

L
+B sin

nπx

L
and ym(x) = C cos

mπx

L
+D sin

mπx

L

are orthogonal over the interval −L ≤ x ≤ L. It is true, however, that all functions
in the set {

1, cos
nπx

L
, sin

nπx

L

}

are orthogonal. These are precisely the “eigenfunctions” found in the Fourier series
expansion of a function of period 2L. We shall return to this point in Section 5.2.•

Because differential equation 5.3a and boundary conditions 5.3b,c are homo-
geneous, if [λn, yn(x)] is an eigenpair for a Sturm-Liouville system, then so also is
[λn, cyn(x)] for any constant c 6= 0. In other words, eigenfunctions are not unique;
if yn(x) is an eigenfunction corresponding to an eigenvalue λn, then any constant
times yn(x) is also an eigenfunction corresponding to the same λn. This fact is re-
flected in Example 5.1, where eigenfunctions were determined only to multiplicative
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constants. In this example, there is, except for the multiplicative constant, only one
eigenfunction, sin [(2n− 1)πx/(2L)], corresponding to each eigenvalue. This is not
the case in Example 5.2. Corresponding to each positive eigenvalue, there are two
linearly independent eigenfunctions, sin (nπx/L) and cos (nπx/L). The difference
is that in Example 5.1 the Sturm-Liouville system is regular, but in Example 5.2
it is periodic. It can be shown (see Exercise 14) that a regular Sturm-Liouville
system cannot have two linearly independent eigenfunctions corresponding to the
same eigenvalue. Such an eigenvalue is said to have multiplicity one. In Example
5.2, λ = 0 has multiplicity one, and all other eigenvalues have multiplicity two.

In regular Sturm-Liouville systems, it is customary to single out one of the
eigenfunctions yn(x) corresponding to an eigenvalue as special and refer all other
eigenfunctions to it. The one that is chosen is an eigenfunction with length unity;
that is, an eigenfunction yn(x) satisfying

‖yn(x)‖ =

√∫ b

a

p(x)[yn(x)]2 dx = 1.

Such an eigenfunction is said to be normalized. Normalized eigenfunctions can al-
ways be found by dividing nonnormalized eigenfunctions by their lengths. Consider,
for example, Sturm-Liouville system 5.1. Since sin (nπx/L) is an eigenfunction of
this system corresponding to the eigenvalue λ2

n = n2π2/L2, so also is c sin (nπx/L)
for any constant c 6= 0. A normalized eigenfunction corresponding to this eigenvalue
is

sin (nπx/L)
‖ sin (nπx/L)‖ , where

∥∥∥sin nπx
L

∥∥∥
2

=
∫ L

0

sin2 nπx

L
dx =

L

2
.

Thus, with each eigenvalue λ2
n = n2π2/L2 of the Sturm-Liouville system, we asso-

ciate the normalized eigenfunction

Xn(x) =

√
2
L

sin
nπx

L
.

All other eigenfunctions for λ2
n are then cXn(x).

Similarly, normalized eigenfunctions for Sturm-Liouville system 5.2 are

X0(x) =
1√
L

corresponding to λ2
0 = 0

and

Xn(x) =

√
2
L

cos
nπx

L
corresponding to λ2

n = n2π2/L2, n > 0.

In general, if yn(x) is an eigenfunction of Sturm-Liouville system 5.3, we replace
it by the normalized eigenfunction

1
N
yn(x) where N2 = ‖yn(x)‖2 =

∫ b

a

p(x)[yn(x)]2 dx. (5.7)

The complete set of normalized eigenfunctions, one for each eigenvalue, then con-
stitutes a set of orthonormal eigenfunctions for the Sturm-Liouville system. Unless
otherwise stated, we shall always regard yn(x) as normalized eigenfunctions of a
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Sturm-Liouville system. Notice that any number of the yn(x) could be replaced by
−yn(x), and the new set would also be orthonormal. In other words, orthonormal
eigenfunctions are determined only to a factor of ±1.

Example 5.3 Find eigenvalues and normalized eigenfunctions of the Sturm-Liouville system

d2y

dx2
+
dy

dx
+ λy = 0, 0 < x < 1,

y(0) = 0 = y(1).

Solution Roots of the auxiliary equation m2 + m + λ = 0 associated with the
differential equation are m = (−1 ±

√
1 − 4λ)/2. When λ < 1/4, these roots are

real; denote them by ω1 = (−1+
√

1 − 4λ)/2 and ω2 = (−1−
√

1 − 4λ)/2. A general
solution of the differential equation in this case is y(x) = Aeω1x + Beω2x, and the
boundary conditions require

0 = A+B, 0 = Aeω1 +Beω2 .

The only solution of these equations is A = B = 0, leading to the trivial solution.
When λ = 1/4, the auxiliary equation has equal roots, and y(x) = (A +

Bx)e−x/2. Once again, the boundary conditions require A = B = 0.
Consequently, λ must be greater than 1/4, in which case we set m = −1/2±ωi,

where ω =
√

4λ− 1/2. The boundary conditions require constants A and B in the
general solution y(x) = e−x/2(A cosωx+B sinωx) to satisfy

0 = A, 0 = e−1/2(A cosω +B sinω).

With vanishing A, the second condition requires sinω = 0; that is, ω = nπ, where
n is an integer. In other words, eigenvalues of the Sturm-Liouville system are given
by

√
4λn − 1

2
= nπ =⇒ λn =

1
4

+ n2π2.

Except for a multiplicative constant, corresponding eigenfunctions are e−x/2 sinnπx.
Clearly, we need only take n > 0. To normalize these functions, we express the
differential equation in standard Sturm-Liouville form 5.3a. This can be done by
multiplying by ex (see the discussion following equation 5.3),

0 = ex d
2y

dx2
+ ex dy

dx
+ λexy =

d

dx

(
ex dy

dx

)
+ λexy.

With the weight function now identified as p(x) = ex, we calculate lengths of the
eigenfunctions,

‖e−x/2 sinnπx‖2 =
∫ 1

0

ex(e−x/2 sinnπx)2 dx =
∫ 1

0

sin2 nπxdx =
1
2
.

Normalized eigenfunctions are therefore yn(x) =
√

2e−x/2 sinnπx.•

EXERCISES 5.1
In Exercises 1–9 find eigenvalues and orthonormal eigenfunctions for the Sturm-
Liouville system.
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1.
d2y

dx2
+ λy = 0, 0 < x < 3, y(0) = 0 = y(3)

2.
d2y

dx2
+ λy = 0, 0 < x < 4, y′(0) = 0 = y′(4)

3.
d2y

dx2
+ λy = 0, 0 < x < 9, y(0) = 0 = y′(9)

4.
d2y

dx2
+ λy = 0, 0 < x < 1, y′(0) = 0 = y(1)

5.
d2y

dx2
+ λy = 0, 0 < x < L, y′(0) = 0 = y(L)

6.
d2y

dx2
+ λy = 0, 1 < x < 10, y(1) = 0 = y(10)

(Do this directly and also by making the change of independent variable z = x− 1.)

7.
d2y

dx2
− dy

dx
+ λy = 0, 0 < x < 1, y(0) = 0 = y(1)

8.
d2y

dx2
+
dy

dx
+ λy = 0, 1 < x < 5, y′(1) = 0 = y′(5)

(Hint: Use the change of variable z = x− 1.)

9. x2 d
2y

dx2
+ x

dy

dx
+ λy = 0, 1 < x < e, y(1) = 0 = y(e)

10. Find eigenvalues and eigenfunctions of the periodic Sturm-Liouville system

y′′ + λy = 0, 0 < x < 2L,
y(0) = y(2L),
y′(0) = y′(2L).

11. Consider the Sturm-Liouville system

d2y

dx2
+ 4λy = 0, 0 < x < L,

y(0) = 0 = y(L).

We could regard this system as one with eigenvalues λ and weight function p(x) = 4, or,
alternatively, as one with eigenvalues 4λ and weight function p(x) = 1. Is there a difference as
far as normalized eigenfunctions are concerned?

12. Heat equation 2.25 is valid when thermal constants ρ, s, and κ are not constant. In the one-
dimensional case, it reads

ρs
∂U

∂t
=

∂

∂x

(
κ
∂U

∂x

)

when there is no heat generation. Show that when ρ, s, and κ are functions of x, but not t,
separation of variables leads to a Sturm-Liouville differential equation.

13. The one-dimensional wave equation 2.43 is valid when ρ and τ are not constant. When no
external forces act on the string (or bar), it reads
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∂

∂t

(
ρ
∂y

∂t

)
=

∂

∂x

(
τ
∂y

∂x

)
.

Show that when ρ and τ are functions of x, but not t, separation of variables leads to a Sturm-
Liouville differential equation.

14. In this exercise we prove that a regular Sturm-Liouville system cannot have two linearly in-
dependent eigenfunctions corresponding to the same eigenvalue; that is, all eigenvalues have
multiplicity one.
(a) Suppose that y(x) and z(x) are eigenfunctions of system 5.3 corresponding to the same

eigenvalue λ. Show that w(x) = y′(a)z(x)−z′(a)y(x) satisfies 5.3a and that w(a) = w′(a) =
0. This implies that w(x) ≡ 0 (and therefore that y(x) and z(x) are linearly dependent)
unless y′(a) = z′(a) = 0.

(b) If y′(a) = z′(a) = 0, then h1 = 0. Define w(x) = y(a)z(x) − z(a)y(x) to show once again
that w(x) ≡ 0.

15. Use the result of Exercise 14 to show that up to a multiplicative constant, eigenfunctions of
regular Sturm-Liouville systems are real.

16. In Exercises 6 and 8 we suggested the change of variable z = x−1 in order to find eigenfunctions
of the Sturm-Liouville system. Does it make any difference whether normalization is carried
out in the z-variable or in the x-variable?
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§5.2 Generalized Fourier Series

In Chapters 3 and 4 we learned how to express functions f(x), which are piecewise
smooth on the interval 0 ≤ x ≤ L, in the form of Fourier sine series

f(x) =
∞∑

n=1

bn sin
nπx

L
where bn =

2
L

∫ L

0

f(x) sin
nπx

L
dx. (5.8)

We regard the Fourier coefficients bn as the components of the function f(x) with
respect to the basis functions {sin (nπx/L)}. In Section 5.1 we discovered that
the sin (nπx/L) are eigenfunctions of Sturm-Liouville system 5.1, and it has be-
come our practice to replace eigenfunctions with normalized eigenfunctions, namely√

2/L sin (nπx/L). Representation 5.8 can easily be replaced by an equivalent ex-
pression in terms of these normalized eigenfunctions,

f(x) =
∞∑

n=1

cn

(√
2
L

sin
nπx

L

)
where cn =

∫ L

0

f(x)

(√
2
L

sin
nπx

L

)
dx. (5.9)

Constants cn are the components of f(x) with respect to the orthonormal basis
{
√

2/L sin (nπx/L)}. Equation 5.8 should be compared with equation 3.3 in Section
3.1, together with the fact that the length of sin (nπx/L) is

√
L/2. Equation 5.9 is

analogous to equation 3.1.
The same function f(x) can be represented by a Fourier cosine series in terms

of normalized eigenfunctions of system 5.2,

f(x) =
c0√
L

+
∞∑

n=1

cn

(√
2
L

cos
nπx

L

)
(5.10a)

where

c0 =
∫ L

0

f(x)
(

1√
L

)
dx and cn =

∫ L

0

f(x)

(√
2
L

cos
nπx

L

)
dx, n > 0. (5.10b)

A natural question to ask now is the following: Given a function f(x), defined
on the interval a ≤ x ≤ b, and given a Sturm-Liouville system on the same interval,
is it always possible to express f(x) in terms of the orthonormal eigenfunctions of the
Sturm-Liouville system? It is still not clear that every Sturm-Liouville system has
an infinity of eigenfunctions, but, as we shall see, this is indeed the case. We wish
then to investigate the possibility of finding coefficients cn such that on a ≤ x ≤ b,

f(x) =
∞∑

n=1

cnyn(x), (5.11)

where yn(x) are the orthonormal eigenfunctions of Sturm-Liouville system 5.3. If we
formally multiply equation 5.11 by p(x)ym(x), and integrate term-by-term between
x = a and x = b,

∫ b

a

p(x)f(x)ym(x) dx =
∞∑

n=1

cn

∫ b

a

p(x)yn(x)ym(x) dx.
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Because of the orthogonality of eigenfunctions, only the mth term in the series does
not vanish, and therefore

∫ b

a

p(x)f(x)ym(x) dx = cm. (5.12)

This has been strictly a formal procedure. It has illustrated that if f(x) can be
represented in form 5.11, and if the series is suitably convergent, coefficients cn can
be calculated according to formula 5.12. What we must answer is the converse ques-
tion: If coefficients cn are calculated according to 5.12, where yn(x) are orthonormal
eigenfunctions of a Sturm-Liouville system, does series 5.11 converge to f(x)? This
question is answered in the following theorem.

Theorem 5.2 Let p, q, r, r′, and (pr)′′ be real and continuous functions of x for a ≤ x ≤ b, and let
p > 0 and r > 0 for a ≤ x ≤ b. Let l1, l2, h1, and h2 be real constants independent
of λ. Then Sturm-Liouville system 5.3 has a countable infinity of simple eigenvalues
λ1 < λ2 < λ3 < · · · (all real), not more than a finite number of which are negative,
and limn→∞ λn = ∞. Corresponding orthonormal eigenfunctions yn(x) are such
that yn(x) and yn

′(x) are continuous and |yn(x)| and |λn
−1/2yn

′(x)| are uniformly
bounded with respect to x and n. If f(x) is piecewise smooth on a ≤ x ≤ b, then
for any x in a < x < b,

f(x+) + f(x−)
2

=
∞∑

n=1

cnyn(x), where cn =
∫ b

a

p(x)f(x)yn(x) dx. (5.13)

Series 5.13 is called the generalized Fourier series for f(x) with respect to
the eigenfunctions yn(x), and the cn are the generalized Fourier coefficients.
They are the components of f(x) with respect to the orthonormal basis of eigen-
functions {yn(x)}. Notice the similarity between this theorem and Theorem 3.2 in
Section 3.1 for Fourier series. Both guarantee pointwise convergence of Fourier series
for a piecewise smooth function to the value of the function at a point of continuity
of the function, and to the average value of right- and left-hand limits at a point of
discontinuity. Because the eigenfunctions in Theorem 3.2 of Section 3.1 are periodic,
convergence is also assured at the end points of the interval 0 ≤ x ≤ 2L. This is
not the case in Theorem 5.2 above. Eigenfunctions are not generally periodic, and
convergence at x = a and x = b is not guaranteed. It should be clear, however, that
when l1 = 0 (in which case yn(a) = 0) convergence of the series in 5.13 at x = a
can be expected only if f(a) = 0 also. A similar statement can be made at x = b.

Because series 5.13 is a representation of the function f(x) in terms of normal-
ized eigenfunctions of a regular Sturm-Liouville system, it is also called an eigen-
function expansion of f(x). We use both terms, namely, generalized Fourier series
and eigenfunction expansion, freely and interchangeably.

We say that the normalized eigenfunctions of Sturm-Liouville system 5.3 form a
complete set for the space of piecewise smooth functions on the interval a ≤ x ≤ b;
this means that every piecewise smooth function can be expressed in a convergent
series of the eigenfunctions.

When a regular Sturm-Liouville system satisfies the conditions of this theorem
as well as the conditions that q(x) ≥ 0 for a ≤ x ≤ b, and l1h1 ≥ 0, l2h2 ≥ 0, it is
said to be a proper Sturm-Liouville system. For such a system we shall take l1,
l2, h1, and h2 all nonnegative, in which case we can prove the following corollary.
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Corollary All eigenvalues of a proper Sturm-Liouville system are nonnegative. Furthermore,
zero is an eigenvalue of a proper Sturm-Liouville system only when q(x) ≡ 0 and
h1 = h2 = 0.

Proof Let λ and y(x) be an eigenpair of a regular Sturm-Liouville system. Mul-
tiplication of differential equation 5.3a by y(x) and integration from x = a to x = b
gives

λ

∫ b

a

p(x)y2(x) dx =
∫ b

a

q(x)y2(x) dx−
∫ b

a

y(x)[r(x)y′(x)]′ dx

=
∫ b

a

q(x)y2(x) dx−
{
r(x)y(x)y′(x)

}b

a
+
∫ b

a

r(x)[y′(x)]2 dx.

When we solve boundary conditions 5.3b,c for y′(b) and y′(a) and substitute into
the second term on the right, we obtain

λ

∫ b

a

p(x)y2(x) dx =
∫ b

a

q(x)y2(x) dx+
∫ b

a

r(x)[y′(x)]2 dx

+
h2

l2
r(b)y2(b) +

h1

l1
r(a)y2(a).

When the Sturm-Liouville system is proper, every term on the right is nonnegative,
as is the integral on the left, and therefore λ ≥ 0. (If either l1 = 0 or l2 = 0, the
corresponding terms in the above equation are absent and the result is the same.)

Furthermore, if λ = 0 is an eigenvalue, then each of the four terms on the right
side of the above equation must vanish separately. The first requires that q(x) ≡ 0
and the second that y′(x) = 0. But the fact that y(x) is constant implies that the
last two terms can vanish only if h1 = h2 = 0.

Since eigenvalues of a proper Sturm-Liouville system must be nonnegative, we
may replace λ by λ2 in differential equation 5.3a whenever it is convenient to do so,

d

dx

[
r(x)

dy

dx

]
+ [λ2p(x)− q(x)]y = 0, a < x < b.

This often has the advantage of eliminating unnecessary square roots in calculations.

Example 5.4 Expand the function f(x) = L − x in terms of normalized eigenfunctions of the
Sturm-Liouville system of Example 5.1.

Solution According to Example 5.1, eigenfunctions of the Sturm-Liouville system

are sin
(2n− 1)πx

2L
. Because

∥∥∥∥sin
(2n− 1)πx

2L

∥∥∥∥
2

=
∫ L

0

[
sin

(2n− 1)πx
2L

]2
dx =

L

2
,

normalized eigenfunctions areXn(x) =

√
2
L

sin
(2n− 1)πx

2L
. In terms of these eigen-

functions, the generalized Fourier series for f(x) = L− x is

L− x =
∞∑

n=1

cnXn(x),
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where

cn =
∫ L

0

(L− x)

√
2
L

sin
(2n− 1)πx

2L
dx =

2
√

2L3/2

π2

[
π

2n− 1
+

2(−1)n

(2n− 1)2

]
.

Thus,

L− x =
2
√

2L3/2

π2

∞∑

n=1

[
π

2n− 1
+

2(−1)n

(2n− 1)2

]√
2
L

sin
(2n− 1)πx

2L
.

Theorem 5.2 guarantees convergence of the series to L − x for 0 < x < L. It
obviously does not converge to L − x at x = 0, but it does converge to L − x at
x = L. This follows from the facts that

∞∑

n=1

(−1)n+1

2n− 1
=
π

4
and

∞∑

n=1

1
(2n− 1)2

=
π2

8
.

Figure 5.1 shows a few partial sums of this series to illustrate convergence of the
series to L− x. It is very slow because of the term π/(2n− 1).•
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In the examples of Chapter 4, when separation of variables was applied to (ini-
tial) boundary value problems, all boundary conditions in a given problem were
either of Dirichlet type or Neumann type. These led to Fourier sine and cosine
series, series that we now know are eigenfunction expansions in terms of eigenfunc-
tions of Sturm-Liouville systems 5.1 and 5.2. We did not consider problems with
Robin conditions, but in some of the exercises, we mixed Dirichlet and Neumann
conditions. We were able to do so because of the results in Exercises 20 and 21
of Section 3.2. With our results on Sturm-Liouville systems in this section, we
will be well prepared to tackle any combination of Dirichlet, Neumann, and Robin
boundary conditions.

A proper Sturm-Liouville system that arises repeatedly in our discussions is
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d2X

dx2
+ λ2X = 0, 0 < x < L, (5.14a)

−l1X ′(0) + h1X(0) = 0, (5.14b)
l2X

′(L) + h2X(L) = 0. (5.14c)

where l1, l2, h1, and h2 are non-negative constants. (Systems 5.1 and 5.2 are special
cases of 5.14 when l1 = l2 = 0 and h1 = h2 = 0, respectively. Examples 5.1 and
5.4 contain the special case of l1 = h2 = 0 and l2 = h1 = 1.) We consider here the
most general case, in which h1h2l1l2 6= 0; special cases in which one or two of h1,
h2, l1, and l2 vanish are tabulated later. In the general case when h1h2l1l2 6= 0,
we could divide boundary condition 5.14b by either l1 or h1. This would lead to
a boundary condition with only one arbitrary constant (h1/l1 or l1/h1). Likewise,
we could divide boundary condition 5.14c by l2 or h2 and express the boundary
condition in terms of the ratio h2/l2 or l2/h2. However, when this is done, it is not
quite so transparent how to specialize the results in the cases in which one or two of
h1, h2, l1, and l2 vanish. For this reason, we prefer to leave 5.14b,c in their present
forms.

We are justified in representing the eigenvalues of system 5.14 by λ2 rather
than λ, because all eigenvalues of a proper Sturm-Liouville system are nonnegative.
A general solution of differential equation 5.14a is

X(x) = A cosλx+B sin λx, (5.15)

and when we impose boundary conditions 5.14b,c,

−l1λB + h1A = 0, (5.16a)

l2(−Aλ sin λL+Bλ cosλL) + h2(A cosλL+B sinλL) = 0. (5.16b)

We solve equation 5.16a for B = h1A/(l1λ) and substitute into 5.16b. After rear-
rangement, we obtain

tanλL =
λ

(
h1

l1
+
h2

l2

)

λ2 − h1h2

l1l2

, (5.17)

the equation that must be satisfied by λ. We denote by λn (n = 1, 2, . . .) eigen-
values of this transcendental equation, although, in fact, λ2

n are the eigenvalues of
the Sturm-Liouville system. Corresponding to these eigenvalues are orthonormal
eigenfunctions

Xn(x) =
1
N

(
cosλnx+

h1

λnl1
sin λnx

)
, (5.18a)

where

N2 =
∫ L

0

(
cosλnx+

h1

λnl1
sinλnx

)2

dx. (5.18b)

In Exercise 1, integration is shown to lead to
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2N2 =

[
1 +

(
h1

λnl1

)2
][
L+

h2/l2
λ2

n + (h2/l2)2

]
+
h1/l1
λ2

n

. (5.18c)

Of the nine possible combinations of boundary conditions at x = 0 and x = L,
we have considered only one, the most general in which none of h1, h2, l1, and l2
vanishes. Results for the remaining eight cases can be obtained from equations 5.17
and 5.18, or by similar analyses; they are tabulated in Table 5.1.

Each eigenvalue equation in Table 5.1 is unchanged if λ is replaced by −λ, so
that for every positive solution λ of the equation, −λ is also a solution. Since NXn

is invariant (up to a sign change) by the substitution of −λn for λn, it is necessary
only to consider nonnegative solutions of the eigenvalue equations. This agrees with
the fact that eigenvalues of the Sturm-Liouville system are λ2

n and that there cannot
be two linearly independent eigenfunctions corresponding to the same eigenvalue.
Table 5.1 gives the eigenvalues explicitly in only four of the nine cases. Eigenvalues
in the remaining five cases are illustrated geometrically below.

If h1h2l1l2 6= 0, eigenvalues are illustrated graphically in Figure 5.2 as points
of intersection of the curves

y = tanλL, y =
λ(h1/l1 + h2/l2)
λ2 − h1h2/(l1l2)

.

It might appear that λ = 0 is an eigenvalue in this case. However, the corollary
to Theorem 5.2 indicates that zero is an eigenvalue only when h1 = h2 = 0. This
can also be verified using conditions 5.16, which led to the eigenvalue equation (see
Exercise 3).
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Condition Condition Eigenvalue
at x = 0 at x = L Equation NXn 2N2

h1l1 6= 0 h2l2 6= 0 tanλL =
λ

(
h1

l1
+
h2

l2

)

λ2 − h1h2

l1l2

cosλnx+
h1

λnl1
sinλnx

h1/l1
λ2

n

+

[
1 +

(
h1

λnl1

)2
]

×
[
L+

h2/l2
λ2

n + (h2/l2)2

]

h1l1 6= 0 h2 = 0
(l2 = 1) tanλL =

h1

λl1

cosλn(L− x)
cosλnL

L

[
1 +

(
h1

λnl1

)2
]

+
h1/l1
λ2

n

h1l1 6= 0 l2 = 0
(h2 = 1) cotλL = − h1

λl1

sinλn(L− x)
sinλnL

L

[
1 +

(
h1

λnl1

)2
]

+
h1/l1
λ2

n

h1 = 0
(l1 = 1) h2l2 6= 0 tanλL =

h2

λl2
cosλnx L+

h2/l2
λ2

n + (h2/l2)2

h1 = 0
(l1 = 1)

h2 = 0
(l2 = 1)

sin λL = 0
λn =

nπ

L
, n = 0, 1, 2, . . .

cosλnx
L (n 6= 0)
2L (n = 0)

h1 = 0
(l1 = 1)

l2 = 0
(h2 = 1)

cosλL = 0

λn =
(2n− 1)π

2L
, n = 1, 2, . . .

cosλnx L

l1 = 0
(h1 = 1) h2l2 6= 0 cotλL = − h2

λl2
sinλnx L+

h2/l2
λ2

n + (h2/l2)2

l1 = 0
(h1 = 1)

h2 = 0
(l2 = 1)

cosλL = 0

λn =
(2n− 1)π

2L
, n = 1, 2, . . .

sinλnx L

l1 = 0
(h1 = 1)

l2 = 0
(h2 = 1)

sin λL = 0
λn =

nπ

L
, n = 1, 2, . . .

sinλnx L

Table 5.1

If h1l1 6= 0 and h2 = 0 (in which case we set l2 = 1), eigenvalues are illustrated
graphically in Figure 5.3 as points of intersection of the curves

y = tanλL, y = h1/(λl1).

A similar situation arises when h2l2 6= 0 and h1 = 0.
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If h1l1 6= 0 and l2 = 0 (in which case we set h2 = 1), eigenvalues are illustrated
graphically in Figure 5.4 as points of intersection of the curves

y = cotλL, y = − h1

λl1
.

A similar situation arises when h2l2 6= 0 and l1 = 0.
Theorem 5.2 states that when a function f(x) is piecewise smooth on the in-

terval 0 ≤ x ≤ L, we may write for 0 < x < L

f(x) =
∞∑

n=1

cnXn(x) where cn =
∫ L

0

f(x)Xn(x) dx. (5.19)

Example 5.5 Expand the function f(x) = 2x−1, 0 ≤ x ≤ 4 in terms of orthonormal eigenfunctions
of the Sturm-Liouville system

X ′′ + λ2X = 0, 0 < x < 4,
X ′(0) = 0 = X(4).

Solution When we set L = 4 in line 6 of Table 5.1, normalized eigenfunctions of
the Sturm-Liouville system are

Xn(x) =
1√
2

cos
(2n− 1)πx

8
, n = 1, 2, . . .

For 0 < x < 4, we may write that 2x− 1 =
∞∑

n=1

cnXn(x), where

cn =
∫ 4

0

(2x− 1)Xn(x) dx

=
1√
2

{
8(2x− 1)
(2n− 1)π

sin
(2n− 1)πx

8
+

128
(2n− 1)2π2

cos
(2n− 1)πx

8

}4

0

=
−8[16 + 7(−1)n(2n− 1)π]√

2(2n− 1)2π2
.

Thus,

2x− 1 =
∞∑

n=1

−8[16 + 7(−1)n(2n− 1)π]√
2(2n− 1)2π2

1√
2

cos
(2n− 1)πx

8

= −4
√

2
π2

∞∑

n=1

16 + 7(−1)n(2n− 1)π
(2n− 1)2

1√
2

cos
(2n− 1)πx

8
, 0 < x < 4.
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Figure 5.5 shows a few partial sums of the series to illustrate convergence of the
series to 2x−1. Slowness of convergence is the result of the term 7π(−1)n/(2n−1).•
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Figure 5.5

Periodic Sturm-Liouville systems do not come under the purview of Theo-
rem 5.2. In particular, this theorem does not guarantee expansions in terms of
normalized eigenfunctions of periodic Sturm-Liouville systems. For instance, eigen-
values for the periodic Sturm-Liouville system of Example 5.2 are λn = n2π2/L2

(n = 0, 1, 2, . . .), with corresponding eigenfunctions

λ0 ↔ 1, λn ↔ sin
nπx

L
, cos

nπx

L
(n > 0).

Normalized eigenfunctions are

λ0 ↔ 1√
2L

, λn ↔ 1√
L

sin
nπx

L
,

1√
L

cos
nπx

L
(n > 0).

Theorem 5.2 does not ensure the expansion of a function f(x) in terms of these
eigenfunctions, but our theory of ordinary Fourier series does. These are precisely
the basis functions for ordinary Fourier series, except for normalizing factors, so we
may write

f(x) =
a0√
2L

+
∞∑

n=1

(
an

1√
L

cos
nπx

L
+ bn

1√
L

sin
nπx

L

)
, (5.20a)

where

a0 =
∫ L

−L

f(x)
(

1√
2L

)
dx, an =

∫ L

−L

f(x)
(

1√
L

cos
nπx

L

)
dx, (5.20b)

bn =
∫ L

−L

f(x)
(

1√
L

sin
nπx

L

)
dx. (5.20c)
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As a final consideration in this section, we show that the Sturm-Liouville sys-
tems in Table 5.1 arise when separation of variables is applied to (initial) boundary
value problems involving the second-order PDE

∇2V = p
∂2V

∂t2
+ q

∂V

∂t
+ sV, (5.21)

where p, q, and s are constants, t is time, and the Laplacian is expressed in Cartesian
coordinates. We consider this PDE because it includes as special cases many of those
in Chapter 2. In particular,

1. if V = V (r, t), p = s = 0, and q = k−1, then 5.21 is the one-, two-, or three-
dimensional heat conduction equation;

2. if V = V (r, t), p = ρ/τ (or ρ/E), then 5.21 is the one-, two-, or three-
dimensional wave equation;

3. if V = V (r), p = q = s = 0, then 5.21 is the one-, two-, or three-dimensional
Laplace equation.

Thus, the results obtained here are valid for heat conduction, vibration, and poten-
tial problems, problems that we discuss in detail in Chapter 6.

When PDE 5.21 is to be solved in some finite region,
boundary conditions and possibly initial conditions
are associated with the PDE. If this region is a
rectangular parallelopiped (box) in space, Cartesian
coordinates can be chosen to specify the region in
the form 0 ≤ x ≤ L, 0 ≤ y ≤ L′, 0 ≤ z ≤ L′′

(Figure 5.6). Boundary conditions must then be
specified on the six faces. Suppose, for example,

x

z

y
L

L

L

that the following homogeneous Dirichlet, Neumann, Figure 5.6
and Robin conditions accompany equation 5.21:

∇2V = p
∂2V

∂t2
+ q

∂V

∂t
+ sV, 0 < x < L, 0 < y < L′, 0 < z < L′′, t > 0,(5.22a)

V = 0, x = 0, 0 < y < L′, 0 < z < L′′, t > 0, (5.22b)
∂V

∂x
= 0, x = L, 0 < y < L′, 0 < z < L′′, t > 0, (5.22c)

−l3
∂V

∂y
+ h3V = 0, y = 0, 0 < x < L, 0 < z < L′′, t > 0, (5.22d)

V = 0, y = L′, 0 < x < L, 0 < z < L′′, t > 0, (5.22e)
∂V

∂z
= 0, z = 0, 0 < x < L, 0 < y < L′, t > 0, (5.22f)

l6
∂V

∂z
+ h6V = 0, z = L′′, 0 < x < L, 0 < y < L′, t > 0, (5.22g)

Initial conditions, if applicable. (5.22h)

If we assume that a function V (x, y, z, t) = X(x)Y (y)Z(z)T (t) with variables
separated satisfies PDE 5.22a,

X ′′Y ZT +XY ′′ZT +XY Z ′′T = pXY ZT ′′ + qXY ZT ′ + sXY ZT.

Division by XY ZT gives
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X ′′

X
+
Y ′′

Y
+
Z ′′

Z
=
pT ′′ + qT ′ + sT

T
,

or,

−X
′′

X
=
Y ′′

Y
+
Z ′′

Z
− pT ′′ + qT ′ + sT

T
.

The separation principle (see Section 4.1) implies that each side of this equation
must be equal to a constant, say α:

−X
′′

X
= α =

Y ′′

Y
+
Z ′′

Z
− pT ′′ + qT ′ + sT

T
. (5.23)

Thus, X(x) must satisfy the ODE X ′′ + αX = 0, 0 < x < L. When the separated
function is substituted into boundary conditions 5.22b,c,

X(0)Y (y)Z(z)T (t) = 0, X ′(L)Y (y)Z(z)T (t) = 0.

From these, X(0) = 0 = X ′(L), and hence X(x) must satisfy

X ′′ + αX = 0, 0 < x < L, (5.24a)
X(0) = 0 = X ′(L). (5.24b)

This is proper Sturm-Liouville system 5.14 with l1 = h2 = 0 and h1 = l2 = 1. When
we set α = λ2, eigenvalues λ2

n and orthonormal eigenfunctions Xn(x) are then given
in line 8 of Table 5.1

λ2
n =

(2n− 1)2π2

4L2
, Xn(x) =

√
2
L

sin
(2n− 1)πx

2L
.

Further separation of equation 5.23 gives

−Y
′′

Y
= β =

Z ′′

Z
− pT ′′ + qT ′ + sT

T
− λ2

n, (5.25)

where β is a constant. Boundary conditions 5.22d,e imply that Y (y) must satisfy

Y ′′ + βY = 0, 0 < y < L′, (5.26a)
−l3Y ′(0) + h3Y (0) = 0, (5.26b)

Y (L′) = 0. (5.26c)

This is Sturm-Liouville system 5.14 with y’s replacing x’s, with h3, l3, and L′

replacing h1, l1, and L, and with l2 = 0 and h2 = 1. When we set β = µ2, the
eigenvalue equation and orthonormal eigenfunctions are found in line 3 of Table 5.1,

cotµL′ = − h3

µl3
, NYm(y) =

1
sinµmL′ sinµm(L′ − y), 2N2 = L′

[
1 +

(
h3

µml3

)2
]

+
h3/l3
µ2

m

.

Continued separation of equation 5.25 yields

−Z
′′

Z
= γ = −pT

′′ + qT ′ + sT

T
− λ2

n − µ2
m, (5.27)

where γ is a constant. When this is combined with boundary conditions 5.22f,g,
Z(z) must satisfy the Sturm-Liouville system
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Z ′′ + γZ = 0, 0 < z < L′′, (5.28a)
Z ′(0) = 0, (5.28b)

l6Z
′(L′′) + h6Z(L′′) = 0. (5.28c)

With changes in notation, this is the Sturm-Liouville system in line 4 of Table 5.1.
Eigenvalues γ = ν2 are defined by

tan νL′′ =
h6

νl6
,

with orthonormal eigenfunctions

1
N

cos νjz where 2N2 = L′′ +
h6/l6

ν2
j + (h6/l6)2

.

The time-dependent part T (t) of V (x, y, z, t) is obtained from the ODE

pT ′′ + qT ′ + sT = −(λ2
n + µ2

m + ν2
j )T. (5.29)

In summary, separation of variables on (initial) boundary value problem 5.22
has led to the Sturm-Liouville systems in lines 3, 4, and 8 of Table 5.1. Other
choices for boundary conditions lead to the remaining five Sturm-Liouville systems
in Table 5.1 (see Exercises 31–33).

EXERCISES 5.2

1. Obtain expression 5.18c for 2N2 by direct integration of 5.18b. Hint: Show that

sinλnL =
(−1)n+1λn

(
h1

l1
+
h2

l2

)

[(
λ2

n +
h1

2

l1
2

)(
λ2

n +
h2

2

l2
2

)]1/2
, cosλnL =

(−1)n+1

(
λ2

n − h1h2

l1l2

)

[(
λ2

n +
h1

2

l1
2

)(
λ2

n +
h2

2

l2
2

)]1/2
.

2. For each Sturm-Liouville system in Table 5.1, find expressions for sin λnL and cosλnL that
involve only h1, h2, l1, l2, and/or λn. These should be tabulated and attached to Table 5.1 for
future reference.

3. Use equations 5.16 to verify that λ = 0 is an eigenvalue of Sturm-Liouville system 5.14 only
when h1 = h2 = 0.

In Exercises 4–9 express the function f(x) = x, 0 ≤ x ≤ L, in terms of orthonormal
eigenfunctions of the Sturm-Liouville system. In the first four exercises, discuss
convergence of the expansion at x = 0 and x = L.

4. X ′′ + λ2X = 0, X(0) = X(L) = 0 5. X ′′ + λ2X = 0, X ′(0) = X ′(L) = 0
6. X ′′ + λ2X = 0, X(0) = X ′(L) = 0 7. X ′′ + λ2X = 0, X ′(0) = X(L) = 0

8. X ′′ + λ2X = 0, X ′(0) = 0, l2X
′(L) + h2X(L) = 0

9. X ′′ + λ2X = 0, X(0) = 0, l2X
′(L) + h2X(L) = 0

10. Express the function f(x) = x2, 0 ≤ x ≤ L, in terms of orthonormal eigenfunctions of the
Sturm-Liouville system
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X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X ′(L).

Does the expansion converge to f(x) at x = 0 and x = L?
In Exercises 11–13 find eigenvalues and orthonormal eigenfunctions of the proper
Sturm-Liouville sytem.

11.
d2y

dx2
+ 2

dy

dx
+ λ2y = 0, 0 < x < L, y′(0) = 0 = y′(L)

12.
d2y

dx2
+ β

dy

dx
+ λ2y = 0, 0 < x < L, y(0) = 0 = y(L) (β 6= 0 a given constant)

13.
d2y

dx2
+ β

dy

dx
+ λ2y = 0, 0 < x < L, y′(0) = 0 = y′(L) (β 6= 0 a given constant)

14. (a) Find eigenvalues and (nonnormalized) eigenfunctions for the proper Sturm-Liouville system

y′′ + λ2y = 0, −L < x < L,

y′(−L) = 0 = y′(L).

(b) Show that eigenfunctions in part (a) can be expressed in the compact form cos
nπ(x+ L)

2L
,

n = 0, 1, 2, . . ..
(c) Normalize the eigenfunctions.

15. Find normalized eigenfunctions for the Sturm-Liouville system

x2 d
2y

dx2
+ x

dy

dx
+ λ2y = 0, 1 < x < L,

y(1) = 0 = y(L).

Hint: Since the differential equation is of Cauchy-Euler type, set y = xm.

16. Find normalized eigenfunctions of the Sturm-Liouville system in Exercise 15 if the boundary
conditions are (a) y′(1) = 0 = y(L) and (b) y′(1) = 0 = y′(L).

17. On the basis of Exercises 15 and 16, we might be led to believe that eigenvalues and eigenfunc-
tions of Sturm-Liouville systems associated with the differential equation in Exercise 15 on the
interval 1 < x < L, could be obtained by replacing x and L with ln x and lnL in Table 5.1.
Show that this is not always the case by finding normalized eigenfunctions of the Sturm-Liouville
system in Exercise 15 when boundary conditions are y(1) = 0 = ly′(L) + hy(L).

18. Find nonnormalized eigenfunctions of the Sturm-Liouville system in Exercise 15 if the boundary
conditions are −l1y′(1) + h1y(1) = 0 and l2y′(L) + h2y(L) = 0 with h1h2l1l2 6= 0.

19. Find normalized eigenfunctions of the Sturm-Liouville system of Exercise 15 when the interval
is a ≤ x ≤ b and boundary conditions are (a) y(a) = 0 = y(b), (b) y′(a) = 0 = y(b), and (c)
y′(a) = 0 = y′(b).

20. Repeat Exercise 19 with the boundary conditions y(a) = 0 = ly′(b) + hy(b).
In Exercises 21–23 find six-figure approximations for the four smallest eigenvalues
of the Sturm-Liouville system.
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21. X ′′ + λ2X = 0, 0 < x < 1, −X ′(0) + 2000X(0) = 0, X ′(1) = 0

22. X ′′ + λ2X = 0, 0 < x < 1, X(0) = 0, 3X ′(1) + 2000X(1) = 0

23. X ′′ + λ2X = 0, 0 < x < 1, −X ′(0) + 2X(0) = 0, 2X ′(1) +X(1) = 0

24. (a) Expand the function

f(x) =
{

1, 0 < x < L/2
−1, L/2 < x < L

in terms of the normalized eigenfunctions of Sturm-Liouville system 5.2.
(b) What does the series converge to at x = L/2? Is this to be expected?
(c) What does the series converge to at x = 0 and x = L? Are these to be expected?

25. Repeat Exercise 24 with the eigenfunctions of Sturm-Liouville system 5.1.

26. In Exercise 11 of Section 5.1, we suggested two ways of interpreting the 4 in the differential
equation. Does it make a difference as far as generalized Fourier series are concerned?

27. The initial boundary value problem for transverse vibrations y(x, t) of a beam simply supported
at one end (x = L) and horizontally built in at the other end (x = 0) when gravity is negligible
compared with internal forces is

∂2y

∂t2
+ c2

∂4y

∂x4
= 0, 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0, t > 0,
y(L, t) = yxx(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L.

(a) Show that when y(x, t) is set equal to X(x)T (t), eigenfunctions obtained are

Xn(x) =
1

cosλnL
sin λn(L− x) − 1

coshλnL
sinhλn(L− x),

where eigenvalues λn must satisfy

tanλL = tanhλL.

(b) Prove that these eigenfunctions are orthogonal on the interval 0 ≤ x ≤ L with respect to
the weight function p(x) = 1. (Hint: Use the differential equation defining Xn(x) and a
construction like that in Theorem 5.1.)

28. Does the Sturm-Liouville system in line 6 of Table 5.1 give rise to the expansion in Exercise 21
of Section 3.2 for even and odd-harmonic functions?

29. Does the Sturm-Liouville system in line 8 of Table 5.1 give rise to the expansion in Exercise 20
of Section 3.2 for odd and odd-harmonic functions?

30. Show that the Sturm-Liouville system

d2X

dx2
+ λX = 0, 0 < x < L,

X ′(0) = 0,
l2X

′(L) − h2X(L) = 0, (l2 > 0, h2 > 0)
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has exactly one negative eigenvalue. What is the corresponding eigenfunction?

In Exercises 31–33 determine all Sturm-Liouville systems that result when separa-
tion of variables is used to solve the problem. Do not solve the problem; simply
find the Sturm-Liouville systems. Find eigenvalues (or eigenvalue equations) and
orthonormal eigenfunctions for each Sturm-Liouville system. Give a physical inter-
pretation of each problem.

31.

∂2U

∂x2
+
∂2U

∂y2
= k−1 ∂U

∂t
, 0 < x < L, 0 < y < L′, t > 0,

U(0, y, t) = 0, 0 < y < L′, t > 0,
∂U(L, y, t)

∂x
+ 200U(L, y, t) = 0, 0 < y < L′, t > 0,

∂U(x, 0, t)
∂y

= 0, 0 < x < L, t > 0,

∂U(x,L′, t)
∂y

= 0, 0 < x < L, t > 0,

U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′.

32.

∂2y

∂t2
= c2

∂2y

∂x2
− β

∂y

∂t
, 0 < x < L, t > 0,

−τ ∂y(0, t)
∂x

+ ky(0, t) = 0, t > 0,

y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L.

33.

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0, 0 < x < L, 0 < y < L′, 0 < z < L′′,

V (0, y, z) = 0, 0 < y < L′, 0 < z < L′′,

∂V (L, y, z)
∂x

= 0, 0 < y < L′, 0 < z < L′′,

V (x, 0, z) = 0, 0 < x < L, 0 < z < L′′,

V (x,L′, z) = 0, 0 < x < L, 0 < z < L′′,

V (x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′,

V (x, y, L′′) = 0, 0 < x < L, 0 < y < L′.

34. A fourth-order Sturm-Liouville system consists of a fourth-order, homogeneous differential equa-
tion of the following form, together with four linear, homogeneous boundary conditions for a
function y(λ, x):
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d2

dx2

[
r(x)

d2y

dx2

]
+ [λp(x) − q(x)]y = 0, a < x < b,

l1(ry′′)′ + h1y = 0, x = a,

l2(ry′′) + h2y
′ = 0, x = a,

l3(ry′′)′ + h3y = 0, x = b,

l4(ry′′) + h4y
′ = 0, x = b,

where p(x), q(x), and r′′(x) are continuous on a ≤ x ≤ b, and p > 0 and r > 0 for a ≤ x ≤ b.
Assuming that the system has eigenfunctions, show that eigenfunctions corresponding to distinct
eigenvalues are orthogonal on a ≤ x ≤ b with respect to the weight function p(x).

35. Show that when separation of variables is applied to the homogeneous beam equation 2.95
and boundary conditions corresponding to simple supports, ends built-in horizontally, and/or
cantilevered ends, the Sturm-Liouville system of Exercise 34 results.
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§5.3 Further Properties of Sturm-Liouville Systems

In Section 3.4, we discussed uniform convergence and convergence in the mean for
ordinary Fourier series. We discuss similar results for generalized Fourier series in
this section. Let yn(x) be orthonormal eigenfunctions of Sturm-Liouville system 5.3
and f(x) be a piecewise continuous function on a ≤ x ≤ b. Consider approximating
f(x) with a linear combination of the first n eigenfunctions

Sn(x) =
n∑

k=1

αkyk(x). (5.30)

so that the mean square error between f(x) and Sn(x) be as small as possible.
Coefficients αk should then be chosen so that

En =
∫ b

a

p(x)

[
f(x)−

n∑

k=1

αkyk(x)

]2

dx (5.31)

is minimized. The weight function p(x) is that in Definition 3.5 of Section 3.4, but
it also the weight function of Sturm-Liouville system 5.3. We could treat this is a
multivariable extrema problem to minimize En as a function of the n coefficients,
setting partial derivatives of En with respect to αk equal to zero. We prefer the
following derivation. When we expand expression 5.31 and use orthogonality of
the eigenfunctions and definitions of generalized Fourier coefficients ck for f(x), we
obtain

En =
∫ b

a

p(x)

[
f(x)−

n∑

k=1

αkyk(x)

]2

dx

=
∫ b

a

p(x)[f(x)]2 dx− 2
n∑

k=1

∫ b

a

αkp(x)f(x)yk(x) dx+
n∑

k=1

∫ b

a

α2
kp(x)y

2
k(x) dx

+ 2
n∑

i>j=1

∫ b

a

αjαkp(x)yj(x)yk(x) dx

=
∫ b

a

p(x)[f(x)]2 dx− 2
n∑

k=1

αkck +
n∑

k=1

α2
k

=
∫ b

a

p(x)[f(x)]2 dx+
n∑

k=1

(αk − ck)2 −
n∑

k=1

c2k. (5.32)

This expression shows that En, as a function of the αk is minimized for αk = ck; that
is, the best approximation 5.30 of a function f(x) by orthonormal eigenfunctions is
when the coefficients αk are chosen as the generalized Fourier coefficients of f(x).
In other words, the partial sums of the generalized Fourier series of a function
approximate the function in the mean square sense better than any other linear
combination of the eigenfunctions. When we set αk = ck in equation 5.32, we obtain
an expression for the mean square error when the nth partial sum of a generalized
Fourier series is used to approximate its sum,

∫ b

a

p(x)

[
f(x)−

n∑

k=1

ckyk(x)

]2

dx =
∫ b

a

p(x)[f(x)]2 dx−
n∑

k=1

c2k. (5.33)
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Eventually, we use this expression to show that the generalized Fourier series of a
function f(x) converges in the mean to f(x). Some preliminary results are required.
The first is an immediate consequence of expression 5.33.

Theorem 5.3 If f(x) is a piecewise continuous function on the interval a ≤ x ≤ b of Sturm-
Liouville system 5.3, its generalized Fourier coefficients must satisfy the inequality

n∑

k=1

c2k ≤
∫ b

a

p(x)[f(x)]2 dx. (5.34)

Proof: Since the left side of equation 5.33 is nonnegative,
∫ b

a

p(x)[f(x)]2 dx−
n∑

k=1

c2k ≥ 0,

and this gives inequality 5.34. By letting n become infinite, we can also state that
∞∑

n=1

c2n ≤
∫ b

a

p(x)[f(x)]2 dx. (5.35)

This is known as Bessel’s inequality. In Theorem 5.5 it is shown that, with more
restrictive conditions on the function f(x), inequality 5.35 may be replaced by an
equality, the result being known as Parseval’s theorem, and this leads to convergence
in the mean of generalized Fourier series. Because our proof of Parseval’s theorem
requires uniform convergence of the generalized Fourier series of a function, we
digress to discuss this type of convergence. The counterpart of Theorem 3.10 in
Section 3.4 is contained in the following theorem (which we state without proof).

Theorem 5.4 Suppose that f(x) is continuous and f ′(x) is piecewise continuous on a ≤ x ≤ b.
If f(x) satisfies the boundary conditions of a proper Sturm-Liouville system on
a ≤ x ≤ b, then the generalized Fourier series 5.13 for f(x) converges absolutely
and uniformly to f(x) for a ≤ x ≤ b.

We illustrate this result in the following example.

Example 5.6 (a) Without finding the generalized Fourier series of the function f(x) = x(L− x)
in terms of normalized eigenfunctions of Sturm-Liouville system 5.1, show that the
series converges uniformly for 0 ≤ x ≤ L. (b) Now find the series and use the
Weierstrass M -test (see Section 3.4) to verify uniform convergence.

Solution (a) Because f(x) is infinitely differentiable, and satisfies the boundary
conditions of proper Sturm-Liouville system 5.1, namely that y(0) = y(L) = 0,
Theorem 5.4 guarantees uniform convergence of the generalized Fourier series of
f(x).
(b) A short calculation shows that the generalized Fourier series of f(x) is

x(L− x) =
2
√

2L5/2

π3

∞∑

n=1

1 + (−1)n+1

n3

√
2
L

sin
nπx

L

=
8L2

π3

∞∑

n=1

1
(2n− 1)3

sin
(2n− 1)πx

L
, 0 ≤ x ≤ L.

Since



SECTION 5.3 227

∞∑

n=1

∣∣∣∣
1

(2n− 1)3
sin

(2n− 1)πx
L

∣∣∣∣ ≤
∞∑

n=1

1
(2n− 1)3

,

and the latter series converges, the generalized Fourier series converges uniformly
by the Weierstrass M -test.•

Exercise 9 in Section 3.4 contains special cases of Theorem 5.4.
When f(x) satisfies the conditions of Theorem 5.4, Bessel’s inequality 5.35 may

be replaced by an equality. This result is contained in the next theorem.

Theorem 5.5 (Parseval’s Theorem) Suppose that f(x) is continuous and f ′(x) is piecewise
continuous on a ≤ x ≤ b. If f(x) satisfies the boundary conditions of a proper
Sturm-Liouville system on a ≤ x ≤ b, its Fourier coefficients satisfy

∞∑

n=1

c2n =
∫ b

a

p(x)[f(x)]2 dx. (5.36)

Proof With the conditions cited on f(x), the generalized Fourier series of f(x)

f(x) =
∞∑

n=1

cnyn(x),

where yn(x) are the normalized eigenfunctions of the Sturm-Liouville system, is
uniformly convergent (Theorem 5.4). It may therefore be multiplied by p(x)f(x)
and integrated term-by-term between x = a and x = b to yield

∫ b

a

p(x)[f(x)]2 dx =
∞∑

n=1

cn

∫ b

a

p(x)f(x)yn(x) dx =
∞∑

n=1

c2n.

It is now possible to verify that generalized Fourier series converge in the mean.

Theorem 5.6 Suppose that f(x) is continuous and f ′(x) is piecewise continuous on a ≤ x ≤ b.
If f(x) satisfies the boundary conditions of a proper Sturm-Liouville system on
a ≤ x ≤ b, its generalized Fourier series converges in the mean to f(x).

Proof: Expression 5.33 gives the mean square error when a function f(x) is
approximated by the nth partial sum of its generalized Fourier series,

∫ b

a

p(x)

[
f(x)−

n∑

k=1

ckyk(x)

]2

dx =
∫ b

a

p(x)[f(x)]2 dx−
n∑

k=1

c2k.

If we take limits as n→ ∞, and invoke Parseval’s Theorem, we obtain

lim
n→∞

∫ b

a

p(x)

[
f(x)−

n∑

k=1

ckyk(x)

]2

dx = 0.

This is condition 3.23 for convergence in the mean of the generalized Fourier series.

Expansions of functions as generalized Fourier series are very different from
power series expansions. A function can be represented in a Taylor series on an
interval only if the function and all of its derivatives are continuous throughout the
interval, and even these conditions may not be sufficient to guarantee convergence
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of the series to the function. Eigenfunction expansions, however, are valid even
though a function and its first derivative may each possess a finite number of finite
discontinuities.

On the other hand, whereas Taylor series expansions may be differentiated
term-by-term inside the interval of convergence of the series, such may not be the
case for generalized Fourier series. The following result is analogous to Theorem 3.8
in Section 3.1.

Theorem 5.7 Suppose that f(x) is continuous and f ′(x) and f ′′(x) are piecewise continuous on
a ≤ x ≤ b. If f(x) satisfies the boundary conditions of a proper Sturm-Liouville
system, then for any x in a < x < b, series 5.13 may be differentiated term-by-term
with the resulting series converging to [f ′(x+) + f ′(x−)]/2.

We now prove the Sturm comparison theorem, a result that has implications
when we study singular Sturm-Liouville systems in Chapter 8.

Theorem 5.8 (Sturm Comparison Theorem) Let r(x) be a function that is positive on the
interval a < x < b and has a continuous first derivative for a ≤ x ≤ b. Suppose
that s1(x) and s2(x) are continuous functions for a < x < b such that s2(x) > s1(x)
thereon. If y1(x) and y2(x) satisfy

d

dx

[
r(x)

dy1
dx

]
+ s1(x)y1 = 0,

d

dx

[
r(x)

dy2
dx

]
+ s2(x)y2 = 0, (5.37)

there is at least one zero of y2(x) between every consecutive pair of zeros of y1(x)
in a < x < b.

Proof Let α and β be any two consecutive zeros of y1(x) in a < x < b, and
suppose that y2(x) has no zero between α and β. We assume, without loss in
generality, that y1(x) > 0 and y2(x) > 0 on α < x < β. (If this were not true, we
would work with −y1(x) and −y2(x).) When equations 5.37 are multiplied by y2
and y1, respectively, and the results are subtracted,

0 = y1

[
d

dx

(
r
dy2
dx

)
+ s2y2

]
− y2

[
d

dx

(
r
dy1
dx

)
+ s1y1

]
.

Integration of this equation from α to β gives

∫ β

α

(s2 − s1)y1y2 dx =
∫ β

α

[(ry1′)′y2 − (ry2′)′y1] dx =
∫ β

α

(ry1′y2 − ry2
′y1)′ dx

=
{

(ry1′y2 − ry2
′y1)

}β

α

= r(β)[y2(β)y1′(β)− y1(β)y2′(β)]− r(α)[y2(α)y1′(α) − y1(α)y2′(α)]
= r(β)y2(β)y1′(β)− r(α)y2(α)y1′(α),

since y1(α) = y1(β) = 0. Because y1(x) > 0 for α < x < β, it follows that y1′(α) ≥ 0
and y1′(β) ≤ 0. Furthermore, because r(α), r(β), y2(α), and y2(β) are all positive,
we must have

r(β)y2(β)y1′(β)− r(α)y2(α)y1′(α) ≤ 0.

But this contradicts the fact that
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∫ β

α

[s2(x) − s1(x)]y2(x)y1(x) dx > 0,

since s2 > s1 on α ≤ x ≤ β. Consequently, y2(x) must have a zero between α and
β.

To see the implication of this theorem in Sturm-Liouville theory, we set s1(x) =
λ1p(x) − q(x) and s2(x) = λ2p(x) − q(x), where λ2 > λ1 are eigenvalues of system
5.3. It then follows that between every pair of zeros of the eigenfunction y1(x)
corresponding to λ1, there is at least one zero of the eigenfunction y2(x) associated
with λ2. Figure 5.7 illustrates the situation for eigenfunctions X3(x) and X4(x) of
Sturm-Liouville system 5.1.

y
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1

-1

2
3
2

3 = sin 3
4= sin4X

L
X

L

L L L

p px x

2L
*****

There is a between every pair of s.*
,

Figure 5.7

EXERCISES 5.3

1. Theorem 5.7 indicates that generalized Fourier series from proper Sturm-Liouville systems may
be differentiated term-by-term when f(x) is continuous, f ′(x) and f ′′(x) are piecewise continu-
ous, and f(x) satisfies the boundary conditions of the system. We illustrate with two examples.
(a) Find the generalized Fourier series for

f(x) =
{
x, 0 ≤ x ≤ L/2
L− x, L/2 ≤ x ≤ L

in terms of the normalized eigenfunctions of Sturm-Liouville system 5.1. Show graphically
that f(x) is continuous, and f ′(x) and f ′′(x) are piecewise continuous on 0 ≤ x ≤ L.
Since f(0) = f(L) = 0, Theorem 5.7 guarantees that term-by-term differentiation of the
eigenfunction expansion for f(x) yields a series that converges to [f ′(x+) + f ′(x−)]/2 for
0 < x < L. Verify that this is indeed true, but do so without using Theorem 5.7.

(b) Find the generalized Fourier series for g(x) = 1, 0 ≤ x ≤ L, in terms of the eigenfunctions
of Sturm-Liouville 5.1. Show that term-by-term differentiation of this series gives a series
that converges only for x = L/2. Which of the conditions in Theorem 5.7 are violated by
g(x)?

2. (a) Expand the function f(x) = x(L − x) in terms of the eigenfunctions of Sturm-Liouville
system 5.1.

(b) Use Parseval’s theorem 5.5 to prove that
∑∞

n=1 1/(2n− 1)6 = π6/960.

3. (a) Show that an eigenvalue λn of a regular Sturm-Liouville system can be expressed in terms
of its corresponding normalized eigenfunction yn(x) according to
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λn =
∫ b

a

{r(x)[yn
′(x)]2 + q(x)[yn(x)]2} dx−

{
r(x)yn(x)yn

′(x)
}b

a
.

This is often called the Rayleigh quotient. The word quotient is used because it is of-
ten stated with nonnormalized eigenfunctions in which case there is a denominator to the
expression.

(b) What form does the Rayleigh quotient take when boundary conditions are Dirichlet or
Neumann?
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CHAPTER 6 SOLUTION OF HOMOGENEOUS PROBLEMS

BY SEPARATION OF VARIABLES

§6.1 Introduction

In Chapter 2 we developed boundary value and initial boundary value problems to
describe physical phenomena such as heat conduction, vibrations, and electrostatic
potentials. In Chapter 3 we introduced Fourier series, which we then used in Chap-
ter 4, in conjunction with separation of variables, to solve very simple problems.
These straightforward examples led to consideration of Sturm-Liouville systems in
Chapter 5. We are now ready to apply these results in more complex homogeneous
problems. In Chapter 7 we introduce finite Fourier transforms to solve nonhomoge-
neous problems. They are a more effective technique for handling nonhomogeneities
than variation of constants of Section 4.3, especially for higher dimensional prob-
lems.

A great variety of homogeneous problems could be considered — heat conduc-
tion, vibration, or potential; one-, two-, or three-dimensional; time dependent or
steady-state. Because we cannot hope to consider all of these problems, we select a
few straightforward examples to illustrate the technique; this puts us in a position
to consider quite general PDEs, such as

∇2V = p
∂2V

∂t2
+ q

∂V

∂t
+ sV, (6.1)

where p, q and s are constants. We pointed out in Section 5.2 that this PDE contains
many of the PDEs in Chapter 2 (see equation 5.22 in Chapter 5). It follows that
initial boundary value problems associated with PDE 6.1 contain as special cases
many of the (initial) boundary value problems of Chapter 2. In fact, when we solve
PDE 6.1 subject to Robin boundary conditions, we obtain general formulas that
may be specialized to give solutions to many problems. We begin in Sections 6.2
and 6.3 with problems in two independent variables. In Section 6.4 we generalize
to problems in higher dimensions.

§6.2 Homogeneous Initial Boundary Value Problems in Two Variables

We begin this section by using separation of variables to solve two initial boundary
value problems, one in heat conduction and the other in vibrations. What we learn
from these examples will prepare us for separation of variables in more general
problems. The heat conduction problem is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (6.2a)

Ux(0, t) = 0, t > 0, (6.2b)

κ
∂U(L, t)
∂x

+ µU(L, t) = 0, t > 0, (6.2c)

U(x, 0) = f(x), 0 < x < L. (6.2d)
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Physically described is a rod of uniform
cross section and insulated sides that at
time t = 0 has temperature f(x) (Figure 6.1).
For time t > 0, the end x = 0 is also insulated,
and heat is exchanged at the other end with
an environment at temperature 0◦C. The
problem is said to be homogeneous because xx

x L
=0

=

Insulation

PDE 6.2a and boundary conditions 6.2b,c Figure 6.1
are homogeneous.

If we assume that a function U(x, t), separated in the form U(x, t) = X(x)T (t),
satisfies PDE 6.2a, then

XT ′ = kX ′′T =⇒ X ′′

X
=

T ′

kT
= α = constant.

When this is combined with boundary conditions 6.2b,c, X(x) must satisfy the
system

X ′′ − αX = 0, 0 < x < L, (6.3a)
X ′(0) = 0, (6.3b)

κX ′(L) + µX(L) = 0, (6.3c)

and T (t) must satisfy the ODE

T ′ − αkT = 0, t > 0. (6.4)

System 6.3 is a special case of proper Sturm-Liouville system 5.14 in Section 5.2.
Since eigenvalues (−α) must be positive, we set −α = λ2, in which case line 4 in
Table 5.1 defines eigenvalues as solutions of the equation

tanλL =
µ

κλ

and orthonormal eigenfunctions as

Xn(x) =
1
N

cosλnx, where 2N2 = L+
µ/κ

λ2
n + (µ/κ)2

.

For these eigenvalues, a general solution of ODE 6.4 is T (t) = ce−kλ2
nt, where c

is an arbitrary constant. It follows that separated functions ce−kλ2
ntXn(x) for any

constant c and any eigenvalue λn satisfy PDE 6.2a and boundary conditions 6.2b,c.
To satisfy initial condition 6.2d, we superpose separated functions (the PDE and
boundary conditions being linear and homogeneous) and take

U(x, t) =
∞∑

n=1

cne
−kλ2

ntXn(x), (6.5)

where the cn are constants. Condition 6.2d now requires that

f(x) =
∞∑

n=1

cnXn(x), 0 < x < L. (6.6)

But this equation states that the cn are the Fourier coefficients in the generalized
Fourier series of f(x) in terms of the Xn(x). According to equation 5.19, they are
given by
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cn =
∫ L

0

f(x)Xn(x) dx =
1
N

∫ L

0

f(x) cosλnx dx. (6.7a)

The final formal solution of problem 6.2 is therefore

U(x, t) =
∞∑

n=1

cne
−kλ2

nt 1
N

cosλnx. (6.7b)

To see how the boundary conditions affect temperature in the rod, we consider a
specific initial temperature distribution. Suppose, for example, that the rod is 1
m long and that f(x) = 100(1 − x). Furthermore, suppose that the conductivity
κ and diffusivity k of the material in the rod are 48 W/mK and 12 × 10−6 m2/s
and that the heat transfer coefficient at x = L is µ = 96 W/m2K. With these
physical attributes, eigenvalues are defined by tanλ = 2/λ, and normalizing factors
are 2N2 = 1 + 2/(λ2

n + 4). Coefficients cn are given by

cn =
1
N

∫ 1

0

100(1− x) cosλnx dx =
100
Nλ2

n

(1− cosλn).

Thus,

U(x, t) =
∞∑

n=1

100
Nλ2

n

(1 − cosλn)e−12×10−6λ2
nt 1
N

cosλnx

=
∞∑

n=1

200(λ2
n + 4)(1 − cosλn)
λ2

n(λ2
n + 6)

e−12×10−6λ2
nt cosλnx.

When this series is approximated by its first four terms, plots for various values of
t are as shown in Figure 6.2. (The four smallest positive solutions of tanλ = 2/λ
are 1.076874, 3.643597, 6.578334, and 9.629560.)
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1
2
1

( 72 000)U x

( 36 000)U x,

( 3600)U x,

( 600)U x,
( 0)U x,

,

Figure 6.2 Figure 6.3

In Figure 6.3 we show temperature in the rod for the same times when boundary
condition 6.2c is replaced by U(L, t) = 0. What this means is that the heat transfer
coefficient µ in 6.2c has become very large and there is essentially no resistance to
heat transfer across the boundary x = L. The solution in this case is

U(x, t) =
800
π2

∞∑

n=1

1
(2n− 1)2

e−12×10−6(2n−1)2π2t/4 cos
(2n− 1)πx

2
.
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Ultimately, the solution approaches the situation in which temperature in the rod
is identically zero, as it does in problem 6.2, but it does so more quickly.

Our second illustrative example is concerned with displacements of the taut
string in Figure 6.4. The end at x = L is fixed on the x-axis, while the end at x = 0
is looped around a vertical support
and can move thereon without friction.
If the position of the string is initially
parabolic, x(L− x), and it is motionless,
subsequent displacements are described
by the homogeneous initial boundary
value problem

y

xL

Figure 6.4

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (6.8a)

yx(0, t) = 0, t > 0, (6.8b)
y(L, t) = 0, t > 0, (6.8c)
y(x, 0) = x(L− x), 0 < x < L, (6.8d)
yt(x, 0) = 0, 0 < x < L. (6.8e)

If we assume a function y(x, t), separated in the form y(x, t) = X(x)T (t), satisfies
PDE 6.8a then

XT ′′ = c2X ′′T =⇒ X ′′

X
=

T ′′

c2T
= α = constant.

When this is combined with boundary conditions 6.8b,c, and initial condition 6.8e,
X(x) must satisfy the system

X ′′ − αX = 0, 0 < x < L,

X ′(0) = 0,
X(L) = 0,

and T (t) must satisfy

T ′′ − αc2T = 0, t > 0,
T ′(0) = 0.

The system in X(x) is a special case of Sturm-Liouville system 5.14 in Section 5.2.
Since eigenvlaues (−α) must be positive, we set −α = λ2, in which case line 6 in
Table 5.1 gives eigenvalues of the Sturm-Liouville system, λn

2 = (2n−1)2π2/(4L2),
where n ≥ 1, with orthonormal eigenfunctions Xn(x) =

√
2/L cosλnx. For these

eigenvalues, the solution of system in T (t) is T (t) = A cos cλnt, where A is an arbi-
trary constant. We have shown, therefore, that separated functions A cos cλntXn(x)
for any constant A and any eigenvalue λn satisfy PDE 6.8a, boundary condition
6.8b,c, and initial condition 6.8e. To satisfy initial condition 6.8d, we superpose
separated functions and take

y(x, t) =
∞∑

n=1

An cos cλntXn(x), (6.9)
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where the An are constants. Condition 6.8d now requires

x(L− x) =
∞∑

n=1

AnXn(x), 0 < x < L. (6.10)

Consequently, the An are coefficients in the generalized Fourier series of x(L − x);
that is,

An =
∫ L

0

x(L− x)Xn(x) dx =
∫ L

0

x(L− x)

√
2
L

cos
(2n− 1)πx

2L
dx

=
16

√
2L5/2(−1)n+1

(2n− 1)3π3
− 4

√
2L5/2

(2n− 1)2π2
.

When these are substituted into representation 6.9, the formal solution is

y(x, t) =
−8L2

π3

∞∑

n=1

(2n− 1)π + 4(−1)n

(2n− 1)3
cos

(2n− 1)πct
2L

cos
(2n− 1)πx

2L
. (6.11)

Each term in this solution is called a normal mode of vibration of the string.
The first term, let us denote it by

H1(x, t) =
−8L2(π − 4)

π3
cos

πct

2L
cos

πx

2L
= 0.22L2 cos

πct

2L
cos

πx

2L
,

is called the fundamental mode or first harmonic. As a separated function,
H1(x, t) satisfies 6.8a,b,c,e; at time t = 0, it reduces to 0.22L2 cos [πx/(2L)]. In
other words, H1(x, t) describes displacements of a string identical to that in problem
6.8, except that the initial displacement is 0.22L2 cos [πx/(2L)] instead of x(L−x).
Positions of this string for various values of t are shown in Figure 6.5. The string
vibrates back and forth between the enveloping curves ±0.22L2 cos [πx/(2L)], always
maintaining the shape of a cosine.
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The second harmonic is the second term

H2(x, t) = −0.13L2 cos
3πct
2L

cos
3πx
2L

;

it represents displacements of the same string were the initial displacement described
by −0.13L2 cos [3πx/(2L)]. Positions of this string for various values of t are shown
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in Figure 6.6. The point at x = L/3 in the string remains motionless; it is called a
node of H2(x, t).

The third harmonic

H3(x, t) = −0.024L2 cos
5πct
2L

cos
5πx
2L

,

is shown in Figure 6.7. It has two nodes, one at x = L/5 and the other at x = 3L/5.
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Solution 6.11 of 6.8 is the sum of all its harmonics. Because An decreases
rapidly with increasing n, lower harmonics are more significant than higher ones.

We are now in a position to consider the general homogeneous initial boundary
value problem

∂2V

∂x2
= p

∂2V

∂t2
+ q

∂V

∂t
+ sV, 0 < x < L, t > 0, (6.12a)

−l1
∂V

∂x
+ h1V = 0, x = 0, t > 0, (6.12b)

l2
∂V

∂x
+ h2V = 0, x = L, t > 0, (6.12c)

V (x, 0) = f(x), 0 < x < L, (6.12d)
Vt(x, 0) = g(x), 0 < x < L. (6.12e)

It is said to be homogeneous because the PDE and boundary conditions are homoge-
neous. This problem includes as special cases the following problems from Chapter
2:

1. If V (x, t) = U(x, t), p = s = 0, and q = k−1, then 6.12 is the one-dimensional
heat conduction problem with no internal heat generation but with heat transfer at
ends x = 0 and x = L into or from media at temperature zero. In this case, initial
condition 6.12e would be absent.

2. If V (x, t) = y(x, t), p = ρ/τ (or ρ/E), q = β/τ , and s = k/τ , then 6.12 is the
one-dimensional vibration problem with a damping force proportional to velocity
and a restoring force proportional to displacement.

When a function separated in the form V (x, t) = X(x)T (t) is substituted into
the PDE

X ′′T = pXT ′′ + qXT ′ + sXT =⇒ X ′′

X
=
pT ′′ + qT ′ + sT

T
.
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We have customarily set each side of this equation equal to a constant which we
have called α. Subsequent analysis always showed that α must be negative so that
we set α = −λ2. In future problems, we will insert −λ2 directly. When we do this
for the above equation, and introduce boundary conditions 6.12b,c, we are led to a
Sturm-Liouville system in X(x),

X ′′ + λ2X = 0, 0 < x < L, (6.13a)
−l1X ′ + h1X = 0, x = 0, (6.13b)
l2X

′ + h2X = 0, x = L, (6.13c)

and an ODE in T (t),

pT ′′ + qT ′ + (s+ λ2)T = 0, t > 0. (6.14)

System 6.13 is Sturm-Liouville system 5.14 in Chapter 5. Eigenvalues and orthonor-
mal eigenfunctions are listed in Table 5.1.

When p = 0, ODE 6.14 has general solution

T (t) = ce−(s+λ2
n)t/q, (6.15)

where c is a constant. We have shown, therefore, that separated functions

V (x, t) = X(x)T (t) = ce−(s+λ2
n)t/qXn(x),

for any constant c, and any eigenvalue λn are solutions of PDE 6.12a and boundary
conditions 6.12b,c. There is but one initial condition when p = 0, namely 6.12d, and
to satisfy it, we superpose separated functions (the PDE and boundary conditions
being linear and homogeneous) and take

V (x, t) =
∞∑

n=1

cnXn(x)e−(s+λ2
n)t/q, (6.16)

where the cn are constants. Initial condition 6.12d now implies that the cn must
satisfy

f(x) =
∞∑

n=1

cnXn(x), 0 < x < L. (6.17)

The constants cn are therefore Fourier coefficents in the generalised Fourier series
of f(x),

cn =
∫ L

0

f(x)Xn(x) dx. (6.18)

The formal solution of problem 6.12 for p = 0 is therefore 6.16 with the cn defined
by 6.18.

When p 6= 0, ODE 6.14 has general solution

T (t) = cφ1(t) + dφ2(t), (6.19)

where φ1(t) and φ2(t) are independent solutions of 6.14 and c and d are arbitrary
constants. In this case, separated functions
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V (x, t) = X(x)T (t) = Xn(x)[cφ1(t) + dφ2(t)],

for any constants c and d and any eigenvalue λn, are solutions of PDE 6.12a and
boundary conditions 6.12b,c. To satisfy the initial conditions, we superpose sepa-
rated functions and take

V (x, t) =
∞∑

n=1

Xn(x)[cnφ1(t) + dnφ2(t)], (6.20)

where cn and dn are constants. Initial conditions 6.12d,e now imply that the cn and
dn must satisfy

f(x) =
∞∑

n=1

Xn(x)[cnφ1(0) + dnφ2(0)], 0 < x < L, (6.21a)

g(x) =
∞∑

n=1

Xn(x)[cnφ1
′(0) + dnφ2

′(0)], 0 < x < L. (6.21b)

If we multiply the first by φ2
′(0), multiply the second by φ2(0), and subtract,

φ2
′(0)f(x)− φ2(0)g(x) =

∞∑

n=1

cn[φ1(0)φ2
′(0)− φ1

′(0)φ2(0)]Xn(x). (6.22)

This equation implies that cn[φ1(0)φ2
′(0)− φ1

′(0)φ2(0)] must be the Fourier coeffi-
cients in the generalized Fourier series of φ2

′(0)f(x)− φ2(0)g(x) in terms of Xn(x)
and are therefore defined by equation 5.19,

cn[φ1(0)φ2
′(0)− φ1

′(0)φ2(0)] =
∫ L

0

[φ2
′(0)f(x)− φ2(0)g(x)]Xn(x) dx. (6.23)

(This equation can also be obtained by multiplying 6.22 by Xm(x) and integrating
with respect to x from x = 0 to x = L.) Thus,

cn =
1

φ1(0)φ2
′(0)− φ1

′(0)φ2(0)

∫ L

0

[φ2
′(0)f(x)− φ2(0)g(x)]Xn(x) dx. (6.24)

Similarly, it can be shown that

dn =
1

φ1
′(0)φ2(0)− φ1(0)φ2

′(0)

∫ L

0

[φ1
′(0)f(x)− φ1(0)g(x)]Xn(x) dx. (6.25)

The formal solution of problem 6.12 for p 6= 0 is 6.20, where cn and dn are defined
by 6.24 and 6.25.

We have demonstrated that separation of variables can be used to solve initial
boundary value problems of form 6.12 and therefore, as special cases, problems 1.
and 2. following 6.12. In fact, 6.16 and 6.20 represent formulas for solutions of
many of these problems. For example, to solve heat conduction problem 4.20 in
Section 4.2, we could set p = s = h1 = h2 = 0, l1 = l2 = 1, and q = 1/k in 6.12,
delete initial condition 6.12e, and set f(x) = x. According to 6.16, the solution is

U(x, t) =
∞∑

n=1

cne
−kλ2

ntXn(x) where cn =
∫ L

0

f(x)Xn(x) dx.
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Eigenpairs are found in line 5 of Table 5.1,

λ0 = 0 ↔ X0(x) =
1√
L
, λn =

nπ

L
↔ Xn(x) =

2
L

cos
nπx

L
.

With these,

c0 =
∫ L

0

x
1√
L
dx =

L3/2

2
, cn =

∫ L

0

x

√
2
L

cos
nπx

L
dx =

√
2L3/2[(−1)n − 1]

n2π2
,

and therefore

U(x, t) =
L3/2

2

(
1√
L

)
+

∞∑

n=1

√
2L3/2[(−1)n − 1]

n2π2
e−n2π2kt/L2

√
2
L

cos
nπx

L

=
L

2
− 4L
π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/L2
cos

(2n− 1)πx
L

.

This is solution 4.25 of problem 4.20 in Section 4.2.
We are not in the habit of recommending the use of results such as 6.16 and

6.20 as formulas. Formulas are fine for those who have mastered fundamentals and
are now looking for shortcuts in solving large classes of problems. We prefer to
regard our analysis of problem 6.12 as an illustration of the fact that any problem
of this form can be solved by separation of variables. The procedure leading from
problem 6.12 to either solution 6.16 or 6.20 should be used as a guideline for solv-
ing other problems — separate variables, obtain the appropriate Sturm-Liouville
system, solve the system (perhaps by quoting Table 5.1), solve the ODE in T (t),
superpose separated functions, and apply the nonhomogeneous initial condition(s).

EXERCISES 6.2
Part A Heat Conduction

1. (a) A homogeneous, isotropic rod with insulated sides has temperature f(x) = L−x, 0 ≤ x ≤ L,
at time t = 0. If, for time t > 0, the end x = 0 is insulated and the end x = L is held at
temperature 0◦C, find the temperature in the rod.

(b) Find an expression (in series form) for the amount of heat leaving the end x = L of the rod
as a function of time.

(c) Plot a graph of the function in part (b) if κ = 48 W/mK, k = 12 × 10−6 m2/s, and L = 1
m.

2. What is the solution to Exercise 1(a) for an arbitrary initial temperature f(x)?

3. A homogeneous, isotropic rod with insulated sides has temperature f(x), 0 ≤ x ≤ L, at time
t = 0. For time t > 0, heat is transferred at end x = 0 according to Newton’s law of cooling to a
medium at temperature 0◦C. If the end x = L is held at temperature 0◦C, find the temperature
in the rod.

4. Let U(x, t) denote temperature in the thin-wire problem (see Exercise 41 of Section 2.2) of a
thin wire of length L lying along the x-axis. When the temperature of the surrounding medium
is zero and there is no heat generation, U(x, t) must satisfy the PDE

∂U

∂t
= k

∂2U

∂x2
− hU, 0 < x < L, t > 0,
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where h > 0 is a constant.
(a) If the ends of the wire are insulated and the initial temperature distribution is denoted by

f(x), find and solve the initial boundary value problem for U(x, t).
(b) Compare the solution in part (a) with that obtained when the lateral sides are also insulated.

5. Exercise 4 suggests the following result. The general homogeneous thin-wire problem (see
Exercise 41 of Section 2.2) is

∂U

∂t
= k

∂2U

∂x2
− hU, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = 0, x = 0, t > 0,

l2
∂U

∂x
+ h2U = 0, x = L, t > 0,

U(x, 0) = f(x), 0 < x < L.

(Homogeneity requires an environmental temperature identically zero. Nonzero environmental
temperatures and other nonhomogeneities are considered in the exercises in Section 7.2.) Show
that the solution of this problem is always e−ht times that of the corresponding problem when
no heat transfer takes place over the surface of the wire.

Part B Vibrations

6. (a) A taut string is given an initial displacement (at time t = 0) of f(x), 0 ≤ x ≤ L, and initial
velocity g(x), 0 ≤ x ≤ L. If the ends x = 0 and x = L of the string are fixed on the x-axis,
find displacements of points in the string thereafter.

(b) As functions of time, what are the amplitudes of the first, second, and third harmonics?
Sketch graphs of these harmonics for various fixed values of t. Are frequencies of higher
harmonics integer multiples of the frequency of the fundamental mode?

(c) What are the nodes for the first three harmonics?

7. A taut string is given an initial displacement (at time t = 0) of f(x), 0 ≤ x ≤ L, and initial
velocity g(x), 0 ≤ x ≤ L. The end x = 0 is fixed on the x-axis, while the end x = L is looped
around a vertical support and can move thereon without friction.
(a) Find a series representation for displacements in the string for 0 < x ≤ L and t > 0.
(b) Find the d’Alembert form for displacements of the string.

8. Repeat Exercise 6(a) if an external force (per unit x-length) F = −ky (k > 0) acts at each
point in the string.
(b) Compare the normal modes of vibration with those in Exercise 6.

9. Repeat Exercise 6(a) if an external force (per unit x-length) F = −β∂y/∂t (0 < β < 2πρc/L)
acts at every point on the string.

10. A taut string is given displacement bx, b a constant, 0 ≤ x ≤ L, and zero initial velocity. The
end x = 0 is fixed on the x-axis, and the right end moves vertically but is restrained by a spring
(constant k) that is unstretched on the x-axis (figure below).

y

xL
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(a) Show that subsequent displacements of points on the string can be expressed in the form

y(x, t) =
2b(kL+ τ)

τ

∞∑

n=1

(τ2λ2
n + k2) sin λnL

λ2
n[L(τ2λn

2 + k2) + kτ ]
cos cλnt sinλnx,

where λn are the positive solutions of the equation cotλL = −k/(τλ), τ is the constant
tension in the string, and c2 = τ/ρ, where ρ is the constant density of the string.

(b) Reduce the expression in part (a) to

y(x, t) = 2b(kL+ τ)
∞∑

n=1

(−1)n+1
√
k2 + τ2λ2

n

λn[L(k2 + τ2λ2
n) + kτ ]

cos cλnt sin λnx.

11. A bar of uniform cross section and length L lies along the x-axis. Its left end is fixed at x = 0,
and its right end is attached to a spring with constant k that is unstretched when the bar
is unstrained (figure below). If, at time t = 0, the bar is pulled to the right so that cross
sections are displaced according to f(x) = x/100, then released from rest at this position, find
subsequent displacements of cross sections.

x L

k

x=0

Equations 6.12a–e describe displacements of a taut string when p 6= 0. Separation
leads to a solution in form 6.20 with coefficients cn and dn given by 6.24 and 6.25.
The normal modes of this solution are

Hn(x, t) = Xn(x)[cnφ1(t) + dnφ2(t)],

where Xn(x) are the eigenfunction in Table 5.1. Nodes of Hn(x, t) are points that
remain motionless for all t. They are the zeros of Xn(x). In Exercises 12–17 we
show that the number of nodes of the nth mode is n− 1 (except when both ends of
the string are looped around vertical supports and move freely without friction).

12. Show that when both ends are fixed on the x-axis, the distance between successive nodes is
L/n, and hence there are n− 1 equally spaced nodes between x = 0 and x = L.

13. Show that when the end x = 0 is fixed on the x-axis and the end x = L is looped around a
vertical support and moves without friction thereon (a free end), there are n− 1 nodes between
x = 0 and x = L. A similar result holds when the left end is free and the right end is fixed.

14. Verify that when both ends are free, the nth mode has n nodes.

15. (a) Verify that when the end x = 0 is fixed on the x-axis and the end x = L satisfies a
homogeneous Robin condition, nodes of the nth mode occur for xm = mπ/λn, m > 0 an
integer.

(b) Use Figure 5.4 to establish that eigenvalues λn satisfy

(n− 1)π
L

< λn <
nπ

L
.

Use this to verify the existence of n− 1 nodes. A similar result holds when the right end is
fixed and the left end satisfies a homogeneous Robin condition.

16. (a) Verify that when end x = 0 is free and end x = L satisfies a homogeneous Robin condition,
nodes of the nth mode occur for xm = (2m− 1)π/(2λn), m > 0 an integer.

(b) Establish the inequality
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(n− 1)π
L

< λn <
(2n− 1)π

2L
for this case, and use this to verify that there are n− 1 nodes. A similar result holds when
the right end is free and the left end satisfies a homogeneous Robin condition.

17. The final case is when both ends of the string satisfy homogeneous Robin conditions, in which
case Xn(x) is given in line 1 of Table 5.1.
(a) Show that zeros of Xn(x) occur for xm = mπ/λn − φn, where m is an integer, and

φn = (1/λn)Tan−1(λnl1/h1).
(b) Establish the inequality in Exercise 16(b) and the fact that the difference between successive

nodes is π/λn.
(c) Use the results in part (b) to verify that there are n− 1 nodes between x = 0 and x = L.
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§6.3 Homogeneous Boundary Value Problems in Two Variables

The Helmholtz equation on a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′ takes the form

∂2V

∂x2
+
∂2V

∂y2
+ k2V = 0, 0 < x < L, 0 < y < L′, (6.26a)

where k is some given constant. When k = 0, we obtain the important special case
of Laplace’s equation. A boundary value problem accompanying either of these
equations is said to be homogeneous if the boundary conditions on a pair of parallel
sides are homogeneous. For example, the following conditions on x = 0 and x = L
yield a homogeneous problem:

V (0, y) = 0, 0 < y < L′, (6.26b)
∂V (L, y)

∂x
= 0, 0 < y < L′, (6.26c)

V (x, 0) = f(x), 0 < x < L, (6.26d)
V (x,L′) = g(x), 0 < x < L. (6.26e)

No real difficulty is encountered in the solution of problem 6.26 if 6.26b,c are not
homogeneous, if say

V (0, y) = h(y), 0 < y < L′, (6.26f)
∂V (L, y)

∂x
= k(y), 0 < y < L′. (6.26g)

We simply use superposition to write V (x, y) = V1(x, y) + V2(x, y), where V1 and
V2 both satisfy PDE 6.26a and the following boundary conditions:

V1(0, y) = 0, 0 < y < L′,

∂V1(L, y)
∂x

= 0, 0 < y < L′,

V1(x, 0) = f(x), 0 < x < L,

V1(x,L′) = g(x), 0 < x < L;

V2(0, y) = h(y), 0 < y < L′,

∂V2(L, y)
∂x

= k(y), 0 < y < L′,

V2(x, 0) = 0, 0 < x < L,

V2(x,L′) = 0, 0 < x < L.

In other words, the nonhomogeneous boundary value problem 6.26a,d,e,f,g can be
divided into two homogeneous problems. It follows then, that separation of variables
as illustrated here on problem 6.26a–e is typical for all boundary value problems on
rectangles (provided the PDE is homogeneous).

Substitution of a separated function V (x, y) = X(x)Y (y) into 6.26a,b,c leads
to a Sturm-Liouville system in X(x),

X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X ′(L),

and an ODE in Y (y),

Y ′′ − (λ2 − k2)Y = 0, 0 < y < L′.

Eigenpairs of the Sturm-Liouville system are λ2
n = (2n−1)2π2/(4L2) with eigenfunc-

tions Xn(x) =
√

2/L sinλnx. If we assume that λ2
n > k2, for all n, corresponding
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solutions for Y (y) are Y (y) = A cosh
√
λ2

n − k2y+B sinh
√
λ2

n − k2y. We superpose
separated functions and take

V (x, y) =
∞∑

n=1

[An cosh
√
λ2

n − k2y + Bn sinh
√
λ2

n − k2y]Xn(x). (6.27a)

Boundary conditions 6.26d,e require that for 0 < x < L,

f(x) =
∞∑

n=1

AnXn(x), g(x) =
∞∑

n=1

[An cosh
√
λ2

n − k2L′ +Bn sinh
√
λ2

n − k2L′]Xn(x).

These imply that

An =
∫ L

0

f(x)Xn(x) dx (6.27b)

and

An cosh
√
λ2

n − k2L′ +Bn sinh
√
λ2

n − k2L′ =
∫ L

0

g(x)Xn(x) dx (6.27c)

or,

Bn =
1

sinh
√
λ2

n − k2L′

[∫ L

0

g(x)Xn(x) dx−An cosh
√
λ2

n − k2L′

]
. (6.27d)

The formal solution of problem 6.26a–e is therefore

V (x, y) =

√
2
L

∞∑

n=1

[An cosh
√
λ2

n − k2y +Bn sinh
√
λ2

n − k2y] sin λnx, (6.28)

where An and Bn are calculated according to formulas 6.27b,d.
As a specific example, suppose k = 0, so that PDE 6.26a becomes Laplace’s

equation, and suppose that f(x) = 0 and g(x) = x. One possible interpretation of
problem 6.26 would be that for steady-state temperature in a rectangle in which
sides x = 0 and y = 0 are held at temperature 0◦C, side x = L is insulated, and
y = L′ has temperature x. The solution of this problem is

V (x, y) =

√
2
L

∞∑

n=1

Bn sinh
(2n− 1)πy

2L
sin

(2n− 1)πx
2L

,

where

Bn =
1

sinhλnL′

∫ L

0

x

√
2
L

sin
(2n− 1)πx

2L
dx =

4
√

2L3/2(−1)n+1

(2n− 1)2π2 sinh [(2n− 1)πL′/(2L)]
.

Thus,

V (x, y) =

√
2
L

∞∑

n=1

4
√

2L3/2(−1)n+1

(2n− 1)2π2 sinh (2n− 1)πL′/(2L)]
sinh

(2n− 1)πy
2L

sin
(2n− 1)πx

2L

=
8L
π2

∞∑

n=1

(−1)n+1

(2n− 1)2 sinh [(2n− 1)πL′/(2L)]
sinh

(2n− 1)πy
2L

sin
(2n− 1)πx

2L
.
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We now consider Laplace’s equation in a circle of radius a with a Dirichlet
boundary condition (Figure 6.8),

∂2V

∂r2
+

1
r

∂V

∂r
+

1
r2
∂2V

∂θ2
= 0, 0 < r < a, −π < θ ≤ π, (6.29a)

V (a, θ) = f(θ), −π < θ ≤ π. (6.29b)

The solution of this problem describes a
number of physical phenomena. It represents
(axially symmetric) electrostatic potential
in a source-free cylinder r ≤ a, with
potential prescribed on the surface of the
cylinder r = a as f(θ). Also described is
steady-state temperature in a thin circular
plate, insulated top and bottom, with cir-
cumferential temperature f(θ). Finally,
V (r, θ) represents static deflections of a

y

x

V a f
a

a

( , = ( )q q)

circular membrane subjected to no external Figure 6.8
forces but with edge deflections f(θ).

When we substitute a separated function V (r, θ) = R(r)H(θ) into the PDE
and multiply by r2/V (r, θ), separation results,

−r
2R′′

R
− rR′

R
=
H ′′

H
= −λ2 = constant.

Thus, R(r) and H(θ) must satisfy the ODEs

r2R′′ + rR′ − λ2R = 0, H ′′ + λ2H = 0.

Now, V (r, θ) must be 2π-periodic in θ, as must its first derivative with respect to θ;
that is,

V (r, θ + 2π) = V (r, θ),
∂V (r, θ + 2π)

∂θ
=
∂V (r, θ)
∂θ

.

These imply that H(θ) and H ′(θ) must also be periodic. It follows that H(θ) must
satisfy the periodic Sturm-Liouville system

H ′′ + λ2H = 0, −π < θ < π,

H(−π) = H(π),
H ′(−π) = H ′(π).

According to Example 5.2 in Section 5.1 and equations 5.20 in Section 5.2, eigen-
values of this system are λ2

n = n2 (n ≥ 0), with a single eigenfunction 1/
√

2π cor-
responding to λ0 = 0, and a pair of eigenfunctions (1/

√
π) cosnθ and (1/

√
π) sinnθ

corresponding to λ2
n = n2 (n > 0).

The differential equation in R(r) is a Cauchy-Euler equation, which can be
solved (in the case when n > 0) by setting R(r) = rm, m an unknown constant.
This results in the general solution



246 SECTION 6.3

R(r) =
{
A+B ln r, n = 0
Arn + Br−n, n ≥ 1. (6.30)

For these solutions to remain bounded near r = 0, we must set B = 0. Separated
functions have now been determined to be A/

√
2π corresponding to λ0 = 0, and

(Arn/
√
π) cosnθ and (Arn/

√
π) sinnθ corresponding to λn = n (n > 0). To satisfy

boundary condition 6.29b, we superpose separated functions and take

V (r, θ) =
A0√
2π

+
∞∑

n=1

rn

(
An

cosnθ√
π

+Bn
sinnθ√

π

)
. (6.31a)

The boundary condition requires

f(θ) =
A0√
2π

+
∞∑

n=1

an

(
An

cosnθ√
π

+Bn
sinnθ√

π

)
, −π < θ ≤ π,

from which

A0 =
∫ π

−π

f(θ)
1√
2π
dθ, An =

1
an

∫ π

−π

f(θ)
cosnθ√

π
dθ, Bn =

1
an

∫ π

−π

f(θ)
sinnθ√

π
dθ. (6.31b)

(see equations 5.20 in Section 5.2 with L = π and x replaced by θ.) The formal
solution of problem 6.29 is now complete; it is series 6.31a with coefficients defined
by 6.31b. An integral expression for the solution can be obtained by substituting
coefficients An and Bn into 6.31a. In order to keep variable θ distinct from the
variable of integration in 6.31b, we replace θ by u in 6.31b,

V (r, θ) =
1
2π

∫ π

−π

f(u) du+
∞∑

n=1

1
π

(r
a

)n
[
cosnθ

∫ π

−π

f(u) cosnudu+ sinnθ
∫ π

−π

f(u) sinnudu
]

=
1
π

[
1
2

∫ π

−π

f(u) du+
∞∑

n=1

(r
a

)n
∫ π

−π

f(u) cosn(θ − u) du

]
. (6.32)

If we interchange the order of integration and summation,

V (r, θ) =
1
π

∫ π

−π

[
1
2

+
∞∑

n=1

( r
a

)n

cosn(θ − u)

]
f(u) du.

The series can be summed in closed form by noting that cosn(θ − u) is the real part
of a complex exponential, cosn(θ − u) = Re[ein(θ−u)],

∞∑

n=1

( r
a

)n

cosn(θ − u) =
∞∑

n=1

( r
a

)n

Re[ein(θ−u)] = Re

[ ∞∑

n=1

( r
a
ei(θ−u)

)n
]
.

Since the right side is a geometric series with common ratio (r/a)ei(θ−u), converging
when r < a, we may write

∞∑

n=1

( r
a

)n

cosn(θ − u) = Re
[

(r/a)ei(θ−u)

1 − (r/a)ei(θ−u)

]
= Re

[
r[cos (θ − u) + i sin (θ − u)]

a− r[cos (θ − u) + i sin (θ − u)]

]

=
ar cos (θ − u) − r2

a2 + r2 − 2ar cos (θ − u)
. (6.33)
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Consequently,

V (r, θ) =
1
π

∫ π

−π

[
1
2

+
ar cos (θ − u) − r2

a2 + r2 − 2ar cos (θ − u)

]
f(u) du

=
a2 − r2

2π

∫ π

−π

f(u)
a2 + r2 − 2ar cos (θ − u)

du. (6.34)

This result is called Poisson’s integral formula for a circle. It expresses the
solution to Laplace’s equation inside the circle r ≤ a in terms of its values on the
circle. Immediate consequences of the formula are the following two results.

Theorem 6.1 When V (r, θ) is the solution to Dirichlet’s problem for Laplace’s equation in a circle
r ≤ a, the value V (0, θ) at the centre of the circle is the average of its values on
r = a.

Proof According to formula 6.34, the value of V (r, θ) at r = 0 is

V (0, θ) =
a2

2π

∫ π

−π

f(u)
a2

du =
1

2πa

∫ π

−π

f(θ) a dθ,

the average value of f(θ) on r = a.

Corollary When V (r, θ) is the solution to Dirichlet’s problem for Laplace’s equation in a circle
r ≤ a, the average value of V (r, θ) around every circle centred at r = 0 is V (0, θ).

EXERCISES 6.3

1. (a) Solve Exercise 30 from Section 4.2.
(b) Find an approximate value for the potential at the centre of the plate if the plate is square.

2. The temperature in a circular plate with insulated faces is in a steady-state situation. The
temperature at one point along the edge of the plate is zero and then increases linearly with
respect to angle around the circle to temperature 100◦C at the opposite end of the diameter of
the plate. Temperature then decreases linearly back to zero around the other half of the edge.
What is the temperature at the centre of the plate?

3. Temperature in a square plate is in a steady-state situation. Three of the edges are at temper-
ature zero and temperature along the fourth edge is a constant value U0. Without solving the
boundary value problem for the steady-state temperature in the plate, find the temperature at
the centre of the plate?

4. (a) Find the steady-state temperature U(x, y) inside a plate 0 ≤ x, y ≤ L if the sides x = 0,
y = 0, and x = L are all insulated and the boundary condition on y = L is ∂U(x,L)/∂y =
f(x). Can f(x) be specified arbitrarily?

(b) What is the solution when f(x) = (L−2x)/2 and the temperature at the centre of the plate
is 50◦C?

(c) What is the solution when f(x) = x(L− x)?

5. (a) Find the steady-state temperature U(x, y) inside a rectangular plate 0 ≤ x ≤ L, 0 ≤ y ≤ L′

if the sides y = 0 and y = L′ are insulated, the temperature along x = L is prescribed by the
function f2(y), 0 < y < L′, and the boundary condition along x = 0 is ∂U(0, y)/∂x = f1(y),
0 < y < L′.

(b) Simplify the solution in part (a) when f1(y) and f2(y) are constants.
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6. A membrane is stretched tightly over the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′. Its edges are given
deflections that are described by the following boundary conditions:

z(0, y) = f1(y), 0 < y < L′,

z(L, y) = f2(y), 0 < y < L′,

z(x, 0) = g1(x), 0 < x < L,

z(x,L′) = g2(x), 0 < x < L.

Find static deflections of the membrane when all external forces are negligible compared with
tensions in the membrane.

7. Solve Laplace’s equation in the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′ subject to the following
boundary conditions:

V (0, y) = f1(y), 0 < y < L′,

Vx(L, y) = f2(y), 0 < y < L′,

Vy(x, 0) = 0, 0 < x < L,

V (x,L′) = g(x), 0 < x < L.

8. (a) Solve Laplace’s equation in a semicircle r ≤ a, 0 ≤ θ ≤ π when the unknown function is
zero on the diameter and f(θ) on the semicircle.

(b) Simplify the solution when f(θ) = 1. Evaluate this solution along the y-axis.

9. (a) Along the circle r = a, a solution V (r, θ) of Laplace’s equation must take on the value 1 for
0 < θ < π and 0 for −π < θ < 0. Show that the series solution for V (r, θ) is

V (r, θ) =
1
2

+
2
π

∞∑

n=1

(r/a)2n−1

2n− 1
sin (2n− 1)θ.

A closed-form solution of this problem is found in Exercise 29.
(b) What is the value of V (r, θ) along the x-axis?

10. Find the steady-state temperature inside the quarter-circle r ≤ a, 0 ≤ θ ≤ π/2 if its straight
edges are insulated and the temperature along the curved edge is sin θ.

11. (a) Solve boundary value problem 6.29 when boundary condition 6.29b is of Neumann type:

∂V (a, θ)
∂r

= f(θ), −π < θ ≤ π.

(b) Show that the solution can be expressed in the form

V (r, θ) = C − a

2π

∫ π

−π

f(u) ln [a2 + r2 − 2ar cos (θ − u)] du,

where C is an arbitrary constant. This result is called Dini’s integral.

12. Solve boundary value problem 6.29 when boundary condition 6.29b is of Robin type:

l
∂V (a, θ)

∂r
+ hV (a, θ) = f(θ), −π < θ ≤ π.
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13. (a) Show that the negative of Poisson’s integral formula 6.34 is the solution to Laplace’s equation
exterior to the circle r = a if V (r, θ) is required to be bounded at infinity [i.e., V (r, θ) must
be bounded for large r].

(b) Show that if V (r, θ) is the solution to the interior problem, then V (a2/r, θ) is the solution
to the exterior problem.

(c) Is the solution to the exterior problem different if V (r, θ) must vanish at infinity?

14. (a) Show that if V (r, θ) is required to be bounded at infinity, then Dini’s integral of Exercise
11 is also the solution of Laplace’s equation exterior to the circle r = a when the boundary
condition is Neumann, −∂V (a, θ)/∂r = f(θ), −π < θ ≤ π.

(b) Is the solution different if V (r, θ) must vanish at infinity?

15. (a) Solve Laplace’s equation exterior to the circle r = a when the solution is required to be
bounded at infinity and satisfy a Robin boundary condition at r = a,

−l ∂V (a, θ)
∂r

+ hV (a, θ) = f(θ), −π < θ ≤ π.

(b) Is the solution different if V (r, θ) must vanish at infinity?

16. Solve Laplace’s equation inside a circular annulus a < r < R with Dirichlet boundary conditions

V (a, θ) = f1(θ), V (R, θ) = f2(θ), −π < θ ≤ π.

17. Solve Exercise 16 when the boundary conditions are Neumann:

−∂V (a, θ)
∂r

= f1(θ),
∂V (R, θ)

∂r
= f2(θ), −π < θ ≤ π.

18. Solve Exercise 16 when the boundary conditions are Robin:

−l1
∂V (a, θ)
∂r

+ h1V (a, θ) = f1(θ), l2
∂V (R, θ)

∂r
+ h2V (R, θ) = f2(θ), −π < θ ≤ π.

19. (a) A plate with insulated faces is in the shape of a wedge bounded by the edges θ = 0, θ = α,
and r = a. If its straight edges are also insulated and edge r = a is held at temperature
f(θ), find the steady-state temperature in the plate.

(b) Simplify the solution in part (a) when f(θ) = 1 and when f(θ) = θ.

20. Repeat Exercise 19 if the curved side is insulated and the straight sides have prescribed tem-
peratures.

21. (a) A circular membrane of radius a is in a static position with radial lines θ = 0 and θ = α
clamped on the xy-plane. If the displacement of the edge r = a is f(θ) for 0 < θ < α, find
the displacement in the sector 0 < θ < α.

(b) Take the limit of your answer in part (a) as α → 2π. What does this function represent
physically?

(c) What is the answer in part (b) if f(θ) = sin (θ/2)?

22. (a) Solve Laplace’s equation in the region shown in the left figure below with the given boundary
conditions.

(b) Simplify the solution when f(θ) = V0, a constant.
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23. (a) Solve Laplace’s equation in the region shown in the right figure above with the given bound-
ary conditions. Hint: See Exercise 19 in Section 5.2 for eigenfunctions.

(b) Simplify the solution when f(r) = V0, a constant.

24. Solve Laplace’s equation in the region shown in the left figure below with the given boundary
conditions. Hint: See Exercise 19 in Section 5.2 for eigenfunctions.

y

x

V

b

=

aV=

V =0

0r

r

f r( ) V= g r( )

y

x

V

b

=

aV=

V =0

0r

f r( ) V= g r( )

l V+h

25. Solve Laplace’s equation in the region shown in the right figure above with the given boundary
conditions. Hint: See Exercise 20 in Section 5.2 for eigenfunctions.

26. Solve Laplace’s equation in the region shown in the left figure below with the given boundary
conditions.

y

x

V

b

=

a

V=

V =0

0

f ( )

V=g( )

q

q

q

q

y

x

V

b

=

a

V

=V

=0

0

f ( )

V

=g( )r

r

r

r

27. Solve Laplace’s equation in the region shown in the right figure above with the given boundary
conditions. Hint: See Exercise 19 in Section 5.2 for eigenfunctions.
When f(θ) in the boundary condition for Dirichlet problem 6.29 is piecewise con-
stant, Poisson’s integral formula for a circle can be evaluated analytically. We
illustrate this in Exercises 28–30.

28. Show that when a > r > 0,
∫

1
a2 + r2 − 2ar cos (θ − u)

du =
−2

a2 − r2
Tan−1

[
a+ r

a− r
tan

(
θ − u

2

)]
+ C,

provided u 6= θ ± π.
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29. (a) When

f(θ) =
{

0, −π < θ < 0
1, 0 < θ < π

,

use the result of Exercise 28 to obtain the following solution for problem 6.29:

V (r, θ) =





1 +
1
π

Tan−1

[
a+ r

a− r
tan

(
θ

2

)]
+

1
π

Tan−1

[
a+ r

a− r
cot
(
θ

2

)]
, −π < θ < 0

1
π

Tan−1

[
a+ r

a− r
tan

(
θ

2

)]
+

1
π

Tan−1

[
a+ r

a− r
cot
(
θ

2

)]
, 0 < θ < π.

(b) For θ = 0 and θ = π, the solution in part (a) must be regarded in the sense of limits as
θ → 0+ and θ → π−. What are V (r, 0) and V (r, π)?

(c) Use trigonometry to combine the description for V (r, θ) in part (a) into the single expression

V (r, θ) =
1
2

+
1
π

Tan−1

(
2ar sin θ
a2 − r2

)
.

(d) Solve the expression in part (c) for r in terms of V and θ, and use the result to plot
equipotential curves for V = 1/8, 1/4, 3/8, 5/8, 3/4, and 7/8.

30. Use the result of Exercise 29 to solve problem 6.29 when

f(θ) =
{
V2, −π < θ < 0
V1, 0 < θ < π

.

31. Find expressions similar to those in Exercise 29(a) when the boundary condition is

f(θ) =





0, −π < θ < 0
1, 0 < θ < π/2
0, π/2 < θ ≤ π

.
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§6.4 Homogeneous Problems in Three and Four Variables (Cartesian Coordinates Only)

In this section we extend the technique of separation of variables to homogeneous
problems in two and three space variables, but confine our discussions to rectangles
0 ≤ x ≤ L, 0 ≤ y ≤ L′ in the xy-plane and boxes 0 ≤ x ≤ L, 0 ≤ y ≤ L′ , 0 ≤ z ≤ L′′

in space. In other words, boundaries of the region under consideration must be
coordinates curves x = constant and y = constant in the xy-plane and coordinate
surfaces x = constant, y = constant, and z = constant in space. This is an inherent
restriction on the method of separation of variables for any problem whatsoever, be
it initial boundary value or boundary value; be it two- or three- dimensional; be
it in Cartesian, polar, cylindrical, or spherical coordinates. Separation of variables
requires a region bounded by coordinate curves or surfaces; then and only then will
separation of variables lead to Sturm-Liouville systems in space variables.

First consider the homogeneous initial boundary value problem

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0, (6.35a)

z(0, y, t) = 0, 0 < y < L′, t > 0, (6.35b)
z(L, y, t) = 0, 0 < y < L′, t > 0, (6.35c)
z(x, 0, t) = 0, 0 < x < L, t > 0, (6.35d)
z(x,L′, t) = 0, 0 < x < L, t > 0, (6.35e)
z(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′, (6.35f)
zt(x, y, 0) = 0, 0 < x < L, 0 < y < L′. (6.35g)

Physically described are the vertical oscillations of a rectangular membrane that is
released from rest at time t = 0 with displacement described by f(x, y). Its edges
are fixed on the xy-plane for all time, and no external forces act on the membrane.

If a function separated in the form z(x, y, t) = X(x)Y (y)T (t) is substituted
into the PDE, the x-dependence can be separated from the y- and t-dependence,

X ′′

X
= −Y

′′

Y
+

T ′′

c2T
= −λ2 = constant independent of x, y, and t.

When this is combined with boundary conditions 6.35b,c, a Sturm-Liouville system
is obtained,

X ′′ + λ2X = 0, 0 < x < L, (6.36a)
X(0) = 0 = X(L). (6.36b)

Corresponding to eigenvalues λ2
n = n2π2/L2 are normalized eigenfunctionsXn(x) =√

2/L sin (nπx/L).
We continue to separate the equation in Y (y) and T (t),

Y ′′

Y
=

T ′′

c2T
+ λ2

n = −µ2 = constant independent of y and t.

Combine this with boundary conditions 6.35d,e, and the result is

Y ′′ + µ2Y = 0, 0 < y < L′, (6.37a)
Y (0) = 0 = Y (L′). (6.37b)
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Eigenvalues of this proper Sturm-Liouville system are µ2
m = m2π2/L′2, with or-

thonormal eigenfunctions Ym(y) =
√

2/L′ sin (mπy/L′).
The ordinary differential equation

T ′′ + c2(λ2
n + µ2

m)T = 0

has general solution A cos c
√
λ2

n + µ2
mt + B sin c

√
λ2

n + µ2
mt. But initial condition

6.35g requires B = 0, and therefore T (t) = A cos c
√
λ2

n + µ2
mt. We have determined

that separated functions

Xn(x)Ym(y)T (t) = A

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ cos c
√
λ2

n + µ2
mt,

for any positive integers n and m and any constant A, satisfy PDE 6.35a, boundary
conditions 6.35b,c,d,e, and initial condition 6.35g. Since these conditions are all
linear and homogeneous, we superpose separated functions in an attempt to satisfy
the initial displacement condition,

z(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ cos c
√
λ2

n + µ2
mt, (6.38a)

where Amn are constants. Condition 6.35f requires

f(x, y) =
∞∑

m=1

∞∑

n=1

Amn

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ , 0 < x < L, 0 < y < L′.

If we multiply this equation by
√

2/L sin (kπx/L), integrate with respect to x from
x = 0 to x = L, and interchange orders of summation and integration on the right,
orthogonality of the eigenfunctions

√
2/L sin (nπx/L) leads to

∫ L

0

f(x, y)

√
2
L

sin
kπx

L
dx =

∞∑

m=1

Amk

√
2
L′ sin

mπy

L′ , 0 < y < L′.

Multiplication by
√

2/L′ sin (jπy/L′) and integration with respect to y from y = 0
to y = L′ gives, similarly,

∫ L′

0

[∫ L

0

f(x, y)

√
2
L

sin
kπx

L
dx

]√
2
L′ sin

jπy

L′ dy = Ajk.

Thus, coefficients Amn in solution 6.38a are given by

Amn =
∫ L′

0

∫ L

0

f(x, y)

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ dx dy, (6.38b)

and the formal solution is complete.
As a special case, suppose f(x, y) = xy(L− x)(L′ − y) so that cross sections of

the initial displacement parallel to the xz- and yz-planes are parabolic. Integration
by parts yields

Amn =
8(LL′)5/2[1 + (−1)n+1][1 + (−1)m+1]

n3m3π6
,

and hence,
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z(x, y, t) =
∞∑

m=1

∞∑

n=1

8(LL′)5/2[1 + (−1)n+1][1 + (−1)m+1]
n3m3π6

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ ∗

cos c

√
n2π2

L2
+
m2π2

L′2 t.

Since terms are nonzero only when both m and n are odd integers, we may write

z(x, y, t) =
64(LL′)2

π6

∞∑

m=1

∞∑

n=1

1
(2n− 1)3(2m− 1)3

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L′ ∗

cosπc

√
(2n− 1)2

L2
+

(2m− 1)2

L′2 t. (6.39)

Terms in this series are called the normal modes of vibration for the mem-
brane (similar to the normal modes of a vibrating string in Section 6.2). The first
term corresponding to n = 1 and m = 1,

H1,1(x, y, t) =
64(LL′)2

π6
sin

πx

L
sin

πy

L′ cosπc

√
1
L2

+
1
L′2 t,

is called the fundamental mode of vibration. It represents displacements of a
membrane identical to that in problem 6.35, except that the initial displacement
is described by [64(LL′)2/π6] sin (πx/L) sin (πy/L′). For such an initial displace-
ment, the membrane oscillates back and forth between the enveloping surfaces
±[64(LL′)2/π6] sin (πx/L) sin (πy/L′); the shape of the membrane is always the
same, the cosine factor describes the time dependence of the oscillations.

The n = 1 and m = 2 term in series 6.39 is

H2,1(x, y, t) =
64(LL′)2

27π6
sin

πx

L
sin

3πy
L′ cosπc

√
1
L2

+
9
L′2 t.

It represents vibrations of the same membrane but with an initial displacement
given by [64(LL′)2/(27π6)] sin (πx/L) sin (3πy/L′). The membrane oscillates back
and forth between this surface and its negative. The lines y = L′/3 and y = 2L′/3,
which always remain motionless, are called nodal curves for this mode of vibration.

The mode

H1,2(x, y, t) =
64(LL′)2

27π6
sin

3πx
L

sin
πy

L′ cosπc

√
9
L2

+
1
L′2 t

is similar with nodal curves x = L/3 and x = 2L//3.
Solution 6.39 is the sum of an infinity of modes of vibration, the modes of lower

orders contributing more significantly than higher-order ones.
We now consider a three-dimensional boundary value problem,

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0, 0 < x < L, 0 < y < L′, 0 < z < L′′, (6.40a)

∂U(0, y, z)
∂x

= 0, 0 < y < L′, 0 < z < L′′, (6.40b)

U(L, y, z) = 0, 0 < y < L′, 0 < z < L′′, (6.40c)
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U(x, 0, z) = 0, 0 < x < L, 0 < z < L′′, (6.40d)
∂U(x,L′, z)

∂y
= 0, 0 < x < L, 0 < z < L′′, (6.40e)

U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′, (6.40f)
U(x, y, L′′) = g(x, y), 0 < x < L, 0 < y < L′. (6.40g)

The problem describes steady-state temperature
U(x, y, z) in the box of Figure 6.9, where two faces
(x = 0 and y = L′) are insulated, two faces
(x = L and y = 0) are held at temperature
zero, and the remaining faces have prescribed
nonzero temperatures f(x, y) and g(x, y). The
problem is said to be homogeneous because
the PDE is homogeneous, and all boundary con-
ditions are homogeneous except those on a single

x

z

y
L

L

L Ux

U

U f x,y

U g x,y

y= 0

=0
= ( )

= ( )U= 0

U =0

pair of opposite faces. Figure 6.9
When a function with variables separated, U(x, y, z) = X(x)Y (y)Z(z) is sub-

stituted into the PDE, separation gives

X ′′

X
= −Y

′′

Y
− Z ′′

Z
= −λ2 = constant independent of x, y, and z.

Combined with boundary conditions 6.40b,c, this yields

X ′′ + λ2X = 0, 0 < x < L,

X ′(0) = 0 = X(L).

Eigenvalues of this Sturm-Liouville are λ2
n = (2n − 1)2π2/(4L2), with normalized

eigenfunctions Xn(x) =
√

2/L cosλnx (see Table 5.1).
Further separation in Y (y) and Z(z) leads to

Y ′′

Y
= −Z

′′

Z
+ λ2

n = −µ2 = constant independent of y and z.

This equation, along with boundary conditions 6.40d,e gives

Y ′′ + µ2Y = 0, 0 < y < L′,

Y (0) = 0 = Y ′(L′).

Eigenpairs of this Sturm-Liouville system are µ2
m = (2m−1)2π2/(4L′2) and Ym(y) =√

2/L′ sinµmy.
Finally, the ordinary differential equation

Z ′′ − (λ2
n + µ2

m)Z = 0

has general solution Z(z) = A cosh
√
λ2

n + µ2
mz+B sinh

√
λ2

n + µ2
mz. We have now

determined that separated functions

Xn(x)Ym(y)Z(z) = Xn(x)Ym(y)[A cosh
√
λ2

n + µ2
mz +B sinh

√
λ2

n + µ2
mz]

for positive integers n and m and arbitrary constants A and B satisfy PDE 6.40a
and boundary conditions 6.40b–e. To accommodate the remaining two boundary
conditions we superpose separated functions and take
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U(x, y, z) =
∞∑

m=1

∞∑

n=1

Xn(x)Ym(y)[Amn cosh
√
λ2

n + µ2
mz + Bmn sinh

√
λ2

n + µ2
mz],(6.41a)

in which case conditions 6.40f,g require

f(x, y) =
∞∑

m=1

∞∑

n=1

AmnXn(x)Ym(y), 0 < x < L, 0 < y < L′,

and

g(x, y) =
∞∑

m=1

∞∑

n=1

Xn(x)Ym(y)[Amn cosh
√
λ2

n + µ2
mL

′′ + Bmn sinh
√
λ2

n + µ2
mL

′′],

0 < x < L, 0 < y < L′.

Successive multiplications of these equations by eigenfunctions in x and y and in-
tegrations with respect to x and y lead to the following expressions for Amn and
Bmn,

Amn =
∫ L′

0

∫ L

0

f(x, y)Xn(x)Ym(y)dx dy, (6.41b)

and

Bmn =
1

sinh
√
λn

2 + µm
2L′′

[∫ L′

0

∫ L

0

g(x, y)Xn(x)Ym(y) dx dy

− Amn cosh
√
λ2

n + µ2
mL

′′

]
. (6.41c)

In Section ‘The Multidimensional Eigenvalue Problem’, solutions like 6.38
and 6.41 are approached from a different point of view.

EXERCISES 6.4

Part A Heat Conduction

1. A thin rectangle occupying the region 0 ≤ x ≤ L, 0 ≤ y ≤ L′ has its top and bottom faces insu-
lated. At time t = 0, its temperature is described by the function f(x, y). Find its temperature
for t > 0, if all four edges x = 0, y = 0, x = L, and y = L′ are maintained at 0◦C.

2. Repeat Exercise 1 if edges x = 0 and y = L′ are insulated.

3. (a) Repeat Exercise 1 if edges y = 0 and y = L′ are insulated.
(b) Simplify the solution if the initial temperature is a function only of x.

4. Repeat Exercise 1 if heat is transferred to an environment at temperature 0◦C along the edge
x = L (according to Newton’s law of cooling).

5. A block of metal occupies the region 0 ≤ x ≤ L, 0 ≤ y ≤ L′, 0 ≤ z ≤ L′′. The surfaces y = 0,
y = L′, and z = L′′ are insulated, and faces x = 0, x = L, and z = 0 are held at temperature
0◦C. If the temperature of the block is initially a constant U0 throughout, find the temperature
in the block thereafter.
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6. Repeat Exercise 5 if the face z = 0 is insulated, and heat is transferred to the surrounding
medium, at temperature zero, according to Newton’s law of cooling on the face z = L′′.

7. Repeat Exercise 5 if face z = 0 is insulated.

8. Repeat Exercise 5 if face y = L′ is held at temperature 0◦C.

9. In this exercise we prove a result for homogeneous heat conduction problems in two or three
space variables that uses solutions of one-dimensional problems provided the initial temperature
distribution is the product of one-dimensional functions. In particular, show that the solution
of the two-dimensional problem

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0,

−l1
∂U

∂x
+ h1U = 0, x = 0, 0 < y < L′, t > 0,

l2
∂U

∂x
+ h2U = 0, x = L, 0 < y < L′, t > 0,

−l3
∂U

∂y
+ h3U = 0, y = 0, 0 < x < L, t > 0,

l4
∂U

∂y
+ h4U = 0, y = L′, 0 < x < L, t > 0,

U(x, y, 0) = f(x)g(y), 0 < x < L, 0 < y < L′,

is the product of the solutions of the one-dimensional problems

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = 0, x = 0, t > 0,

l2
∂U

∂x
+ h2U = 0, x = L, t > 0,

U(x, 0) = f(x), 0 < x < L;

∂U

∂t
= k

∂2U

∂y2
, 0 < y < L′, t > 0,

−l3
∂U

∂y
+ h3U = 0, y = 0, t > 0,

l4
∂U

∂y
+ h4U = 0, y = L′, t > 0,

U(y, 0) = g(y), 0 < y < L′.

This result is easily extended to heat conduction problems in x, y, z, and t. In addition, it can
sometimes be generalized to other coordinate systems (see Exercise 19 in Section 9.1).

10. (a) Use the result of Exercise 9, together with those of Exercise 1 in Section 6.2 and Example
4.2 in Section 4.2 to solve the following heat conduction problem:

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0,

Ux(0, y, t) = 0, 0 < y < L′, t > 0,
Ux(L, y, t) = 0, 0 < y < L′, t > 0,
Uy(x, 0, t) = 0, 0 < x < L, t > 0,
U(x,L′, t) = 0, 0 < x < L, t > 0,
U(x, y, 0) = x(L′ − y), 0 < x < L, 0 < y < L′,

(b) Solve the problem in part (a) by separation of variables. Are the solutions identical?
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Part B Vibrations

11. (a) A membrane is stretched tightly over the square 0 ≤ x, y ≤ L. If all four edges are clamped
on the xy-plane and the membrane is released from rest at an initial displacement f(x, y),
find its subsequent displacements.

(b) Simplify the solution when

f(x, y) =
(L− 2|x− L/2|)(L− 2|y − L/2|)

32L
.

12. (a) A membrane is stretched tightly over the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′. Edges x = 0
and x = L are clamped on the xy-plane, but y = 0 and y = L′ are free to move vertically.
If the membrane is released from rest at time t = 0 from a position described by f(x, y),
determine subsequent displacements of the membrane.

(b) Simplify the solution when f(x, y) = (L− 2|x− L/2|)/(32L).

13. Equations 6.38 describe displacements of a rectangular membrane with edges fixed on the xy-
plane when oscillations are initiated by releasing the membrane from rest at a prescribed dis-
placement. Find nodal curves for the mode
2Amn/

√
LL′ sin (nπx/L) sin (mπy/L′) cos cπ

√
n2/L2 +m2/L′2t.

14. Is there a result analogous to that in Exercise 9 for the vibration problem of displacements in
a membrane?

Part C Potential, Steady-state Heat Conduction

15. Find the potential inside the rectangular parallelopiped 0 ≤ x ≤ L, 0 ≤ y ≤ L′, 0 ≤ z ≤ L′′

if faces x = 0, y = 0, x = L, and y = L′ are all held at potential zero while faces z = 0 and
z = L′′ are maintained at potentials f(x, y) and g(x, y), respectively.

16. Repeat Exercise 15 if faces x = 0 and x = L are held at potentials h(y, z) and k(y, z), the other
four faces remaining unchanged.

17. Find the steady-state temperature distribution inside a cube 0 ≤ x, y, z ≤ L if faces x = 0 and
z = L are insulated, faces y = 0 and y = L are held at temperature zero, and heat is added to
faces x = L and z = 0 at constant rates q and Q W/m2, respectively.
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§6.5 The Multi-dimensional Eigenvalue Problem

In Section 6.4 we demonstrated that successively separating off Cartesian variables
in homogeneous problems leads to the Sturm-Liouville systems of Section 5.2. When
the problem is an initial boundary value one, as opposed to a boundary value
problem, there remains an ODE for the time dependence of the unknown function.
An alternative procedure is first to separate off the time dependence, leaving what
is called the multi-dimensional eigenvalue problem. To illustrate, suppose that the
unknown function V in the homogeneous PDE

∇2V = p
∂2V

∂t2
+ q

∂V

∂T
+ sV (6.42)

is separated into a spatial part, which we designate by W , and a time-dependent
part, T (t); that is, we set V = WT (t). (We have purposely not expressed W as
a function of coordinates because what we are about to do is independent of the
particular choice of coordinate system.) When this product representation for V
is substituted into the above PDE, the time dependence contained in T may be
separated from the spatial dependence of W :

∇2W

W
=
pT ′′ + qT ′ + sT

T
= −λ2 = constant independent of all variables.

It follows that T (t) must satisfy the ODE

pT ′′ + qT ′ + (s+ λ2)T = 0

and W must satisfy the Helmholtz equation

∇2W + λ2W = 0.

When PDE 6.42 is accompanied by homogeneous boundary conditions on V , these
become homogeneous boundary conditions for W ,

∇2W + λ2W = 0, (6.43a)
Homogeneous boundary conditions. (6.43b)

This is called a multi-dimensional eigenvalue problem. For certain eigenvalues
λ2, there exist nontrivial solutions of problem 6.43 called eigenfunctions. Properties
of eigenvalues and eigenfunctions of this eigenvalue problem parallel those of Sturm-
Liouville systems in Chapter 5, but important differences do exist. We consider one
example here and give general discussions and further examples in the exercises.

When boundary conditions 6.43b are of Dirichlet type on the edges of a rect-
angle 0 ≤ x ≤ L, 0 ≤ y ≤ L′, problem 6.43 takes the form

∂2W

∂x2
+
∂2W

∂y2
+ λ2W = 0, 0 < x < L, 0 < y < L′, (6.44a)

W (0, y) = 0, 0 < y < L′, (6.44b)
W (L, y) = 0, 0 < y < L′, (6.44c)
W (x, 0) = 0, 0 < x < L, (6.44d)
W (x,L′) = 0, 0 < x < L. (6.44e)
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To solve this problem, we separate W (x, y) = X(x)Y (y). This results in the Sturm-
Liouville systems

X ′′ + µ2X = 0, 0 < x < L,

X(0) = 0 = X(L);
Y ′′ + (λ2 − µ2)Y = 0, 0 < y < L′,

Y (0) = 0 = Y (L′),

solutions of which are

Xn(x) =

√
2
L

sin
nπx

L
corresponding to eigenvalues µ2

n = n2π2/L2,

and

Ym(y) =

√
2
L′ sin

mπy

L′ corresponding to eigenvalues λ2 − µ2
n = m2π2/L′2.

In other words, eigenvalues of problem 6.44 are λ2
mn = n2π2/L2 +m2π2/L′2, with

corresponding eigenfunctions

Wmn(x, y) =
2√
LL′

sin
nπx

L
sin

mπy

L′ . (6.45)

It is straightforward to show that these functions are orthonormal on the rectangle
with respect to the weight function p(x, y) = 1; that is,

∫ L

0

∫ L′

0

Wmn(x, y)Wlk(x, y) dydx =
{

1, if n = k and m = l
0, otherwise. (6.46)

Furthermore, suppose we are given a function f(x, y) that is, along with its first
partial derivatives, piecewise continuous on the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′.
For fixed y, f(x, y) and ∂f(x, y)/∂x are piecewise continuous functions of x, and we
may therefore express f(x, y) in terms of Xn(x); that is, the eigenfunction expansion
of f(x, y) as a function of x is

f(x+, y) + f(x−, y)
2

=
∞∑

n=1

dn(y)

√
2
L

sin
nπx

L
, (6.47a)

where the functions dn(y) are defined by

dn(y) =
∫ L

0

f(x, y)

√
2
L

sin
nπx

L
dx. (6.47b)

Equations 6.47 are valid provided f(x, y) is continuous in y at the chosen value
of y. When this is not the case, these equations must be replaced by appropriate
limiting expressions. Because dn(y) is itself piecewise continuous, with a piecewise
continuous first derivative, it may be expanded in terms of Ym(y),

dn(y+) + dn(y−)
2

=
∞∑

m=1

cmn

√
2
L′ sin

mπy

L′ (6.48a)

where

cmn =
∫ L′

0

dn(y)

√
2
L′ sin

mπy

L′ dy. (6.48b)
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We combine these expressions to write
[
f(x+, y+) + f(x−, y+)

2

]
+
[
f(x+, y−) + f(x−, y−)

2

]

=
∞∑

n=1

dn(y+)

√
2
L

sin
nπx

L
+

∞∑

n=1

dn(y−)

√
2
L

sin
nπx

L

=
∞∑

n=1

[dn(y+) + dn(y−)]

√
2
L

sin
nπx

L

=
∞∑

n=1

(
2

∞∑

m=1

cmn

√
2
L′ sin

mπy

L′

)√
2
L

sin
nπx

L

= 2
∞∑

m=1

∞∑

n=1

cmn
2√
LL′

sin
nπx

L
sin

mπy

L′ .

In other words, the function f(x, y) has been expressed in terms of the orthonormal
eigenfunctions of eigenvalue problem 6.44,

f(x+, y+) + f(x−, y+) + f(x+, y−) + f(x−, y−)
4

=
∞∑

m=1

∞∑

n=1

CmnWmn(x, y) =
∞∑

m=1

∞∑

n=1

Cmn
2√
LL′

sin
nπx

L
sin

mπy

L′ , (6.49a)

where

Cmn =
∫ L

0

∫ L′

0

f(x, y)Wmn(x, y) dy dx

=
∫ L

0

∫ L′

0

f(x, y)
2√
LL′

sin
nπx

L
sin

mπy

L′ dy dx, (6.49b)

and this result is valid for 0 < x < L, 0 < y < L′.
We have illustrated with this example that for the multi-dimensional eigenvalue

problem, we should expect multi-subscripted eigenvalues, orthogonal eigenfunctions,
and multi-dimensional eigenfunction expansions. This is illustrated further in the
exercises.

When solving homogeneous initial boundary value problems by separation of
variables, there is always the choice of separating off the time dependence first or
last. The solution will ultimately be the same for either approach, but the steps
differ in arriving at this solution. Let us illustrate with the heat conduction problem

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0, (6.50a)

U(0, y, t) = 0, 0 < y < L′, t > 0, (6.50b)
U(L, y, t) = 0, 0 < y < L′, t > 0, (6.50c)
U(x, 0, t) = 0, 0 < x < L, t > 0, (6.50d)
U(x,L′, t) = 0, 0 < x < L, t > 0, (6.50e)
U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′. (6.50f)
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If the x- and y-dependences of a separated function U(x, y, t) = X(x)Y (y)T (t) are
separated off first (as was done in Section 6.4), Sturm-Liouville systems in X(x)
and Y (y) are obtained,

X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X(L);
Y ′′ + µ2Y = 0, 0 < y < L′,

Y (0) = 0 = Y (L′).

Eigenpairs of these systems are

λ2
n =

n2π2

L2
, Xn(x) =

√
2
L

sin
nπx

L
; µ2

m =
m2π2

L′2 , Ym(y) =

√
2
L′ sin

mπy

L′ .

What remains is an ODE in T (t), namely,

T ′ + k(λ2
n + µ2

m)T = 0, t > 0,

with general solution T (t) = Ae−k(λ2
n+µ2

m)t. To satisfy the initial condition, sepa-
rated functions are superposed in the form

U(x, y, t) =
∞∑

m=1

∞∑

n=1

Amne
−k(λ2

n+µ2
m)t

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ , (6.51a)

and the initial temperature f(x, y) at t = 0 then requires

f(x, y) =
∞∑

m=1

∞∑

n=1

Amn

√
2
L

sin
mπx

L

√
2
L′ sin

mπy

L′ , 0 < x < L, 0 < y < L′.

To find the Amn, we multiply both sides of this equation by
√

2/L sin (kπx/L)
and integrate with respect to x, and then we multiply by

√
2/L′ sin (jπy/L′) and

integrate with respect to y. Orthogonality gives

Amn =
∫ L′

0

∫ L

0

f(x, y)

√
2
L

sin
nπx

L

√
2
L′ sin

mπy

L′ dx dy. (6.51b)

Alternatively, we can separate time off first by setting U(x, y, t) = W (x, y)T (t).
The ODE

T ′ + kλ2T = 0

is obtained along with eigenvalue problem 6.44. Eigenpairs are λ2
mn = n2π2/L2 +

m2π2/L′2 and Wmn(x, y) = (2/
√
LL′) sin (nπx/L) sin (mπy/L′). The solution for

T (t) is T (t) = Ae−kλ2
mnt. Superposition of separated functions gives

U(x, y, t) =
∞∑

m=1

∞∑

n=1

Amne
−kλ2

mntWmn(x, y), (6.52a)

and the initial condition 6.50f requires

f(x, y) =
∞∑

m=1

∞∑

n=1

AmnWmn(x, y), 0 < x < L, 0 < y < L′.

But then, Amn are the Fourier coefficients in the eigenfunction expansion of f(x, y)
in terms of the Wmn(x, y),
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Amn =
∫ L′

0

∫ L

0

f(x, y)Wmn(x, y) dxdy. (6.52b)

Solutions 6.51 and 6.52 are identical; it is only the way in which we regard the initial
conditions that differs in our arriving at the solution.

EXERCISES 6.5
In Exercises 1–3 we prove some general results concerning eigenvalue problem 6.43
in the xy-plane. Results in three space variables are analogous.

1. Prove the following result corresponding to Theorem 5.1 in Chapter 5. All eigenvalues of the
multi-dimensional eigenvalue problem

∇2W + λ2W = 0, (x, y) in A,

l
∂W

∂n
+ hW = 0, (x, y) on β(A), h > 0, l > 0,

are real, and eigenfunctions corresponding to different eigenvalues are orthogonal with respect
to the unit weight function.

2. Use eigenvalue problem 6.44 (with L′ = 2L) to illustrate that a multi-dimensional eigenvalue
problem can have linearly independent eigenfunctions corresponding to the same eigenvalue.
(Contrast this with Exercise 14 in Section 5.1 for Sturm-Liouville systems.)

3. Show that all eigenvalues of the multi-dimensional eigenvalue problem in Exercise 1 are non-
negative and that λ = 0 is an eigenvalue only when the boundary condition is Neumann. In
this case, what is the eigenfunction corresponding to λ = 0?
In Exercises 4–8 find eigenvalues and orthonormal eigenfunctions of eigenvalue
problem 6.43 on the rectangle A: 0 ≤ x ≤ L, 0 ≤ y ≤ L′ for the given boundary
conditions.

4. W (0, y) = 0, 0 < y < L′; Wx(L, y) = 0, 0 < y < L′; W (x, 0) = 0, 0 < x < L;
W (x,L′) = 0, 0 < x < L

5. W (0, y) = 0, 0 < y < L′; W (L, y) = 0, 0 < y < L′; Wy(x, 0) = 0, 0 < x < L;
Wy(x,L′) = 0, 0 < x < L

6. Wx(0, y) = 0, 0 < y < L′; W (L, y) = 0, 0 < y < L′; W (x, 0) = 0, 0 < x < L;
Wy(x,L′) = 0, 0 < x < L

7. W (0, y) = 0, 0 < y < L′; W (L, y) = 0, 0 < y < L′; Wy(x, 0) = 0, 0 < x < L;
lWy(x,L′) + hW (x,L′) = 0, 0 < x < L

8. −l1Wx(0, y) + h1W (0, y) = 0, 0 < y < L′; l2Wx(L, y) + h2W (L, y) = 0, 0 < y < L′;
−l3Wy(x, 0) + h3W (x, 0) = 0, 0 < x < L; l4Wy(x,L′) + h4W (x,L′) = 0, 0 < x < L

In Exercises 9–11 use the multi-dimensional eigenvalue problem approach to solve
the initial boundary value problem.

9. Exercise 11(a) in Section 6.4 10. Exercise 12(a) in Section 6.4

11. Exercise 5 in Section 6.4

12. (a) Show that the Rayleigh quotient for an eigenvalue λmn of the multi-dimensional eigenvalue
problem of Exercise 1 can be expressed in terms of its corresponding normalized eigenfunc-
tion Wmn(x, y) according to
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λ2
mn =

∫∫

A

|∇Wmn|2 dA−
∫
©

β(A)

Wmn
∂Wmn

∂n
ds.

(b) What form does the Rayleigh quotient take when the boundary condition is Dirichlet or
Neumann?
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§6.6 Properties of Parabolic Partial Differential Equations

We now return to a difficulty posed in Chapter 4. In what sense are the series
obtained in Chapters 4 and 6 “solutions” of their respective problems? In arriving
at each series solution, we superposed an infinity of functions satisfying a linear,
homogeneous PDE and linear, homogeneous boundary and/or initial conditions.
Because of the questionable validity of this step (superposition principle 1 in Sec-
tion 4.1 endorses only finite linear combinations), we have called each series a formal
solution. It is now incumbent on us to verify that each formal solution is indeed
a valid solution of its (initial) boundary value problem. Unfortunately, it is not
possible to prove general results that encompass all problems solved by means of
separation of variables and generalized Fourier series; on the other hand, the situa-
tion is not so bad that every problems is its own special case. Techniques exist that
verify formal solutions for large classes of problems. In this section and Sections
6.7 and 6.8, we illustrate techniques that work when separation of variables leads
to the Sturm-Liouville systems in Table 5.1. At the same time, we take the oppor-
tunity to develop properties of solutions of parabolic, hyperbolic and elliptic PDEs.
Time-dependent heat conduction problems are manifested in parabolic equations;
vibrations invariably involve hyperbolic equations; and potential problems give rise
to elliptic equations.

We choose to illustrate the situation for parabolic PDEs with the heat conduc-
tion problem in equation 6.2 of Section 6.2,

∂U

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0, (6.53a)

Ux(0, t) = 0, t > 0, (6.53b)

κ
∂U(L, t)
∂x

+ µU(L, t) = 0, t > 0, (6.53c)

U(x, 0) = f(x), 0 < x < L. (6.53d)

(See Exercise 1 for verification when both boundary conditions are Robin.) The
formal solution of problem 6.53 is

U(x, t) =
∞∑

n=1

cne
−kλ2

ntXn(x) where cn =
∫ L

0

f(x)Xn(x) dx. (6.54)

Eigenfunctions are Xn(x) = N−1 cosλnx, where 2N2 = L+(µ/κ)[λ2
n +(µ/κ)2], and

eigenvalues are defined by the equation tanλL = µ/(κλ).
We shall show by direct substitution that the function U(x, t) defined by series

6.54 does indeed satisfy problem 6.53.
When coefficients cn are calculated according to the formula in equation 6.54,

the series
∑∞

n=1 cnXn(x) converges to f(x) for 0 < x < L (provided f(x) is piecewise
smooth for 0 ≤ x ≤ L). Since this series is U(x, 0), it follows that initial condition
6.53d is satisfied if f(x) is piecewise smooth on 0 ≤ x ≤ L, provided that at any
point of discontinuity of f(x), f(x) is defined by f(x) = [f(x+) + f(x−)]/2.

To verify 6.53a–c, is not quite so simple. We first show that series 6.54 converges
for all 0 ≤ x ≤ L and t > 0 and can be differentiated with respect to either x
or t. Because eigenfunctions Xn(x) are uniformly bounded (see Theorem 5.2 in
Section 5.2), there exists a constant M such that for all n ≥ 1 and 0 ≤ x ≤ L,
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|Xn(x)| ≤ N−1 ≤ M . Further, since f(x) is piecewise continuous on 0 ≤ x ≤ L,
it is also bounded thereon; that is, |f(x)| ≤ K, for some constant K. These two
results imply that the coefficients cn defined by 6.54 are bounded by

|cn| ≤
∫ L

0

|f(x)||Xn(x)| dx ≤ KML. (6.55)

It follows that for any x in 0 ≤ x ≤ L, and any time t ≥ t0 > 0,
∞∑

n=1

|cne−kλ2
ntXn(x)| ≤ KM2L

∞∑

n=1

(e−kt0)λ2
n .

Figure 5.3 indicates that the nth eigenvalue λn ≥ (n − 1)π/L. Combine this with
the fact that e−kt0 < 1, and we may write, for 0 ≤ x ≤ L and t ≥ t0 > 0,

∞∑

n=1

|cne−kλ2
ntXn(x)| ≤ KM2L

∞∑

n=1

(e−kt0)(n−1)2π2/L2

≤ KM2L
∞∑

n=1

[(e−kt0)π2/L2
]n−1 = KM2L

∞∑

n=1

rn−1, (6.56)

and the geometric series on the right converges, since r = e−kt0π2/L2
< 1. Accord-

ing to the Weierstrass M -test (Theorem 3.3 in Section 3.4), series 6.54 converges
absolutely and uniformly with respect to x and t for 0 ≤ x ≤ L and t ≥ t0 > 0.
Because t0 > 0 is arbitrary, it also follows that series 6.54 converges absolutely for
0 ≤ x ≤ L and t > 0.

Term-by-term differentiation of series 6.54 with respect to t gives
∞∑

n=1

−kλ2
ncne

−kλ2
ntXn(x). (6.57)

Since λn ≤ nπ/L (see, once again, Figure 5.3), it follows that for all 0 ≤ x ≤ L and
t ≥ t0 > 0,

∞∑

n=1

| − kλ2
ncne

−kλ2
ntXn(x)| ≤ kKM2π2

L

∞∑

n=1

n2rn−1. (6.58)

Because the series
∑∞

n=1 n
2rn−1 converges, we conclude that series 6.57 converges

absolutely and uniformly with respect to x and t for 0 ≤ x ≤ L and t ≥ t0 > 0. As
a result, series 6.57 represents ∂U/∂t for 0 ≤ x ≤ L and t ≥ t0 > 0. (Theorem 3.7
in Section 3.4). But, once again, the fact that t0 is arbitrary implies that we may
write

∂U

∂t
=

∞∑

n=1

−kλ2
ncne

−kλ2
ntXn(x) (6.59)

for 0 ≤ x ≤ L and t > 0.
Term-by-term differentiation of series 6.54 with respect to x gives

∞∑

n=1

cne
−kλ2

ntX ′
n(x) =

∞∑

n=1

cn(−λn)e−kλ2
ntN−1 sin λnx. (6.60)
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Since N−1 ≤M , we have, for 0 ≤ x ≤ L and t ≥ t0 > 0,

∞∑

n=1

|cne−kλ2
ntX ′

n(x)| ≤
∞∑

n=1

(KML)(λnM)e−kλ2
nt0

≤ KM2L
∞∑

n=1

(nπ
L

)
rn−1 = KM2π

∞∑

n=1

nrn−1. (6.61)

Because the series
∑∞

n=1 nr
n−1 converges, series 6.60 likewise converges absolutely

and uniformly. Consequently, series 6.54 may be differentiated term-by-term to
yield, for 0 ≤ x ≤ L and t > 0,

∂U

∂x
=

∞∑

n=1

cne
−kλ2

ntX ′
n(x). (6.62)

A similar analysis shows that for 0 ≤ x ≤ L and t > 0,

∂2U

∂x2
=

∞∑

n=1

cne
−kλ2

ntX ′′
n(x) =

∞∑

n=1

cne
−kλ2

nt[−λn
2Xn(x)]. (6.63)

Expressions 6.59 and 6.63 for ∂U/∂t and ∂2U/∂x2 clearly indicate that U(x, t)
satisfies PDE 6.53a. Finally, expressions 6.62 and 6.54 for ∂U/∂x and U(x, t) indi-
cate that

∂U(0, t)
∂x

=
∞∑

n=1

cne
−kλ2

ntX ′
n(0) = 0,

(since X ′
n(0) = 0), and

κ
∂U(L, t)
∂x

+ µU(L, t) = κ
∞∑

n=1

cne
−kλ2

ntX ′
n(L) + µ

∞∑

n=1

cne
−kλ2

ntXn(L)

=
∞∑

n=1

cne
−kλ2

nt[κX ′
n(L) + µXn(L)] = 0,

(since Xn(x) satisfies κX ′
n(L) + µXn(L) = 0).

We have now verified that the formal solution U(x, t) defined by series 6.54
satisfies equations 6.53a–d. Clearly demonstrated was the dependence of our veri-
fication on properties of the Sturm-Liouville system associated with 6.53. Indeed,
indispensable were the facts that eigenvalues satisfied the inequalities (n− 1)π/L ≤
λn ≤ nπ/L and that eigenfunctions were uniformly bounded. Without a knowledge
of these properties, verification of the formal solution would have been impossible.
Although series 6.54 satisfies problem 6.53, verification of 6.54 as the solution of
the heat conduction problem described by 6.53 is not complete. To illustrate why,
consider the function defined by

U(x, t) =





∞∑

n=1

bne
−kλ2

ntXn(x), 0 ≤ x ≤ L, t > 0

f(x), 0 ≤ x ≤ L, t = 0
, (6.64)
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where {bn} is a completely arbitrary, but bounded, sequence and Xn(x) are the
eigenfunctions in 6.54. The above procedure can once again be used to verify that
function 6.64 also satisfies 6.53a–c; in addition, it satisfies 6.53d. This means that, as
stated, problem 6.53 is not well posed; it does not have a unique solution. It cannot
therefore be an adequate description of the physical problem following equation
6.2 in Section 6.2 — temperature in a rod of uniform cross section and insulated
sides that at time t = 0 has temperature f(x). For time t > 0, the end x = 0
is also insulated and heat is exchanged at the other end with an environment at
temperature zero. In actual fact, 6.53 does have a unique solution, provided we
demand that the solution satisfy certain continuity conditions. Our immediate
objective, then, is to discover what these conditions are; once we find them, we can
then verify that 6.54 is the one and only solution of 6.53.

Continuity conditions for U(x, t) depend on the class of functions permitted
for f(x). To simplify discussions, suppose we permit only functions f(x) that are
continuous for 0 ≤ x ≤ L and have piecewise continuous first derivatives. Physically
this is realistic; continuity of f(x) implies that the initial temperature distribution
in the rod must be continuous. Because f ′(x) is proportional to heat flux across
cross sections of the rod, piecewise continuity of f ′(x) implies that initially there
can be no infinite surges of heat.

With f(x) continuous, it is reasonable, physically, to demaind that U(x, t) be
continuous for 0 ≤ x ≤ L and t ≥ 0. (Were f(x) assumed only piecewise continuous,
continuity of U(x, t) for t = 0 would be inappropriate.) The fact that U(x, t) must
satisfy PDE 6.53a suggests that we demand that ∂U/∂t, ∂U/∂x, and ∂2U/∂x2 all
be continuous for 0 < x < L and t > 0. Boundary conditions 6.53b,c suggest that
we require continuity of ∂U/∂x for x = 0, t > 0 and for x = L, t > 0 also. Because
there are no heat sources (or sinks) at the ends of the rod, it follows that ∂U/∂t
should be continuous at x = 0 and x = L for t > 0. For a similar reason, ∂2U/∂x2

should also be continuous at x = 0 and x = L for t > 0. We now show that these
conditions guarantee a unique solution of problem 6.53; that is, we show that (when
f(x) is continuous and f ′(x) is piecewise continuous for 0 ≤ x ≤ L) there is one and
only one solution U(x, t) of 6.53 that also satisfies

U(x, t) be continuous for 0 ≤ x ≤ L and t ≥ 0; (6.53e)
∂U

∂x
,

∂U

∂t
,

∂2U

∂x2
be continuous for 0 ≤ x ≤ L and t > 0. (6.53f)

Suppose to the contrary, that there exist two solutions U1(x, t) and U2(x, t)
satisfying 6.53a–f. The difference U(x, t) = U1(x, t) − U2(x, t) must also satisfy
6.53a,b,c,e,f, but initial condition 6.53d is replaced by the homogeneous condition
U(x, 0) = 0, 0 < x < L. To show that U1(x, t) ≡ U2(x, t), we show that U(x, t) ≡ 0.
To do this, we multiply PDE 6.53a by U(x, t) and integrate with respect to x from
x = 0 to x = L,

∫ L

0

∂U

∂t
U(x, t) dx = k

∫ L

0

∂2U

∂x2
U(x, t) dx, t > 0.

Integration by parts on the right gives, for t > 0,

0 =
∫ L

0

1
2
∂[U(x, t)]2

∂t
dx− k

{
U(x, t)

∂U

∂x

}L

0

+ k

∫ L

0

(
∂U

∂x

)2

dx
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=
1
2

∫ L

0

∂(U2)
∂t

dx− kU(L, t)
∂U(L, t)
∂x

+ kU(0, t)
∂U(0, t)
∂x

+ k

∫ L

0

(
∂U

∂x

)2

dx. (6.65)

Substitutions from boundary conditions 6.53b,c yield

0 =
1
2

∫ L

0

∂(U2)
∂t

dx+ k

∫ L

0

(
∂U

∂x

)2

dx+
kµ[U(L, t)]2

κ
, t > 0. (6.66)

Because the last two terms are clearly nonnegative, we must have
∫ L

0

∂(U2)
∂t

dx =
∂

∂t

∫ L

0

[U(x, t)]2dx ≤ 0, t > 0;

that is, the definite integral of [U(x, t)]2 must be a nonincreasing function of t. But,
because U(x, t) satisfies the condition U(x, 0) = 0, 0 < x < L, the definite integral
of [U(x, t)]2 at t = 0 has value zero,

∫ L

0

[U(0, t)]2dx = 0.

In other words, as a function of t, for t ≥ 0, the definite integral of [U(x, t)]2 is
nonnegative, is nonincreasing, and has value zero at t = 0. It must therefore be
identically equal to zero:

∫ L

0

[U(x, t)]2dx ≡ 0, t ≥ 0.

Because the integrand is continuous and nonnegative, we conclude that U(x, t) ≡ 0
for 0 ≤ x ≤ L and t ≥ 0; that is, U1(x, t) ≡ U2(x, t).

We have shown then, that for the class of initial temperature distributions
f(x) that are continuous and have piecewise continuous first derivatives, conditions
6.53e,f attached to 6.53a–d yield a problem with a unique solution; there is one
and only one solution satisfying 6.53a–f. To establish that 6.54 is the one and only
one solution of problem 6.53, we must verify that it satisfies 6.53e,f. In verifying
6.54 as a solution of 6.53a–d, we proved that series 6.59, 6.62, and 6.63 converge
uniformly for 0 ≤ x ≤ L and t ≥ t0 > 0 for arbitrary t0. This implies that ∂U/∂t,
∂U/∂x, and ∂2U/∂x2 are all continuous functions for 0 ≤ x ≤ L and t > 0 (see
Theorem 3.5 in Section 3.4). This establishes 6.53f. To verify 6.53e, we assume,
for simplicity, that f(x) satisfies the boundary conditions of the Sturm-Liouville
system associated with the problem, namely f ′(0) = 0 and κf ′(L) + µf(L) = 0. In
this case, Theorem 5.4 in Section 5.3 indicates that the generalized Fourier series∑∞

n=1 cnXn(x) of f(x) converges uniformly to f(x) for 0 ≤ x ≤ L. Because the
functions e−kλ2

nt are uniformly bounded for t ≥ 0 and for each such t, the sequence
{e−kλ2

nt} is nonincreasing, it follows by Abel’s test (Theorem 3.4 in Section 3.4)
that series 6.54 converges uniformly for 0 ≤ x ≤ L and t ≥ 0. The temperature
function U(x, t) as defined by 6.54 must therefore be continuous for 0 ≤ x ≤ L and
t ≥ 0.

Verification of 6.54 as the solution to the heat conduction problem described
by 6.53 is now complete.

An important point to notice here is that even though the initial temperature
distribution may have discontinuities in its first derivative f ′(x), the solution of
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problem 6.53 has continuous first derivatives for 0 ≤ x ≤ L and t > 0. In fact, it
has continuous derivative of all orders for 0 ≤ x ≤ L and t > 0. This means that the
heat equation immediately smooths out discontinuities of f ′(x) and its derivatives.
Even if f(x) itself were piecewise continuous, discontinuities would immediately be
smoothed out by the heat equation. We shall see that this is also true for elliptic
equations, but not for hyperbolic ones.

The method used to verify that problem 6.53a–f has a unique solution is appli-
cable to much more general problems. Consider, for example, the three-dimensional
heat conduction problem

∂U

∂t
= k∇2U +

kg(x, y, z, t)
κ

, (x, y, z) in V , t > 0, (6.67a)

U(x, y, z, t) = F (x, y, z, t), (x, y, z) on β(V ), t > 0, (6.67b)
U(x, y, z, 0) = f(x, y, z), (x, y, z) in V . (6.67c)

In Exercise 2 it is proved that there cannot be more than one solution U(x, y, z, t)
that satisfies the conditions

U(x, y, z, t) be continuous for (x, y, z) in V and t ≥ 0, (6.67d)
First partial derivatives of U(x, y, z, t) with respect to x, y, z, and t
and second partial derivatives with respect to x, y, and z be continuous for
(x, y, z) in V and t > 0, (6.67e)

where V is the closed region consisting of V and its boundary β(V ).
Heat conduction problems satisfy what are called maximum and minimum prin-

ciples. We state and prove the one-dimensional situation here; three-dimensional
principles are proved in Exercise 5. Temperature in a rod with insulated sides, when
there is no internal heat generation and when the initial temperature distribution
is f(x), must satisfy the one-dimensional heat equation

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (6.68a)

and the initial condition

U(x, 0) = f(x), 0 ≤ x ≤ L. (6.68b)

By taking a closed interval in 6.68b, we are assuming compatibility between the
initial temperature distribution f(x) at x = 0 and x = L and the boundary tem-
peratures when t = 0. Boundary conditions have not been enunciated because
maximum and minimum principles are independent of boundary conditions being
Dirichlet, Neumann, or Robin. Let UM be the largest of the following three numbers:

U1 = maximum value of f(x) for 0 ≤ x ≤ L,

U2 = maximum value of U(0, t) for 0 ≤ t ≤ T ,

U3 = maximum value of U(L, t) for 0 ≤ t ≤ T ,

where T is some given value of t. In other words, UM is the maximum of the initial
temperature of the rod and that found (or applied) at the ends of the rod up to
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time T . The maximum principle states that U(x, t) ≤ UM for all 0 ≤ x ≤ L
and 0 ≤ t ≤ T ; that is, at no point in the rod during the time interval 0 ≤ t ≤ T
can the temperature ever exceed UM . To prove this result, we define a function
V (x, t) = U(x, t) + εx2, 0 ≤ x ≤ L, 0 ≤ t ≤ T , where ε > 0 is a very small number.
Because U satisfies PDE 6.68a, we can say that for 0 < x < L and 0 < t < T ,

∂V

∂t
− k

∂2V

∂x2
=
∂U

∂t
− k

(
∂2U

∂x2
+ 2ε

)
= −2kε < 0. (6.69)

Assuming that U(x, t) is continuous,
so also is V (x, t), and therefore V (x, t)
must take on a maximum in the closed
rectangle A of Figure 6.10. This value
must occur either on the edge of the rec-
tangle or at an interior point (x∗, t∗). In the
latter case, V (x, t) must necessarily have a
relative maximum at (x∗, t∗), and therefore
∂V/∂t = ∂V/∂x = 0 and ∂2V/∂x2 ≤ 0 at
(x∗, t∗). But then ∂V/∂t− k∂2V/∂x2 ≥ 0

t

x

T

L

x t

A x L
t T

( * *)

:0
0

,

,

b b
b b

at (x∗, t∗), contradicting inequality 6.69. Hence, Figure 6.10
the maximum value of V must occur on the
boundary of A. It cannot occur along t = T , for, in this case, ∂V/∂t ≥ 0 at the
point and ∂2V/∂x2 would still be nonpositive. Once again, inequality 6.69 would
be violated. Consequently, the maximum value of V on A must occur on one of
the three boundaries t = 0, x = 0, or x = L. Since U ≤ UM on these three
lines, it follows that V ≤ UM + εL2 on these lines and therefore in A. But because
U(x, t) ≤ V (x, t), we can state that, in A, U(x, t) ≤ UM + εL2. Since ε can be made
arbitrarily small, it follows that UM must be the maximum value of U for 0 ≤ x ≤ L
and 0 ≤ t ≤ T .

When this result is applied to −U , the minimum principle is obtained — at
no point in the rod during the interval 0 ≤ t ≤ T can the temperature ever be less
than the minimum of the initial temperature of the rod and that found (or applied)
at the ends of the rod up to time T .

We mention one final property of heat conduction problems, which, unfortu-
nately, is not demonstrable with the series solutions of Chapters 4 and 6. (It is
illustrated for infinite rods in Case 2 of solution 11.35 in Section 11 and for finite
rods in solution 10.44 of Section 10.4.) When heat is added to any part of an object,
its effect is instantaneously felt throughout the whole object. For instance, suppose
that the initial temperature f(x) of the rod in problem 6.53 is identically equal to
zero, and at t = 0 a small amount of heat is added to either end of the rod or over
some cross section of the rod. Instantaneously, the temperature of every point of
the rod rises. The increase may be extremely small, but nonetheless, every point in
the rod has a positive temperature for arbitrarily small t > 0, and this is true for
arbitrarily large L. In other words, heat has been propagated infinitely fast from
the source point to all other points in the rod. This is a result of the macroscopic
derivation of the heat equation in Section 2.2. On a microscopic level, it would be
necessary to take into account the moment of inertia of the molecules transmitting
heat, and this would lead to a finite speed for propagation of heat.
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EXERCISES 6.6

1. (a) What is the formal series solution of the one-dimensional heat conduction problem

∂U

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = 0, x = 0, t > 0,

l2
∂U

∂x
+ h2U = 0, x = L, t > 0,

U(x, 0) = f(x), 0 < x < L?

(b) Use a technique similar to verification of formal solution 6.54 for problem 6.53 to verify
that the formal solution in part (a) satisfies the four equations there when f(x) is piecewise
smooth on 0 ≤ x ≤ L.

(c) Assuming further that f(x) is continuous on 0 ≤ x ≤ L, show that there is one and only
one solution of the problem in part (a) that also satisfies continuity conditions 6.53e,f.

(d) Verify that the formal solution in part (a) satisfies 6.53e,f when f(x) satisfies the boundary
conditions of the associated Sturm-Liouville system.

2. Use Green’s first identity (see Appendix C) to verify that there cannot be more than one solution
to problem 6.67.

3. Repeat Exercise 2 if the boundary condition on β(V ) is of Robin type.

4. Can you repeat Exercise 2 if the boundary condition on β(V ) is of Neumann type?

5. In this exercise we prove three-dimensional maximum and minimum principles. Let U(x, y, z, t)
be the continuous solution of the homogeneous three-dimensional heat conduction equation in
some open region V ,

∂U

∂t
= k∇2U, (x, y, z) in V , t > 0,

which also satisfies the initial condition

U(x, y, z, 0) = f(x, y, z), (x, y, z) in V ,

where V is the closed region consisting of V and its boundary β(V ). Let UM be the maximum
value of f(x, y, z) and the value of U on β(V ) for 0 ≤ t ≤ T , T some given time.
(a) Define a function W (x, y, z, t) = U(x, y, z, t) + ε(x2 + y2 + z2), where ε > 0 is a very small

number. Show that
∂W

∂t
− k∇2W < 0

for (x, y, z) in V and 0 < t < T , and use this fact to verify that W cannot have a relative
maximum for a point (x, y, z) in V and a time 0 < t < T .

(b) Prove the maximum principle that U(x, y, z, t) ≤ UM for (x, y, z) in V and 0 ≤ t ≤ T .
(c) What is the minimum principle for this situation?
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§6.7 Properties of Elliptic Partial Differential Equations

Verification that formal solutions of boundary value problems do indeed satisfy the
elliptic PDEs and boundary conditions from which they were derived are similar
to those for parabolic (heat) problems. We illustrate with the following Dirichlet
problem for Laplace’s equation

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′, (6.70a)

V (0, y) = 0, 0 < y < L′, (6.70b)
V (L, y) = 0, 0 < y < L′, (6.70c)
V (x, 0) = 0, 0 < x < L, (6.70d)
V (x,L′) = f(x), 0 < x < L. (6.70e)

Separation leads to the formal solution

V (x, y) =
∞∑

n=1

An sinh
nπy

L
Xn(x), (6.71a)

where

An =
1

sinh (nπL′/L)

∫ L

0

f(x)Xn(x) dx, (6.71b)

and Xn(x) =
√

2/L sin (nπx/L).
Theorem 5.2 in Section 5.2 guarantees that boundary condition 6.70e is satisfied

when f(x) is piecewise smooth on 0 ≤ x ≤ L (provided f(x) is defined as the
average of right- and left-hand limits at any point of discontinuity). Boundary
conditions 6.70b–d are clearly satisfied by solution 6.71. To verify that V (x, y)
as defined by 6.71 satisfies PDE 6.70a, we first note that when f(x) is piecewise
continuous, it is necessarily bounded (|f(x)| ≤ K). Combine this with the fact that
|Xn(x)| ≤

√
2/L, and we obtain

|An| ≤
1

| sinh (nπL′/L)|

∫ L

0

|f(x)||Xn(x)| dx ≤
K
√

2/L(L)
sinh (nπL′/L)

=
√

2LK
sinh (nπL′/L)

. (6.72)

With this result, we may write, for any x in 0 ≤ x ≤ L, and any y in 0 ≤ y ≤ y0 < L′,

∞∑

n=1

∣∣∣An sinh
nπy

L
Xn(x)

∣∣∣ ≤
∞∑

n=1

√
2LK

sinh (nπL′/L)
sinh

nπy

L

√
2
L

= 2K
∞∑

n=1

sinh (nπy/L)
sinh (nπL′/L)

≤ 2K
∞∑

n=1

e−nπ(L′−y)/L

≤ 2K
∞∑

n=1

e−nπ(L′−y0)/L = 2K
∞∑

n=1

[e−π(L′−y0)/L]n

= 2K
∞∑

n=1

rn, (6.73)
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a convergent geometric series since r = e−π(L′−y0)/L < 1. Consequently, according
to the Weierstrass M -test, series 6.71 converges absolutely and uniformly with re-
spect to x and y for 0 ≤ x ≤ L and 0 ≤ y ≤ y0 < L′. Because y0 is arbitrary,
series 6.71 converges absolutely for 0 ≤ x ≤ L and 0 ≤ y < L′. In addition, series
6.71 represents a continuous function for 0 ≤ x ≤ L and 0 ≤ y < L′. Thus, even
though f(x) may have discontinuities, the solution of Laplace’s equation must be a
continuous function. In other words, Laplace’s equation smooths out discontinuities
in boundary data.

Term-by-term differentiation of series 6.71 with respect to x gives
∞∑

n=1

An sinh
nπy

L
X ′

n(x) =
∞∑

n=1

√
2
L

nπ

L
An sinh

nπy

L
cos

nπx

L
. (6.74)

It follows that, for 0 ≤ x ≤ L and 0 ≤ y ≤ y0 < L′,
∞∑

n=1

∣∣∣An sinh
nπy

L
X ′

n(x)
∣∣∣ ≤ 2Kπ

L

∞∑

n=1

nrn. (6.75)

Because
∑∞

n=1 nr
n converges, series 6.74 converges absolutely and uniformly. Thus,

series 6.71 may be differentiated term-by-term to yield, for 0 ≤ x ≤ L and 0 ≤ y <
L′,

∂V

∂x
=

∞∑

n=1

An sinh
nπy

L
X ′

n(x). (6.76)

Similarly, for 0 ≤ x ≤ L and 0 ≤ y < L′,

∂2V

∂x2
=

∞∑

n=1

An sinh
nπy

L
X ′′

n(x). (6.77)

Term-by-term differentiation of 6.71 with respect to y gives

π

L

∞∑

n=1

nAn cosh
nπy

L
Xn(x). (6.78)

Using inequality 6.72 and the fact that |Xn(x)| ≤
√

2/L, we may write

π

L

∞∑

n=1

∣∣∣nAn cosh
nπy

L
Xn(x)

∣∣∣ ≤ 2Kπ
L

∞∑

n=1

n cosh (nπy/L)
sinh (nπL′/L)

. (6.79)

Now N can always be chosen sufficiently large that sinh (nπL′/L) ≥ (1/4)enπL′/L,
whenever n ≥ N . For such N , and 0 ≤ x ≤ L and 0 ≤ y ≤ y0 < L′,

π

L

∞∑

n=N

∣∣∣nAn cosh
nπy

L
Xn(x)

∣∣∣ ≤ 2Kπ
L

∞∑

n=N

nenπy/L

(1/4)enπL′/L

=
8Kπ
L

∞∑

n=N

ne−nπ(L′−y)/L ≤ 8Kπ
L

∞∑

n=N

ne−nπ(L′−y0)/L

=
8Kπ
L

∞∑

n=N

nrn, (6.80)
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where r = e−π(L′−y0)/L. Since the series
∑∞

n=1 nr
n converges, it follows that series

6.78 converges absolutely and uniformly for 0 ≤ x ≤ L and 0 ≤ y ≤ y0 < L′.
Thus, series 6.71 may be differentiated term-by-term with respect to y to yield, for
0 ≤ x ≤ L and 0 ≤ y < L′,

∂V

∂y
=
π

L

∞∑

n=1

nAn cosh
nπy

L
Xn(x). (6.81)

For the same values of x and y, we also obtain

∂2V

∂y2
=
π2

L2

∞∑

n=1

n2An sinh
nπy

L
Xn(x). (6.82)

Because X ′′
n(x) = (−n2π2/L2)Xn(x), expressions 6.77 and 6.82 clearly indicate that

V (x, y) satisfies Laplace’s equation 6.70a. We have shown, therefore, that series
solution 6.71 satisfies problem 6.70.

In order to guarantee a unique solution of problem 6.70, continuity conditions
must also accompany the problem. We show that when f(x) is a continuous function
with a continuous first derivative f ′(x) and a piecewise continuous second derivative
f ′′(x), for which f(0) = f(L) = 0, appropriate conditions are

V,
∂V

∂x
, and

∂V

∂y
be continuous for 0 ≤ x ≤ L and 0 ≤ y ≤ L′; (6.70f)

second partial derivatives of V (x, y) be continuous for
0 < x < L, 0 < y < L′. (6.70g)

Suppose, to the contrary, that there exist two solutions V1(x, y) and V2(x, y) satisfy-
ing problem 6.70. The difference V (x.y) = V1(x, y)−V2(x, y) must also satisfy 6.70,
but with 6.70e replaced by the homogeneous condition V (x,L′) = 0, 0 < x < L.
If we multiply PDE 6.70a by V (x, y), integrate over the rectangle R: 0 < x < L,
0 < y < L′, and use Green’s first identity (Appendix C), we obtain

0 =
∫∫

R

V∇2V dA =
∫
©

β(R)

V
∂V

∂n
ds−

∫∫

R

|∇V |2 dA, (6.83)

where ∂V/∂n is the directional derivative of V outwardly normal to β(R). Since
V ≡ 0 on β(R),

0 = −
∫∫

R

|∇V |2 dA.

But this result requires ∇V ≡ 0 in R, and therefore V (x, y) must be constant in
R. Because V is constant in R, vanishes on β(R), and is continuous for 0 ≤ x ≤ L,
0 ≤ y ≤ L′, it follows that V (x, y) ≡ 0. In other words, conditions 6.70f,g guarantee
a unique solution of problem 6.70.

Once again, we point out that Laplace’s equation, like the heat equation,
smooths out discontinuities. Even when the boundary data function f(x) has discon-
tinuities in its second derivative, 6.70g demands that second derivatives of V (x, y)
be continuous for 0 < x < L, 0 < y < L′.

We now establish that solution 6.71 of problem 6.70a–e also satisfies conditions
6.70f,g. The facts that series 6.77 and 6.82 converge uniformly for 0 ≤ x ≤ L
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and 0 ≤ y ≤ y0 < L′ and y0 is arbitrary imply that ∂2V/∂x2 and ∂2V/∂y2 are
continuous for 0 ≤ x ≤ L and 0 ≤ y < L′. To verify 6.70f, we use Theorem 3.4
in Section 3.4. First, note that with continuity of f(x) and f(0) = f(L) = 0, the
Fourier series of f(x),

f(x) =
∞∑

n=1

An sinh
nπL′

L
Xn(x), (6.84)

converges uniformly to f(x) on 0 ≤ x ≤ L (see Theorem 5.4 in Section 5.3). Series
6.71 can be obtained from this series by multiplying the nth term by

Yn(y) =
sinh (nπy/L)
sinh (nπL′/L)

.

These functions are uniformly bounded for 0 ≤ y ≤ L′. For fixed y in 0 ≤ y ≤ L′,
the derivative of Yn(y) as a function of a continuous variable n is

∂Yn

∂n
=

(πy/L) sinh (nπL′/L) cosh (nπy/L)− (πL′/L) sinh (nπy/L) cosh (nπL′/L)
sinh2 (nπL′/L)

.

Thus,

L

π
sinh2

(
nπL′

L

)
∂Yn

∂n
= y sinh

nπL′

L
cosh

nπy

L
− L′ sinh

nπy

L
cosh

nπL′

L

=
y

2

[
sinh

nπ(L′ + y)
L

+ sinh
nπ(L′ − y)

L

]

− L′

2

[
sinh

nπ(y + L′)
L

+ sinh
nπ(y − L′)

L

]

=
L′ + y

2
sinh

nπ(L′ − y)
L

− L′ − y

2
sinh

nπ(L′ + y)
L

=
L′ + y

2

∞∑

m=0

1
(2m+ 1)!

[
nπ(L′ − y)

L

]2m+1

− L′ − y

2

∞∑

m=0

1
(2m+ 1)!

[
nπ(L′ + y)

L

]2m+1

=
(L′ + y)(L′ − y)

2

∞∑

m=0

1
(2m+ 1)!

[(L′ − y)2m − (L′ + y)2m]
(nπ
L

)2m+1

,

which is clearly nonpositive. Thus, for each fixed y in 0 ≤ y ≤ L′, the sequence
{Yn(y)} is nonincreasing, and by Theorem 3.4 in Section 3.4, series 6.71 converges
uniformly for 0 ≤ x ≤ L and 0 ≤ y ≤ L′. This series therefore defines a continuous
function V (x, y) on 0 ≤ x ≤ L, 0 ≤ y ≤ L′.

Because f ′(x) is continuous (and f ′′(x) is piecewise continuous), the Fourier
(cosine) series

f ′(x) =
∞∑

n=1

An sinh
nπL′

L
X ′

n(x) =
√

2π
L3/2

∞∑

n=1

nAn sinh
nπL′

L
cos

nπx

L

converges uniformly to f ′(x) for 0 ≤ x ≤ L (see exercise 9(c) in Section 3.4). Since
series 6.76 for ∂V/∂x can be obtained from this series by multiplying the nth term
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by Yn(y), it follows that series 6.76 converges uniformly to ∂V/∂x for 0 ≤ x ≤ L
and 0 ≤ y ≤ L′ and that ∂V/∂x is continuous thereon.

Finally, we must show that ∂V/∂y as defined by series 6.81 is continuous.
Because the above series for f ′(x) is uniformly convergent for 0 ≤ x ≤ L, it follows
(by setting x = 0) that the series

∞∑

n=1

∣∣∣∣nAn sinh
nπL′

L

∣∣∣∣

is convergent. Consequently, the series
∞∑

n=1

nAn sinh
nπL′

L
Xn(x)

converges absolutely and uniformly for 0 ≤ x ≤ L. Series 6.81 for ∂V/∂y can be
obtained from this series by multiplying the nth term by

Zn(y) =
cosh (nπy/L)
sinh (nπL′/L)

.

These functions are uniformly bounded for 0 ≤ y ≤ L′, and, furthermore

[Zn(y)]2 =
cosh2 (nπy/L)
sinh2 (nπL′/L)

=
1

sinh2 (nπL′/L)
+
[

sinh (nπy/L)
sinh (nπL′/L)

]2

=
1

sinh2 (nπL′/L)
+ [Yn(y)]2.

For fixed y in 0 ≤ y ≤ L′, the sequence {Yn(y)} is nonincreasing, as is the sequence
{1/ sinh2 (nπL′/L)}. Consequently, the same can be said for {Zn(y)}, and it follows
by Theorem 3.4 in Section 3.4 that series 6.81 converges uniformly for 0 ≤ x ≤ L
and 0 ≤ y ≤ L′. Thus, ∂V/∂y must be continuous thereon, and this completes the
proof that solution 6.71 satisfies conditions 6.70f,g.

The method used to verify that problem 6.70a–g has a unique solution is appli-
cable to much more general problems. Consider, for example, the three-dimensional
boundary value problem

∇2U = F (x, y, z), (x, y, z) in V , (6.85a)

l
∂U

∂n
+ hU = f(x, y, z), (x, y, z) on β(V ), (6.85b)

U and its first derivatives continuous in V (6.85c)
Second derivatives of U continuous in V , (6.85d)

where V is the closed, finite region consisting of V and its boundary, and l ≥ 0 and
h ≥ 0 are constants. In Exercise 2, it is shown that when F (x, y, z) and f(x, y, z)
are continuous, and h 6= 0, there cannot be more than one solution of this problem,
and when h = 0, the solution is unique to an additive constant (that is, if U is a
solution, then all solutions are of the form U + C, C a constant). Uniqueness also
results when different parts of β(V ) are subjected to different types of boundary
conditions. For U not to be unique, the boundary condition must be Neumann on
all of β(V ).
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Maximum and Minimum Principles

Maximum and minimum principles for elliptic problems are important theoret-
ically and practically. We verify three-dimensional principles here. The maximum
principle for Poisson’s equation is as follows:

Theorem 6.2 If U(x, y, z) is a continuous solution of Poisson’s equation 6.85a in a finite region
V , and F (x, y, z) ≥ 0 in V , then at no point in V can the value of U(x, y, z) exceed
the maximum value of U on β(V ).

Proof We let UM be the maximum value of U on β(V ) and define a function
W (x, y, z) = U(x, y, z) + ε(x2 + y2 + z2) in V , where ε > 0 is a very small number.
Because U satisfies PDE 6.85a, we can say that in V ,

∇2W = ∇2U + 6ε = F (x, y, z) + 6ε > 0. (6.86)

Because W is continuous in V , it must attain an absolute maximum therein. Sup-
pose this maximum occurs at a point (x∗, y∗, z∗) in the interior V (which therefore
must be a relative maximum). It follows, then, that

∂W

∂x
=
∂W

∂y
=
∂W

∂z
= 0 and

∂2W

∂x2
≤ 0,

∂2W

∂y2
≤ 0,

∂2W

∂z2
≤ 0,

all at (x∗, y∗, z∗). Because the last three inequalities contradict 6.86, the maximum
of W must occur on β(V ).

Since U ≤ UM on β(V ), W ≤ UM + εR2 on β(V ), where R is the radius of a
sphere centred at the origin that contains V (such a sphere must exist when V is
bounded). Since the maximum value of W must occur on β(V ), we can state further
that W ≤ UM + εR2 for all (x, y, z) in V . But because U(x, y, z) ≤W (x, y, z) in V ,
it follows that in V , U(x, y, z) ≤ UM + εR2. Since ε can be made arbitrarily small,
we conclude that U(x, y, z) ≤ UM in V , and the proof is complete.

When U(x, y, z) is a solution of Laplace’s equation, the above maximum princi-
ple certainly holds. In addition, the principle may also be applied to −U , resulting in
a minimum principle. In other words, we have the following maximum-minimum
principle for Laplace’s equation.

Theorem 6.3 If a continuous solution of Laplace’s equation ∇2U = 0 in a finite region V satisfies
the condition that Um ≤ U ≤ UM on β(V ), then Um ≤ U ≤ UM in V also.

This principle provides an alternative, and very simple, proof for uniqueness of
solutions to problem 6.85 on finite regions when the boundary condition is Dirichlet.
If U1 and U2 are solutions of Poisson’s equation 6.85a and a Dirichlet condition
U = f(x, y, z) on β(V ), then U = U1 − U2 is a solution of Laplace’s equation
∇2V = 0 subject to U = 0 on β(V ). But, according to the maximum-minimum
principle for Laplace’s equation, U must then be identically equal to zero in V ; that
is, U1 ≡ U2.

These principles seem natural and evident in physical settings. For example,
the boundary value problem

∂2z

∂x2
+
∂2z

∂y2
= −F (x, y)

τ
, (x, y) in A,

l
∂z

∂n
+ hz = f(x, y), (x, y) on β(A)
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describes static deflections of a membrane subjected to a force per unit area with
vertical component F (x, y). The two-dimensional maximum principle for Poisson’s
equation states that if the vertical force is always negative (or zero), then at no
point can the membrane have a deflection that exceeds the maximum value on its
edge. Furthermore, if there is no external force on the membrane, the maximum-
minimum principle for Laplace’s equation states that deflections at all points of the
membrane must be between maximum and minimum boundary deflections.

When −F (x, y)/τ is replaced by −g(x, y)/κ, the problem describes steady-
state temperature in a plate insulated top and bottom with internal heat sources
(or sinks) described by g(x, y). Poisson’s principle implies that when g(x, y) ≤ 0,
so that heat is being extracted at every point, then at no point in the plate can the
temperature exceed its maximum value on the boundary. In addition, if g(x, y) ≡ 0,
maximum and minimum temperatures must occur on the boundary. If this were
not the case, heat would flow away from the point of maximum temperature in all
directions and a steady-state situation would not exist.

Consistency Conditions

Boundary value problems subject to Neumann boundary conditions must sat-
isfy consistency conditions. They are restrictions on the nonhomogeneities in the
PDE and boundary conditions which must be satisfied if there are to be solutions
of the boundary value problem. We saw one of these in Exercise 9 of Section 2.1.
The two-dimensional version stated that solutions of the boundary value problem

∇2V = F (x, y), (x, y) in R, (6.87a)
∂V

∂n
= G(x, y), (x, y) on β(R), (6.87b)

must satisfy
∫
©

β(R)

G(x, y) ds =
∫∫

R

F (x, y) dA. (6.88)

We saw interpretations of this condition for heat conduction problems in Exercise
24 of Section 2.2, and vibration problems in Exercise 8 of Section 2.4.

EXERCISES 6.7

1. (a) What is the formal series solution of the two-dimensional potential problem

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′,

−l1
∂V

∂x
+ h1V = 0, x = 0, 0 < y < L′,

l2
∂V

∂x
+ h2V = 0, x = L, 0 < y < L′,

V (x, 0) = 0, 0 < x < L,

V (x,L′) = f(x), 0 < x < L?

(b) Use a technique similar to verification of formal solution 6.71 for problem 6.70 to verify
that the formal solution in part (a) satisfies the five equations there when f(x) is piecewise
smooth on 0 ≤ x ≤ L.
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(c) Assuming further that f(x) and f ′(x) are continuous and that f ′′(x) is piecewise continuous
on 0 ≤ x ≤ L, show that there is one and only one solution of the problem in part (a) that
also satisfies continuity conditions 6.70f,g.

(d) Verify that the formal solution in part (a) satisfies 6.70f,g when f(x) satisfies the boundary
conditions of the associated Sturm-Liouville system. Omit a proof of continuity of ∂V/∂x
and ∂V/∂y.

2. Use Green’s first identity (see Appendix C) to verify that there cannot be more than one solution
to problem 6.85 except when h = 0, in which case the solution is unique to an additive constant.

3. Verify that a solution of Laplace’s equation in a volume V of space cannot have a relative
maximum or minimum in V .
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§6.8 Properties of Hyperbolic Partial Differential Equations

Verification of formal solutions of initial boundary value problems involving hyper-
bolic PDEs requires a different approach from that used for parabolic and elliptic
equations in the previous two sections. To see why, consider the initial boundary
value problem for displacements of a string with fixed ends, released from rest at
some initial position f(x),

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (6.89a)

y(0, t) = 0, t > 0, (6.89b)
y(L, t) = 0, t > 0, (6.89c)
y(x, 0) = f(x), 0 < x < L, (6.89d)
yt(x, 0) = 0, 0 < x < L. (6.89e)

If we assume that f(x) is continuous and f ′(x) is piecewise continuous for 0 ≤ x ≤ L,
and that f(0) = f(L) = 0, the formal solution is

y(x, t) =
∞∑

n=1

cnXn(x) cos
nπct

L
where cn =

∫ L

0

f(x)Xn(x) dx, (6.90)

and Xn(x) =
√

2/L sin (nπx/L). A function f(x) satisfying these requirements was
considered in Figure 2.31a of Section 2.7. Figures 2.31b–f in Section 2.7 and Figures
2.49a–h in Section 2.11 illustrate that the discontinuity in f ′(x) is propagated in
both directions along the string at speed c. In other words, the solution y(x, t) could
not possibly satisfy PDE 6.89a. Likewise, discontinuities in the second derivative of
f(x) are also propagated at speed c. In order, therefore, for solution 6.90 to satisfy
6.89a pointwise for 0 < x < L and t > 0, it is necessary to place very stringent
conditions on f(x). Suppose, for the moment, that we assume that f(x), f ′(x), and
f ′′(x) are all continuous for 0 ≤ x ≤ L and that f(0) = f(L) = 0.

Verification of formal solution 6.54 to heat conduction problem 6.53 involved
a detailed analysis of convergence of 6.54 and its term-by-term derivatives with
respect to x and t. A similar analysis ensued for potential problem 6.70. This type
of analysis is inappropriate for problem 6.89. For instance, how do we show that
6.90 converges for 0 ≤ x ≤ L and t > 0, knowing only that the cn are bounded? To
circumvent this difficulty, we use d’Alembert’s representation of 6.90,

y(x, t) =
∞∑

n=1

cn

√
2
L

sin
nπx

L
cos

nπct

L

=
1
2

∞∑

n=1

cn

√
2
L

[
sin

nπ(x+ ct)
L

+ sin
nπ(x− ct)

L

]

=
1
2
[f(x+ ct) + f(x− ct)]. (6.91)

For this solution to define y(x, t) for 0 ≤ x ≤ L and t ≥ 0, f(x) is extended as an
odd, 2L-periodic function. This extension immediately implies that 6.91 satisfies
boundary conditions 6.89b,c and initial condition 6.89e. Initial condition 6.89d is
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clearly satisfied. With continuity of f ′′(x), it is a straightforward application of
chain rules to verify 6.89a.

We now show that problem 6.89 has a unique solution when y(x, t) is also
required to satisfy the condition

y(x, t) and its first and second partial derivatives
be continuous for 0 ≤ x ≤ L and t ≥ 0. (6.89f)

Suppose, to the contrary, that y1(x, t) and y2(x, t) are two solutions of 6.89a–f.
Their difference y(x, t) = y1(x, t)−y2(x, t) must then satisfy 6.89a,b,c,e,f, but 6.89d
is replaced by the homogeneous initial condition y(x, 0) = 0, 0 < x < L. If we
multiply PDE 6.89a by ∂y/∂t and integrate with respect to x from x = 0 to x = L,

∫ L

0

∂2y

∂t2
∂y

∂t
dx =

∫ L

0

c2
∂2y

∂x2

∂y

∂t
dx, t > 0.

Integration by parts on the right gives

1
2

∫ L

0

∂

∂t

(
∂y

∂t

)2

dx = c2
{
∂y

∂t

∂y

∂x

}L

0

− c2
∫ L

0

∂y

∂x

∂2y

∂x∂t
dx

= c2
{
∂y

∂t

∂y

∂x

}L

0

− c2
∫ L

0

1
2
∂

∂t

(
∂y

∂x

)2

dx, t > 0. (6.92)

With the ends of the string fixed on the x-axis, it follows that ∂y(0, t)/∂t =
∂y(L, t)/∂t = 0, and therefore this equation reduces to

0 =
1
2

∫ L

0

[
∂

∂t

(
∂y

∂t

)2

+ c2
∂

∂t

(
∂y

∂x

)2
]
dx, t > 0. (6.93)

When this equation is antidifferentiated with respect to time, the result is

1
2

∫ L

0

[(
∂y

∂t

)2

+ c2
(
∂y

∂x

)2
]
dx = K, t > 0, (6.94)

where K is a constant. To evaluate K, we take limits of each term in this equation
as t→ 0+. Because ∂y/∂t and ∂y/∂x are assumed continuous (condition 6.89f),

lim
t→0+

∂y(x, t)
∂t

=
∂y(x, 0)
∂t

= 0, 0 < x < L

(initial condition 6.89e). Furthermore, because y(x, 0) = y1(x, 0)− y2(x, 0) = 0, we
find that

lim
t→0+

∂y(x, t)
∂x

=
∂y(x, 0)
∂x

= 0, 0 < x < L.

With these results, limits as t→ 0+ in equation 6.94 show thatK = 0, and therefore,
for t ≥ 0, we may write

∫ L

0

[(
∂y

∂t

)2

+ c2
(
∂y

∂x

)2
]
dx = 0. (6.95)
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Since each term in this equation is continuous and nonnegative, it follows that each
must vanish separately; that is, we must have ∂y/∂x = ∂y/∂t = 0 for 0 ≤ x ≤ L
and t ≥ 0. These imply that y(x, t) is constant for 0 ≤ x ≤ L and t ≥ 0, and
this constant must be zero since y(x, 0) = 0. Thus, y(x, t) ≡ 0, and the solution of
problem 6.89 is unique.

That solution 6.91 satisfies continuity condition 6.89f is an immediate conse-
quence of the assumption that f ′′(x) is continuous for 0 ≤ x ≤ L.

In Section 6.6 we saw that discontinuities in the initial temperature function
were smoothed out by the heat equation. Discontinuities in boundary data were also
smoothed out by Laplace’s equation. This is not the case for hyperbolic equations; a
distinguishing property of hyperbolic equations is that discontinuities in initial data
are propagated by the solution. We have already seen this with the discontinuity
in f ′(x) for f(x) in Figure 2.31a. The discontinuity in f ′(x) is propagated in both
directions along the string at speed c; it is not smoothed out. For a small time t
(before the disturbance reaches the ends of the string), the discontinuity is found
at positions x = L/2 ± ct, that is, at points given by x± ct = L/2.
But these are equations of characteristic curves
for the one-dimensional wave equation (see
Example 2.7 in Section 2.8). We have
illustrated, therefore, that discontinuities in
derivatives of initial data are propagated along
characteristic curves of hyperbolic equations.
These characteristics are shown in Figure 6.11.
At time t = L/(2c), the discontinuities reach
the ends of the string for the first time,
whereupon they are reflected to travel once

t

x

L
c

L
c

L

x ct L

3
2

2 = - 2+ x ct L= 2+

L
2

again along the string. By drawing a horizontal Figure 6.11
line, say t = t0, to intersect the broken lines in this figure, we obtain the positions
of the discontinuities at time t0. Intersections with a vertical line x = x0 give the
times at which the discontinuities pass through the point x0 on the string.

The formal solution of problem 6.89 when f(x) is as shown in Figure 2.31a is
still defined by 6.90 or, more compactly, by 6.91. It is not, however, a function that
satisfies 6.89a for all 0 < x < L and t > 0. It satisfies 6.89a at all points (x, t) in
Figure 6.11 that are not on the characteristics x = L/2 ± ct and their reflections.

EXERCISES 6.8

1. (a) What is the formal series solution of the vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

yx(0, t) = 0, t > 0,
yx(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L?

Express this solution in closed form.
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(b) Verify that the formal solution in part (a) satisfies the five equations in (a) when f(x), f ′(x),
and f ′′(x) are continuous on 0 ≤ x ≤ L and f ′(0) = f ′(L) = 0.

(c) Show that there is a unique solution to the problem in part (a) that also satisfies continuity
condition 6.89f.

(d) Verify that the formal solution in part (a) satisfies 6.89f.

2. (a) What is the formal series solution of vibration problem 6.89 if initial conditions 6.89d,e are
replaced by

y(x, 0) = 0, yt(x, 0) = g(x), 0 < x < L?

Express the formal solution in closed form when g(x) and g′(x) are continuous for 0 ≤ x ≤ L
and g(0) = g(L) = 0.

(b) Verify that the formal solution in part (a) satisfies 6.89a–c and the initial conditions there.
(c) Show that there is a unique solution to the problem in part (a) that also satisfies continuity

condition 6.89f.
(d) Verify that the formal solution in part (a) satisfies 6.89f.
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CHAPTER 7 FINITE FOURIER TRANSFORMS

AND NONHOMOGENEOUS PROBLEMS

§7.1 Finite Fourier Transforms

In Section 4.3 we used transformations and variation of constants to solve non-
homogeneous (initial) boundary value problems. These problems were relatively
straightforward, principally because they contained only one spatial variable. When
nonhomogeneities were time independent, the solution was represented as the sum
of steady-state and transient parts. The steady-state portion was determined by
an ODE, and the transient portion satisfied a homogeneous problem. (In prob-
lems with two or three spatial variables, the steady-state part will satisfy two- or
three-dimensional boundary value problems.) When nonhomogeneities were time
dependent, the method of variation of constants had to be used. The corresponding
homogeneous problem was solved, and arbitrary constants were then replaced by
functions of time.

In this chapter we present an alternative technique for solving nonhomogeneous
(initial) boundary value problems, namely, finite Fourier transforms. They handle
time-dependent and time-independent nonhomogeneities in exactly the same way
and adapt to problems in higher dimensions very easily.

Theorem 5.2 of Section 5.2 states that every Sturm-Liouville system

d

dx

[
r(x)

dy

dx

]
+ [λp(x) − q(x)]y = 0, a < x < b, (7.1a)

−l1y′(a) + h1y(a) = 0, (7.1b)
l2y

′(b) + h2y(b) = 0 (7.1c)

has an infinity of eigenvalues λn (n = 1, 2, . . .) and corresponding orthonormal
eigenfunctions yn(x). Furthermore, if f(x) is a piecewise smooth function on the
interval a ≤ x ≤ b, then on the open interval a < x < b, f(x) can be expressed in a
(generalized) Fourier series

f(x) =
∞∑

n=1

cnyn(x) where cn =
∫ b

a

p(x)f(x)yn(x) dx. (7.2)

Equality holds only if f(x) is defined as [f(x+)+f(x−)]/2 at points of discontinuity
of f(x).

We say that the Sturm-Liouville system defines an integral transform that
associates with a function f(x) a sequence of constants {cn} defined by the integral
in equation 7.2. This sequence of constants is called the finite Fourier trans-
form of f(x), associated with the Sturm-Liouville system, and is given the notation
{f̃(λn)}, where, therefore,

f̃(λn) =
∫ b

a

p(x)f(x)yn(x) dx. (7.3a)

We often say somewhat loosely, that f̃(λn) is the transform of f(x) rather than the
sequence {f̃(λn)} of the f̃(λn). If f(x) is piecewise smooth on a ≤ x ≤ b, then (for
a < x < b), series 7.2 becomes
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f(x) =
∞∑

n=1

f̃(λn)yn(x). (7.3b)

This series is called the inverse transform corresponding to system 7.3a; it defines
a function f(x) that has {f̃(λn)} as its finite Fourier transform.

Example 7.1 Find the Fourier transform of the function f(x) = 2x2, 0 ≤ x ≤ L, associated with
the Sturm-Liouville system

X ′′ + λ2X = 0, 0 < x < L,

X ′(0) = X(L) = 0.

Does the inverse transform converge to f(x) for 0 ≤ x ≤ L?

Solution According to Table 5.1 in Section 5.2, eigenvalues of the Sturm-Liouville
system are λ2

n = (2n − 1)2π2/(4L2) with orthonormal eigenfunctions Xn(x) =√
2/L cos [(2n− 1)πx/(2L)]. The finite Fourier transform of f(x) is

f̃(λn) =
∫ L

0

2x2

√
2
L

cos
(2n− 1)πx

2L
dx,

and integration by parts leads to

f̃(λn) =
4
√

2L5/2(−1)n+1

π3

[
π2

2n− 1
− 8

(2n− 1)3

]
.

The inverse transform is
∞∑

n=1

f̃(λn)Xn(x) =
∞∑

n=1

4
√

2L5/2(−1)n+1

π3

[
π2

2n− 1
− 8

(2n− 1)3

]√
2
L

cos
(2n− 1)πx

2L
.

Since f(x) = 2x2 is continuous for 0 ≤ x ≤ L, this series is guaranteed to converge
to f(x) for 0 < x < L. Since the sum of the series is zero at x = L, it does not
converge to f(x) at x = L. Using the facts that

∑∞
n=1 (−1)n+1/(2n− 1) = π/4 and∑∞

n=1 (−1)n+1/(2n− 1)3 = π3/32, the sum of the series at x = 0 is zero, as is the
value of f(x). Hence, the inverse transform converges to f(x) for 0 ≤ x < L.•

Once a Sturm-Liouville system is stipulated, the finite Fourier transform of a
function f(x) is unique; that is, integral 7.3a defines a unique sequence of constants
{f̃(λn)} for f(x). (Obviously, if the Sturm-Liouville system is changed, then the
finite Fourier transform of the same function f(x) changes.)

Let us for the moment fix on a particular Sturm-Liouville system on the interval
a ≤ x ≤ b. Many functions can have the same transform. For example, the functions
f1(x) and f2(x) in Figure 7.1, which differ only in their values at x1, x2 and x3, have
the same transform. Of all functions with the same transform, inverse transform
7.3b defines a continuous function with f̃(λn) as transform, if such a function exists.
If no such function exists, the inverse transform defines a function f(x) that has
only finite jump discontinuities, the value of the function at any discontinuity being
the average of its left- and right-hand limits.
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For example, eigenvalues and orthonormal eigenfunctions of the Sturm-Liouville
system

X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X(L),

are λ2
n = n2π2/L2 and Xn(x) =

√
2/L sin (nπx/L). The finite Fourier transform of

a function f(x) defined on 0 ≤ x ≤ L is {f̃(λn)}, where

f̃(λn) =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx.

In particular, if f(x) = x, integration by parts gives

f̃(λn) =

√
2L3

nπ
(−1)n+1.

Because f(x) = x is continuous for 0 ≤ x ≤ L, the inverse transform
∞∑

n=1

f̃(λn)Xn(x) =
∞∑

n=1

√
2L3

nπ
(−1)n+1

√
2
L

sin
nπx

L
=

2L
π

∞∑

n=1

(−1)n+1

n
sin

nπx

L

returns the original function x on the interval 0 < x < L; that is, we can write

x =
2L
π

∞∑

n=1

(−1)n+1

n
sin

nπx

L
, 0 < x < L.

Because the series also converges to f(x) = x at x = 0, but not at x = L, we write
finally that

x =
2L
π

∞∑

n=1

(−1)n+1

n
sin

nπx

L
, 0 ≤ x < L.

With respect to the same Sturm-Liouville system, the finite Fourier transform
for the function g(x) in Figure 7.2a is

g̃(λn) =
∫ L

0

g(x)Xn(x) dx =
∫ L/2

0

√
2
L

sin
nπx

L
dx =

√
2L
nπ

(
1 − cos

nπ

2

)
.

On the interval 0 < x < L, the inverse transform 7.3b defines a function

k(x) =
∞∑

n=1

g̃(λn)Xn(x) =
∞∑

n=1

√
2L
nπ

(
1− cos

nπ

2

)√ 2
L

sin
nπx

L
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=
2
π

∞∑

n=1

1 − cos (nπ/2)
n

sin
nπx

L
.

This function is identical to g(x) except at x = L/2, where its value is 1/2. In
addition because the series converges to zero at x = 0 and x = L, we may write

k(x) =
2
π

∞∑

n=1

1 − cos (nπ/2)
n

sin
nπx

L
, 0 ≤ x ≤ L,

where k(x) is the function in Figure 7.2b.

y

x

y g x
1

2

= ( )

L L

y

x

y k x
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= )

L

(

1
2

2
L

Figure 7.2a Figure 7.2b

Readers who have studied Laplace transforms should continue with this para-
graph; readers unfamiliar with this transform should proceed to the next paragraph.
When Laplace transforms are used to solve an ordinary differential equation for a
function y(t), the procedure is as follows: take Laplace transforms of all terms in
the ODE and solve the resulting algebraic equation for the transform ỹ(s) of y(t).
Then use tables of Laplace transforms to invert ỹ(s) to find y(t). The procedure for
finite Fourier transforms will be somewhat the same, as we shall see, except that
there are, in general, no tables of transforms to help with both processes, taking
the transform and taking the inverse transform. The reason for this is that there is
an infinity of Sturm-Liouville systems, and with each one, there would be tables of
transforms and their inverses. As a result, the processes are much less structured;
they depend on which finite Fourier transform is being utilized.

When solving (initial) boundary value problems by finite Fourier transforms,
an integral part of the process is to find the inverse finite Fourier transform of a
given sequence {f̃(λn)} of constants for an unknown function f(x). We can always
write that the inverse function is

f(x) =
∞∑

n=1

f̃(λn)Xn(x),

where the Xn(x) are eigenfunctions of the associated Sturm-Liouville system, but
can we find f(x) in closed form? This can sometimes be a daunting task. We
illustrate in the following example.

Example 7.2 Given that the finite Fourier transform of a function f(x) with respect to the Sturm-
Liouville system

X ′′ + λ2X = 0, 0 < x < L,

X(0) = 0 = X(L),

is
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f̃(λn) =
√

2L[1 + (−1)n+1] + (2L)3/2(−1)n+1

nπ
,

find f(x) in closed form.

Solution Eigenvalues of the Sturm-Liouville system are λ2
n = n2π2/L2 with

normalized eigenfunctions Xn(x) =
√

2/L sin (nπx/L). When g(x) = x,

g̃(λn) =
∫ L

0

x

√
2
L

sin
nπx

L
dx =

√
2
L

{
−Lx
nπ

cos
nπx

L
+

L2

n2π2
sin

nπx

L

}L

0

=

√
2L3(−1)n+1

nπ
.

In addition, for k(x) = 1,

k̃(λn) =
∫ L

0

√
2
L

sin
nπx

L
dx =

√
2
L

{
−L
nπ

cos
nπx

L

}L

0

=
√

2L[1 + (−1)n+1]
nπ

.

Since f̃(λn) = 2g̃(λn) + k̃(λn), it follows that f(x) = 2g(x) + k(x) = 2x+ 1.•

EXERCISES 7.1
In Exercises 1–10 find the finite Fourier transform of the function f(x), defined on
the interval 0 ≤ x ≤ L, with respect to the given Sturm-Liouville system.

1. f(x) = x2 − 2x; X ′′ + λ2X = 0, X(0) = X ′(L) = 0

2. f(x) = 5; X ′′ + λ2X = 0, X(0) = X(L) = 0

3. f(x) = 5; X ′′ + λ2X = 0, X ′(0) = X ′(L) = 0

4. f(x) = x; X ′′ + λ2X = 0, X(0) = 0, l2X ′(L) + h2X(L) = 0

5. f(x) = L− x; X ′′ + λ2X = 0, X ′(0) = 0, l2X ′(L) + h2X(L) = 0

6. f(x) = sinx; X ′′ + λ2X = 0, X ′(0) = X(L) = 0

7. f(x) = ex; X ′′ + λ2X = 0, X ′(0) = X ′(L) = 0

8. f(x) =
{
x2, 0 ≤ x ≤ L/2
0, L/2 < x ≤ L

; X ′′ + λ2X = 0, X(0) = X ′(L) = 0

9. f(x) = sin (πx/L) cos (πx/L); X ′′ + λ2X = 0, X(0) = X(L) = 0

10. f(x) = 1; X ′′ + 2X ′ + λ2X = 0, X ′(0) = X ′(L) = 0
In Exercises 11–14 find, in closed form, the inverse finite Fourier transform for
f̃(λn) with respect to the given Sturm-Liouville system.

11. f̃(λn) = (−1)n+1(2L)3/2/(nπ); X ′′ + λ2X = 0, X(0) = X(L) = 0

12. f̃(λn) =
3
√

2L5/2(−1)n

nπ
+

6
√

2L5/2[1 + (−1)n+1]
n3π3

; X ′′ + λ2X = 0, X(0) = X(L) = 0

13. f̃(λn) =
{

2
√

2L, n = 0
0, n > 0

; X ′′ + λ2X = 0, X ′(0) = X ′(L) = 0

14. f̃(λn) =
(2L− 1)

√
2/L(−1)n+1

λn
−

2
√

2/L
λn

2 ; X ′′ + λ2X = 0, X ′(0) = X(L) = 0
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§7.2 Nonhomogeneous Problems in Two Variables

We now show how finite Fourier transforms can be used to solve (initial) boundary
value problems. Every initial boundary value problem that we have solved by sep-
aration of variables can also be solved using transforms. There is little advantage,
however, in using transforms for homogeneous problems; their power is realized
when the PDE and/or the boundary conditions are nonhomogeneous. Nonetheless,
we choose to introduce the method with problem 4.9 of Section 4.2, a problem with
homogeneous PDE and homogeneous boundary conditions. We do this because the
application of finite Fourier transforms to initial boundary value problems always
follows the same pattern whether the problem is homogeneous or nonhomogeneous.
As a result, we can clearly illustrate the technique in a homogeneous problem with-
out the added complications due to nonhomogeneities.

Separation of variables on

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (7.4a)

y(0, t) = 0, t > 0, (7.4b)
y(L, t) = 0, t > 0, (7.4c)
y(x, 0) = f(x), 0 < x < L, (7.4d)
yt(x, 0) = 0, 0 < x < L, (7.4e)

determines separated functions y(x, t) = X(x)T (t) which satisfy 7.4a,b,c,e. The
result is a Sturm-Liouville system in X(x) and an ordinary differential equation in
T (t),

X ′′ + λ2X = 0, 0 < x < L, (7.5a)
X(0) = 0, (7.5b)
X(L) = 0; (7.5c)

T ′′ + c2λ2T = 0, t > 0, (7.6a)
T ′(0) = 0. (7.6b)

From these, separated functions take the form C
√

2/L sin (nπx/L) cos (nπct/L) for
arbitrary C. The solution of problem 7.4 is obtained by superposing these functions

y(x, t) =
∞∑

n=1

cn

√
2
L

sin
nπx

L
cos

nπct

L
, (7.7a)

and imposing condition 7.4d to give

cn =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx. (7.7b)

To solve this problem by finite Fourier transforms, we note that the transform
associated with Sturm-Liouville system 7.5 is

f̃(λn) =
∫ L

0

f(x)Xn(x) dx, (7.8)

where λ2
n = n2π2/L2 and Xn(x) =

√
2/L sin (nπx/L) are the eigenvalues and or-

thonormal eigenfunctions. If we apply this transform to both sides of PDE 7.4a,
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∫ L

0

∂2y

∂t2
Xn(x) dx = c2

∫ L

0

∂2y

∂x2
Xn(x) dx. (7.9)

We interchange orders of integration with respect to x and differentiation with
respect to t on the left side of this equation. Integration by parts on the right,
together with the fact that Xn(0) = Xn(L) = 0, gives

∂2

∂t2

∫ L

0

yXn(x) dx = c2
{
∂y

∂x
Xn

}L

0

− c2
∫ L

0

∂y

∂x
X ′

n dx = −c2
∫ L

0

∂y

∂x
X ′

n dx. (7.10)

The integral on the left of this equation is the definition of ỹ(λn, t), the finite Fourier
transform of y(x, t). Integration by parts once again on the right yields

∂2

∂t2
ỹ(λn, t) = −c2

{
yX ′

n

}L

0
+ c2

∫ L

0

yX ′′
n dx

= −c2y(L, t)X ′
n(L) + c2y(0, t)X ′

n(0) + c2
∫ L

0

yX ′′
n dx. (7.11)

Now, boundary conditions 7.4b,c imply that the first two terms on the right vanish.
Further, equation 7.5a may be used to replace X ′′

n with −λ2
nXn, with the result

∂2ỹ(λn, t)
∂t2

= c2
∫ L

0

y(−λ2
nXn) dx = −c2λ2

n

∫ L

0

yXn dx = −c2λ2
nỹ(λn, t). (7.12)

Because ỹ(λn, t) is a function of only one variable, t, and a parameter, λn, the
partial derivative may be replaced by an ordinary derivative,

d2ỹ

dt2
= −c2λ2

nỹ. (7.13a)

This is an ordinary differential equation for ỹ(λn, t). When we take finite Fourier
transforms of initial conditions 7.4d,e, we obtain initial conditions for this ODE,

ỹ(λn, 0) = f̃(λn), (7.13b)
dỹ(λn, 0)

dt
= 0. (7.13c)

What the finite Fourier transform has done is replace initial boundary value problem
7.4 for y(x, t) with initial value problem 7.13 for ỹ(λn, t); a PDE has been reduced
to an ODE. In actual fact, 7.13 is an infinite system of ODEs (n = 1, 2, . . .), but
because all differential equations have exactly the same form, solving one solves
them all.

A general solution of ODE 7.13a is

ỹ(λn, t) = An cos cλnt+Bn sin cλnt, (7.14)

where An and Bn are constants. Initial conditions 7.13b,c require these constants
to satisfy

An = f̃(λn), 0 = cλnBn, (7.15)

and therefore
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ỹ(λn, t) = f̃(λn) cos cλnt. (7.16)

The inverse transform defines the solution of problem 7.4 as

y(x, t) =
∞∑

n=1

ỹ(λn, t)Xn(x) =
∞∑

n=1

f̃(λn) cos cλntXn(x)

=

√
2
L

∞∑

n=1

f̃(λn) sin
nπx

L
cos

nπct

L
, (7.17)

a solution identical to that obtained by separation of variables.
Briefly, the transform technique replaces the PDE in y(x, t) with an ODE in

its transform ỹ(λn, t). Once the ODE is solved, the inverse transform gives y(x, t).
A number of aspects of the method deserve special mention:

1. Not just any finite Fourier transform will yield a solution to this initial bound-
ary value problem. It must be the transform associated with the Sturm-Liouville
system 7.5; that is, it must be the transform associated with the Sturm-Liouville
system that would result if separation of variables were applied to the problem (see
Exercise 2). In nonhomogeneous problems, we use the transform associated with
the Sturm-Liouville system that would result were separation used on the corre-
sponding homogeneous problem. Apparently then, to use transforms efficiently, it
is advantageous to quickly recognize the Sturm-Liouville system that would result
were we to use separation of variables.

2. Boundary conditions on y(x, t) are incorporated in the simplification leading to the
ordinary differential equation in ỹ(λn, t).

3. Initial conditions on y(x, t) are converted by the transform into initial conditions
on ỹ(λn, t).

4. Finite Fourier transforms always give a solution in the form of an infinite series
(the inverse transform). It may happen that part or all of the solution is the
generalized Fourier series of a simple function. In particular, when nonhomogeneities
are time independent, part of the solution is always representable in closed form.
Considerable ingenuity may be required to discover this function. The next example
illustrates this point.

It is probably fair to say that the transform technique applied to the above
problem is more involved than the separation method. This is in agreement with
our earlier statement that the transform method shows its true versatility in prob-
lems with nonhomogeneous PDEs and/or boundary conditions. To illustrate this,
consider problem 4.35 of Section 4.3, where gravity introduces a nonhomogeneity
into the PDE,

∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0, (g = 9.81), (7.18a)

y(0, t) = 0, t > 0, (7.18b)
y(L, t) = 0, t > 0, (7.18c)
y(x, 0) = f(x), 0 < x < L, (7.18d)
yt(x, 0) = 0, 0 < x < L. (7.18e)
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In Section 4.3 we expressed the solution in the form y(x, t) = z(x, t) + ψ(x), where
ψ(x) = [g/(2c2)](x2 − Lx) is the solution of the corresponding static deflection
problem. The function z(x, t) must then satisfy the homogeneous problem

∂2z

∂t2
= c2

∂2z

∂x2
, 0 < x < L, t > 0, (7.19a)

z(0, t) = 0, t > 0, (7.19b)
z(L, t) = 0, t > 0, (7.19c)

z(x, 0) = f(x) +
g

2c2
(Lx− x2), 0 < x < L, (7.19d)

zt(x, 0) = 0, 0 < x < L. (7.19e)

Separation of variables on problem 7.19 gives

z(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπct

L
, (7.20a)

where

cn =
2
L

∫ L

0

[
f(x) +

g

2c2
(Lx− x2)

]
sin

nπx

L
dx. (7.20b)

The final solution is

y(x, t) = z(x, t) +
g

2c2
(x2 − Lx). (7.21)

Consider now the finite Fourier transform technique applied to this problem.
The transform associated with this problem is again 7.8, where λ2

n = n2π2/L2 and
Xn(x) =

√
2/L sin (nπx/L) are the eigenpairs of 7.5 (this being the Sturm-Liouville

system that would result were separation of variables used on the corresponding
homogeneous problem). If we apply the transform to PDE 7.18a,

∫ L

0

∂2y

∂t2
Xn(x) dx =

∫ L

0

(
c2
∂2y

∂x2
− g

)
Xn(x) dx. (7.22)

Integration by parts on the right, along with the fact that Xn(0) = Xn(L) = 0,
gives

∂2

∂t2

∫ L

0

yXn dx = c2
{
∂y

∂x
Xn

}L

0

− c2
∫ L

0

∂y

∂x
X ′

n dx− g1̃

= −c2
∫ L

0

∂y

∂x
X ′

n dx− g1̃, (7.23)

where 1̃ is the transform of the function identically equal to unity,

1̃ =
∫ L

0

Xn(x) dx =
∫ L

0

√
2
L

sin
nπx

L
dx =

√
2L
nπ

[1 + (−1)n+1]. (7.24)

Integration by parts again and boundary conditions 7.18b,c yield

∂2

∂t2
ỹ(λn, t) = −c2

{
yX ′

n

}L

0
+ c2

∫ L

0

yX ′′
n dx− g1̃ = c2

∫ L

0

y(−λ2
nXn) dx− g1̃
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or,

d2ỹ

dt2
+ c2λ2

nỹ = −g1̃. (7.25a)

This is an ordinary differential equation for ỹ(λn, t). Transforms of initial conditions
7.18d,e require ỹ(λn, t) to satisfy the initial conditions

ỹ(λn, 0) = f̃(λn), (7.25b)
dỹ(λn, 0)

dt
= 0. (7.25c)

A general solution of the ODE is

ỹ(λn, t) = An cos cλnt+Bn sin cλnt−
g1̃
c2λ2

n

, (7.26)

where An and Bn are constants. The initial conditions require these constants to
satisfy

f̃(λn) = An − g1̃
c2λ2

n

, 0 = cλnBn, (7.27)

and therefore

ỹ(λn, t) =
[
f̃(λn) +

g1̃
c2λ2

n

]
cos cλnt−

g1̃
c2λ2

n

. (7.28)

The inverse transform now defines the solution of problem 7.18 as

y(x, t) =
∞∑

n=1

ỹ(λn, t)Xn(x) =
∞∑

n=1

Xn(x)
{[
f̃(λn) +

g1̃
c2λ2

n

]
cos cλnt−

g1̃
c2λ2

n

}

=

√
2
L

∞∑

n=1

sin
nπx

L

{[
f̃(λn) +

g1̃
c2λ2

n

]
cos cλnt−

g1̃
c2λ2

n

}
. (7.29)

To show that this solution is identical to that obtained by separation, we cal-
culate that for ψ(x) = [g/(2c2)](x2 − Lx),

ψ̃(λn) =
∫ L

0

ψ(x)Xn(x) dx =
−g

c2n3π3

√
2L5[1 + (−1)n+1] =

−g1̃
c2λ2

n

. (7.30)

Consequently, the last term of the series in 7.29 can be expressed as
∞∑

n=1

√
2
L

sin
nπx

L

(
−g1̃
c2λ2

n

)
=

∞∑

n=1

ψ̃(λn)Xn(x) = ψ(x).

Solution 7.29 can therefore be written in the form

y(x, t) =

√
2
L

∞∑

n=1

sin
nπx

L
[f̃(λn) − ψ̃(λn)] cos

nπct

L
+ ψ(x), (7.31)

which is clearly identical to that obtained by separation.
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The transform method applied to this problem with a nonhomogeneous PDE
is essentially the same as when applied to the homogeneous problem 7.4. This is
the advantage of the transform method; it does not require homogeneous PDEs or
boundary conditions. To illustrate the method applied to nonhomogeneous bound-
ary conditions, we consider Example 4.5 in Section 4.3,

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (7.32a)

U(0, t) = U0, t > 0, (7.32b)
U(L, t) = UL, t > 0, (7.32c)
U(x, 0) = f(x), 0 < x < L. (7.32d)

The finite Fourier transform for this problem is once again 7.3, where λ2
n =

n2π2/L2 and Xn(x) =
√

2/L sin (nπx/L) are eigenpairs of Sturm-Liouville system
7.5 (obtained by separation when 7.32b,c are homogeneous). If we apply this trans-
form to PDE 7.32a,

∫ L

0

∂U

∂t
Xn(x) dx = k

∫ L

0

∂2U

∂x2
Xn(x) dx. (7.33)

Integration by parts on the right, together with the fact that Xn(0) = Xn(L) = 0,
gives

∂

∂t

∫ L

0

UXn dx = k

{
∂U

∂x
Xn

}L

0

− k

∫ L

0

∂U

∂x
X ′

n dx = −k
∫ L

0

∂U

∂x
X ′

n dx.

Another integration by parts yields

∂

∂t
Ũ(λn, t) = −k

{
UX ′

n

}L

0
+ k

∫ L

0

UX ′′
n dx

= −k[U(L, t)X ′
n(L)− U(0, t)X ′

n(0)] + k

∫ L

0

U(−λ2
nXn) dx,

in which we may use boundary conditions 7.32b,c,

dŨ

dt
= −kUL

√
2
L
λn(−1)n + kU0

√
2
L
λn − kλ2

nŨ

= −kλ2
nŨ + k

√
2
L
λn[U0 + UL(−1)n+1]. (7.34a)

Accompanying this ODE in Ũ(λn, t) is the transform of initial condition 7.32d,

Ũ(λn, 0) = f̃(λn). (7.34b)

A general solution of ODE 7.34a is

Ũ(λn, t) = Ane
−kλ2

nt + λ−1
n

√
2
L

[U0 + UL(−1)n+1], (7.35)

where An is a constant. Initial condition 7.34b requires
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f̃(λn) = An + λ−1
n

√
2
L

[U0 + UL(−1)n+1], (7.36)

and therefore

Ũ(λn, t) = e−kλ2
nt

{
f̃(λn) − λ−1

n

√
2
L

[U0 + UL(−1)n+1]

}

+ λ−1
n

√
2
L

[U0 + UL(−1)n+1]. (7.37)

Inverse transform 7.3b defines the solution of problem 7.32 as

U(x, t) =
∞∑

n=1

Ũ(λn, t)Xn(x)

=
∞∑

n=1

√
2
L

sin
nπx

L

{
e−n2π2kt/L2

[
f̃(λn) − λ−1

n

√
2
L

[U0 + UL(−1)n+1]

]

+ λ−1
n

√
2
L

[U0 + UL(−1)n+1]

}
. (7.38)

To show that this solution is identical to that obtained by separation of variables
in Example 4.5 in Section 4.3, we calculate that for ψ(x) = U0 + (UL − U0)x/L,

ψ̃(λn) =
∫ L

0

ψ(x)Xn(x) dx = λ−1
n [U0 + UL(−1)n+1]. (7.39)

Solution 7.38 can therefore be written in the form

U(x, t) =

√
2
L

∞∑

n=1

e−n2π2kt/L2
[f̃(λn) − ψ̃(λn)] sin

nπx

L
+ ψ(x), (7.40)

identical to that obtained by separation of variables.
If we set x = 0 and x = L in solution 7.38, we obtain U(0, t) = U(L, t) = 0,

whereas x = 0 and x = L in solution 7.40 give U(0, t) = U0 and U(L, t) = UL,
provided we define ψ(0) = U0 and ψ(L) = UL. In other words, the function in 7.38
does not satisfy boundary conditions 7.32b,c,
but 7.40 does. This is because the
series expansion of ψ(x) in 7.38 is
a Fourier sine series, and as such it
converges to the odd extension of ψ(x)
to a function of period 2L. At x = 0
and x = L, this extension (see Figure 7.3)
is discontinuous, and the series therefore

y

x

U

L LL
U

U

U

L

L

0

0

-
-

-

2

( )

( )
Periodic
extension

Odd extension
of x

x

y

y

converges to the average value of the right Figure 7.3
and left limits, namely zero. For any other
value of x between 0 and L, solutions 7.38 and 7.40 give identical results.

Parts of a finite Fourier transform solution that can be expressed in closed
form should always be so represented. The above example suggests that in so
doing, values of the closed form portion at end points should be defined as limiting
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values. An additional reason for extracting closed form portions is that the rate
of convergence of the remaining series is enhanced. To illustrate this, suppose, for
simplicity, that f(x) = 0 in problem 7.32. The finite Fourier transform solution 7.38
with f(x) = 0 is

U(x, t) =
2
π

∞∑

n=1

1
n

[U0 + UL(−1)n+1](1 − e−n2π2kt/L2
) sin

nπx

L
. (7.41)

Solution 7.40 with f(x) = 0 is

U(x, t) = U0 +
(UL − U0)x

L
− 2
π

∞∑

n=1

1
n

[U0 + UL(−1)n+1]e−n2π2kt/L2
sin

nπx

L
. (7.42)

Terms in solution 7.42 have the factor 1/n, but each is multiplied by the exponential
e−n2π2kt/L2

that decreases rapidly to zero for large n and/or t. In solution 7.41,
1− e−n2π2kt/L2

replaces e−n2π2kt/L2
. For large n or t, these factors approach unity,

not zero. Convergence is much slower.
In the remainder of this section we consider two additional problems that have

more general nonhomogeneities.

Example 7.3 Solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (7.43a)

U(0, t) = f1(t), t > 0, (7.43b)
Ux(L, t) = −κ−1f2(t), t > 0, (7.43c)
U(x, 0) = f(x), 0 < x < L. (7.43d)

Described is a rod of length L with insulated sides that at time t = 0 has temperature
f(x). For t > 0, the temperature of its left end is a prescribed f1(t), and heat is
transferred across the right end at a rate f2(t). When f2(t) is positive, heat is being
removed from the rod, and when it is negative, heat is being added.

Solution If separation of variables is applied to the associated homogeneous
problem (with f1(t) = f2(t) = 0), the Sturm-Liouville system

X ′′ + λ2X = 0, X(0) = 0 = X ′(L),

results. Eigenvalues are λ2
n = (2n−1)2π2/(4L2), with corresponding eigenfunctions

Xn(x) =
√

2/L sinλnx. If we apply the finite Fourier transform associated with
this system to PDE 7.43a,

∫ L

0

∂U

∂t
Xn(x) dx = k

∫ L

0

∂2U

∂x2
Xn(x) dx.

Integration by parts on the right gives

∂

∂t

∫ L

0

UXn dx = k

{
∂U

∂x
Xn

}L

0

− k

∫ L

0

∂U

∂x
X ′

n dx

= kUx(L, t)Xn(L) − k
{
UX ′

n

}L

0
+ k

∫ L

0

UX ′′
n dx

= k

[
Ux(L, t)Xn(L) + U(0, t)X ′

n(0) +
∫ L

0

−λ2
nXnU dx

]
.
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When we use boundary conditions 7.43b,c, we may write

dŨ

dt
= k[−κ−1f2(t)Xn(L) + f1(t)X ′

n(0)− λ2
nŨ (λn, t)].

Thus, Ũ(λn, t) must satisfy the ODE

dŨ

dt
+ kλ2

nŨ = A(λn, t), (7.44a)

where

A(λn, t) = k[−κ−1f2(t)Xn(L) + f1(t)X ′
n(0)]

= k

√
2
L

[(−1)nκ−1f2(t) + λnf1(t)], (7.44b)

subject to the transform of 7.43d,

Ũ(λn, 0) = f̃(λn). (7.44c)

A general solution of ODE 7.44a is

Ũ(λn, t) = e−kλ2
nt

∫
A(λn, t)ekλ2

ntdt.

In order to incorporate initial condition 7.44c with its arbitrary function f̃(λn), it
is advantageous to express this solution as a definite integral,

Ũ(λn, t) = e−kλ2
nt

[∫ t

0

A(λn, u)ekλ2
nudu+ Cn

]

= Cne
−kλ2

nt +
∫ t

0

A(λn, u)ekλ2
n(u−t)du.

Condition 7.44c now requires f̃(λn) = Cn, and therefore

Ũ(λn, t) = f̃(λn)e−kλ2
nt +

∫ t

0

A(λn, u)ekλ2
n(u−t)du. (7.45)

The solution to problem 7.43 is defined by the inverse finite Fourier transform,

U(x, t) =
∞∑

n=1

Ũ (λn, t)Xn(x)

=
∞∑

n=1

[
f̃(λn)e−kλ2

nt +
∫ t

0

A(λn, u)ekλ2
n(u−t)du

]√
2
L

sin λnx. (7.46)

As a specific example, suppose the rod is initially at temperature zero (f(x) ≡
0), its right end is insulated (f2(t) ≡ 0), and its left end is held at constant temper-
ature 100◦C. According to equations 7.44b and 7.45,

Ũ(λn, t) =
∫ t

0

k

√
2
L
λn(100)ekλ2

n(u−t)du =
100
√

2/L
λn

(1 − e−kλ2
nt),

and hence,
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U(x, t) =
∞∑

n=1

100
√

2/L
λn

(1− e−kλ2
nt)

√
2
L

sin
(2n− 1)πx

2L
.

The solution may be simplified by noting that when g(x) = 100,

g̃(λn) =
∫ L

0

100

√
2
L

sinλnx dx =
100
√

2/L
λn

.

Thus,

g(x) = 100 =
∞∑

n=1

100
√

2/L
λn

√
2
L

sinλnx,

and it follows that

U(x, t) = 100− 400
π

∞∑

n=1

e−(2n−1)2π2kt/(4L2)

2n− 1
sin

(2n− 1)πx
2L

.

This function is plotted for various values
of t in Figure 7.4 (assuming a thermal
diffusivity of k = 12 × 10−6 m2/s). Notice,
in particular, that each curve is horizontal
at x = L, a consequence of the insulation
there.•

U

tL

U x
100

50

( ,360 000)

U x( ,36 000)

U x( ,3600)

U x( ,600)

U x( ,0)

Figure 7.4

Example 7.4 A taut string has one end, at x = 0, fixed on the x-axis while the other end, at
x = L, is forced to undergo periodic vertical motion described by g(t) = A sinωt,
t ≥ 0 (A a constant). If the string is initially at rest on the x-axis, find its subsequent
displacement.

Solution The initial boundary value problem for displacements y(x, t) of points
on the string is

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (7.47a)

y(0, t) = 0, t > 0, (7.47b)
y(L, t) = g(t), t > 0, (7.47c)
y(x, 0) = 0, 0 < x < L, (7.47d)
yt(x, 0) = 0, 0 < x < L. (7.47e)

The finite Fourier transform associated with x is

f̃(λn) =
∫ L

0

f(x)Xn(x) dx,

where λ2
n = n2π2/L2 and Xn(x) =

√
2/L sin (nπx/L). Application of the transform

to PDE 7.47a leads to the following ODE in ỹ(λn, t),

d2ỹ

dt2
+ c2λ2

nỹ = −c2X ′
n(L)g(t) (7.48a)



300 SECTION 7.2

subject to

ỹ(λn, 0) = ỹ′(λn, 0) = 0. (7.48b)

(Details are left to the reader). Variation of parameters on problem 7.48 gives the
solution in the form

ỹ(λn, t) =
−cX ′

n(L)
λn

∫ t

0

g(u) sin cλn(t− u) du. (7.49)

This is a general formula valid for any function g(t) whatsoever. In this problem,
g(t) = A sinωt, so that ỹ(λn, t) could be obtained by evaluation of integral 7.49.
(Try it.) Alternatively, if we return to ODE 7.48a, a general solution when g(t) =
A sinωt is

ỹ(λn, t) = Bn cos cλnt+Dn sin cλnt−
Ac2X ′

n(L)
c2λ2

n − ω2
sinωt, (7.50)

provided ω 6= cλn for any integer n. Initial conditions 7.48b imply that

0 = Bn, 0 = cλnDn − Ac2ωX ′
n(L)

c2λ2
n − ω2

,

from which

ỹ(λn, t) =
AcωX ′

n(L)
λn(c2λ2

n − ω2)
sin cλnt−

Ac2X ′
n(L)

c2λ2
n − ω2

sinωt. (7.51)

Thus,

y(x, t) =
∞∑

n=1

ỹ(λn, t)Xn(x)

=
∞∑

n=1

AcX ′
n(L)

c2λ2
n − ω2

(
ω

λn
sin cλnt− c sinωt

)
Xn(x)

= 2cA
∞∑

n=1

(−1)n

n2π2c2 − ω2L2

(
ωL sin

nπct

L
− nπc sinωt

)
sin

nπx

L
. (7.52a)

This is the solution of problem 7.47, provided ω 6= cλn; that is, provided ω is not
equal to a natural frequency of the vibrating string. If this solution is separated
into two series,

y(x, t) = 2ωcLA
∞∑

n=1

(−1)n

n2π2c2 − ω2L2
sin

nπct

L
sin

nπx

L

+ 2πc2A sinωt
∞∑

n=1

n(−1)n+1

n2π2c2 − ω2L2
sin

nπx

L
,

it is not unreasonable to expect that the second series, since it is void of t, is the
Fourier sine series for some function. Indeed, it is straightforward to show that the
series represents (2πc2)−1 sin (ωx/c)/ sin (ωL/c). In other words, the solution can
be expressed in the simplified form
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y(x, t) =
A sin (ωx/c) sinωt

sin (ωL/c)
+ 2ωcLA

∞∑

n=1

(−1)n

n2π2c2 − ω2L2
sin

nπct

L
sin

nπx

L
. (7.52b)

(Undoubtedly, the question in your mind must be: How did we arrive at the function
(2πc2)−1 sin (ωx/c)/ sin (ωL/c)? The answer is experience, or in conjunction with
other techniques like Laplace transforms.)

We now investigate what happens when ω is equal to a natural frequency of
the vibrating string; that is, suppose ω = mπc/L for some integer m. When n 6= m,
solution 7.51 of 7.48 is unchanged. But for n = m, ỹ(λm, t) must satisfy

d2ỹ

dt2
+ c2λ2

mỹ = −c2X ′
m(L)A sin cλmt, (7.53a)

ỹ(λm, 0) = ỹ′(λm, 0) = 0. (7.53b)

A general solution of the differential equation is

ỹ(λm, t) = Bm cos cλmt+Dm sin cλmt+
AcX ′

m(L)
2λm

t cos cλmt. (7.54)

The initial conditions imply that

0 = Bm, 0 = cλmDm +
AcX ′

m(L)
2λm

,

from which

ỹ(λm, t) =
−AX ′

m(L)
2λ2

m

sin cλmt+
AcX ′

m(L)
2λm

t cos cλmt. (7.55)

In other words, when ω = cλm = mπc/L, the sequence {ỹ(λn, t)} remains un-
changed except for the mth term. The inverse transform now gives

y(x, t) = ỹ(λm, t)Xm(x) +
∞∑

n=1
n6=m

ỹ(λn, t)Xn(x),

and substitutions from 7.55 and 7.51 lead to

y(x, t) =
A(−1)m

L

(
ct cos

mπct

L
− L

mπ
sin

mπct

L

)
sin

mπx

L

+
2A
π

∞∑

n=1
n6=m

(−1)n

n2 −m2

(
m sin

nπct

L
− n sin

mπct

L

)
sin

nπx

L
. (7.56)

For large t, the first term in solution 7.56 becomes unbounded. This phenomenon is
known as resonance. When the forcing frequency (ω) is equal to one of the natural
frequencies (cλn) of the vibrating system, oscillations become excessive and destroy
the system.•

Further instances of resonance are discussed in Exercises 26–36 and 39. In some
applications, resonance is disastrous; in others, resonance (of a slightly different
nature) is exactly what is desired.

In this section we have dealt with initial boundary problems. Finite Fourier
transforms can also be used to solve nonhomogeneous boundary value problems in
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Cartesian coordinates x and y. We have already suggested (see Section 6.3) that
when nonhomogeneities occur only in boundary conditions, the problem can easily
be solved by subdivision into homogeneous problems. In other words, finite Fourier
transforms need only be used to accommodate nonhomogeneities in the PDE. This
is illustrated in Exercises 48–51.

EXERCISES 7.2

Use finite Fourier transforms to solve all problems in this set of exercises. Wherever
possible, express solutions, or parts of solutions, in closed form.

Part A Heat Conduction

1. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature f(x), 0 ≤ x ≤ L,
at time t = 0. For time t > 0, the end x = 0 is held at 0◦C and the end x = L is held at
constant temperature UL

◦C. What is the temperature in the rod for 0 < x < L and t > 0?

2. We have claimed that to solve an initial boundary value problem with finite Fourier transforms,
it is necessary to use the transform associated with the Sturm-Liouville system that would result
were separation of variables used on the corresponding homogeneous problem. To illustrate this,
apply the finite Fourier transform associated with Sturm-Liouville system 5.2 of Chapter 5 to
Exercise 1. Show that an insoluble problem in Ũ(λn, t) is obtained.

3. Solve Exercise 1 in Section 4.3.

4. Solve Exercise 6 in Section 4.3.

5. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature U0(1−
x/L), where U0 is a constant. For time t > 0, the end x = 0 is maintained at temperature U0

and end x = L is insulated. Find the temperature in the rod for 0 < x < L and t > 0.

6. Solve the initial boundary value problem for temperature in a homogeneous, isotropic rod with
insulated sides, and ends held at temperature zero. Heat generation is defined at position x and
time t by g(x, t), and the initial temperature of the rod is described by f(x).

7. Repeat Exercise 6 if the ends of the rod are insulated.

8. (a) Show that finite Fourier transforms applied to Exercise 5 of Section 4.3 when k 6= L2/(n2π2)
leads to the following solution,

U(x, t) = 200
∞∑

n=1

{[
[1 + (−1)n+1

nπ
+

nπk(−1)n

n2π2k − L2

]
e−n2π2kt/L2

+
nπk(−1)n+1

n2π2k − L2
e−t

}
sin

nπx

L
.

(b) Simplify this solution by finding the transform of the function f(x) = x, and using the
following partial fraction decomposition on the last term

1
n(n2π2k − L2)

=
−1/L2

n
+

nπ2k/L2

n2π2k − L2
.

(c) Solve the problem when k = L2/(m2π2) for some positive integer m.

9. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature zero
throughout. For time t > 0, there is located at cross section x = b (0 < b < L) a plane
heat source of constant strength g. If the ends x = 0 and x = L of the rod are kept at zero
temperature, the initial boundary value problem for temperature in the rod is
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∂U

∂t
= k

∂2U

∂t2
+
kg

κ
δ(x− b), 0 < x < L, t > 0,

U(0, t) = 0, t > 0,
U(L, t) = 0, t > 0,
U(x, 0) = 0, 0 < x < L,

where δ(x− b) is the Dirac delta function. Solve this problem for U(x, t).
10. Solve Exercise 16 in Section 4.3.

11. Solve Exercise 8 in Section 4.3.

12. Repeat Exercise 5 if the temperature of the end x = 0 is U0e
−αt (α > 0 a constant). Assume

that (a) α 6= (2n− 1)2π2k/(4L2) for any integer n, and (b) α = (2m− 1)2π2k/(4L2) for some
integer m.

13. If the ends x = 0 and x = L of the thin-wire problem in Exercise 4 of Section 6.2 are kept at
constant temperatures U0 and UL, respectively, and the initial temperature is zero throughout,
show that

U(x, t) =
U0 sinh

√
h/k(L− x) + UL sinh

√
h/kx

sinh
√
h/kL

− 2kπe−ht
∞∑

n=1

n[U0 + (−1)n+1UL]
hL2 + n2π2k

e−n2π2kt/L2
sin

nπx

L
.

14. Repeat Exercise 5 if heat is added uniformly over the end x = L at a constant rate q W/m2.

15. (a) A cylindrical, homogeneous, isotropic rod with insulated sides is initially at constant tem-
perature U0 throughout. For time t > 0, the right end, x = L, continues to be held at
temperature U0. Heat is added uniformly over the left end, x = 0, at a constant rate q
W/m2 for the first t0 seconds, and the end is insulated thereafter. Find the temperature in
the rod for 0 < x < L and 0 < t < t0.

(b) Assuming that U(x, t) must be continuous at time t0, find U(x, t) for 0 < x < L and t > t0.
(c) What is the steady-state solution?

16. Repeat Exercise 15 if the end x = L is insulated.

17. Find a formula for the solution of the general one-dimensional heat conduction problem

∂U

∂t
= k

∂2U

∂t2
+
kg(x, t)

κ
, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = f1(t), x = 0, t > 0,

l2
∂U

∂x
+ h2U = f2(t), x = L, t > 0,

U(x, 0) = f(x), 0 < x < L.

18. The general thin-wire problem (see Exercise 41 in Section 2.2) is
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∂U

∂t
= k

∂2U

∂x2
− h(U − Um) +

kg(x, t)
κ

, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = f1(t), x = 0, t > 0,

l2
∂U

∂x
+ h2U = f2(t), x = L, t > 0,

U(x, 0) = f(x), 0 < x < L.

(a) Show that the change of dependent variable U (x, t) = ehtU(x, t) leads to the initial boundary
value problem

∂U

∂t
= k

∂2U

∂x2
+
[
hUm +

kg(x, t)
κ

]
eht, 0 < x < L, t > 0,

−l1
∂U

∂x
+ h1U = ehtf1(t), x = 0, t > 0,

l2
∂U

∂x
+ h2U = ehtf2(t), x = L, t > 0,

U(x, 0) = f(x), 0 < x < L.

(b) Use the result of Exercise 17 to find U (x, t) and hence U(x, t).

Vibrations

19. Solve Exercise 17 in Section 4.3.

20. Solve Exercise 19 in Section 4.3.

21. Solve Exercise 18 in Section 4.3.

22. Solve Exercise 22 in Section 4.3.

23. Solve Exercise 23 in Section 4.3.

24. (a) Find a series solution for displacements of the bar in Exercise 20 of Section 4.3.
(b) Find a closed form representation for y(x, t).
(c) Evaluate y(L, t) and draw its graph as a function of t to illustrate the motion of the end

x = L of the bar. Hint: See Exercise 20 in Section 3.2.

25. A horizontal elastic bar of natural length L lies along the x-axis between x = 0 and x = L. At
time t = 0, it is stretched so that displacements of cross sections at positions x are given by
the function kx, k > 0 a constant, 0 ≤ x ≤ L. The bar is released from rest at this position.
If a constant force per unit area F acts parallel to the bar on the end x = 0, find subsequent
displacements of cross sections of the bar.

26. (a) Solve parts (a) and (b) of Exercise 21 in Section 4.3.
(b) Discuss the resonant case.

27. (a) A horizontal elastic bar is originally at rest and unstrained along the x-axis between x = 0
and x = L. For time t > 0, the left end is fixed and the right end is subjected to an
elongating force per unit area F0 sinωt parallel to the bar. Find a series representation for
displacements of cross sections of the bar in the nonresonant case.

(b) Simplify the solution by finding the finite Fourier transform of the function sin (ωx/c).
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(c) Discuss the resonant case.

28. (a) A taut string initially at rest along the x-axis has its end at x = 0 fixed on the x-axis. The
end x = L is forced to undergo periodic vertical motion A sinωt, t ≥ 0 (A and ω constants).
Find displacements for points of the string.

(b) Discuss the resonant case.

In Exercises 29–36 deteremine frequencies of the applied force that will produce
resonance. Do not determine the solution to the initial boundary value problem,
only the frequencies.

29. A taut string with one end x = 0 fixed on the x-axis and the other end x = L free to slide
vertically is initially at rest along the x-axis. An external force F0 sinωt, t ≥ 0, per unit x-length
acts at every point on the string.

30. A taut string with both ends free to slide vertically is initially at rest along the x-axis. An
external force F0 sinωt, t ≥ 0, per unit x-length acts at every point on the string. (Find the
solution y(x, t) in this case.)

31. A horizontal elastic bar of natural length L lies along the x-axis between x = 0 and x = L. Its
left end is fixed at x = 0, and a force per unit area F = F0 sinωt acts parallel to the bar on the
end x = L.

32. The bar in Exercise 31 if the end x = 0 is free.

33. The bar in Exercise 31 if the end x = L has a prescribed displacement A0 sinωt.

34. The bar in Exercise 31 if the end x = 0 is free and the end x = L has a prescribed displacement
A0 sinωt.

35. The bar in Exercise 31 if the ends x = 0 and x = L have prescribed displacements A0 sinωt and
B0 sinφt, respectively.

36. The bar in Exercise 31 if the ends x = 0 and x = L are subjected to forces F0 sinωt and G0 sinφt
(per unit area), respectively.

37. An elastic bar of natural length L is clamped along its length, turned to the vertical position,
and hung from its end x = 0. At time t = 0, the clamp is removed and gravity is therefore
permitted to act on the bar.
(a) Show that vertical displacements of cross sections of the bar are given by

y(x, t) =
gx(2L− x)

2c2
− 16gL2

c2π3

∞∑

n=1

1
(2n− 1)3

cos
(2n− 1)πct

2L
sin

(2n− 1)πx
2L

.

(b) Find a closed-form solution for y(x, t). (Hint: See Exercise 20 in Section 3.2.)
(c) Draw a graph of y(L, t). Does the end x = L of the bar oscillate about its equilibrium

position, that is, the position of the lower end of the bar if the bar were to hang motionless
under its own weight? (See Exercise 15 in Section 2.3.) Is the motion simple harmonic?

38. (a) Find displacements in the bar of Exercise 37 if the top of the bar is attached to a spring
with constant k. Let x = 0 correspond to the top end of the bar when the spring is in the
unstretched position.

(b) Does the lower end of the bar oscillate about its equilibrium position? (See Exercise 16 in
Section 2.3.)
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39. Repeat Example 7.4 if a damping force −β∂y/∂t, proportional to velocity, acts at every point
on the string. Assume that β < 2πρc/L. Can resonance with unbounded oscillations occur?

40. (a) The ends of a taut string are fixed at x = 0 and x = L on the x-axis. The string is initially
at rest along the axis and then is allowed to drop under its own weight. Find a series
representation for the displacement of the string.

(b) Show that the solution in part (a) can be expressed in the closed form

y(x, t) = ψ(x) − 1
2
[ψ(x+ ct) + ψ(x− ct)],

where ψ(x) is the function g(x2 − Lx)/(2c2) for 0 ≤ x ≤ L, and is extended as an odd
function of period 2L.

41. Repeat Exercise 40 if the string has an initial displacement f(x).

42. The ends of a taut string are looped around smooth vertical supports at x = 0 and x = L. If
the string falls from rest along the x-axis, and a constant vertical force F0 acts on the loop at
x = L, find displacements of the string. Take gravity into account.

43. A motionless, horizontal beam has its ends simply supported at x = 0 and x = L. At time
t = 0, a concentrated force of magnitude A is suddenly applied at the midpoint.
(a) If the weight per unit length of the beam is negligible compared to A, show that the initial

boundary value problem for transverse displacements y(x, t) is

∂2y

∂t2
+ c2

∂4y

∂x4
= −A

ρ
δ(x− L/2), 0 < x < L, t > 0,

y(0, t) = y(L, t) = 0, t > 0,
yxx(0, t) = yxx(L, t) = 0, t > 0,
y(x, 0) = yt(x, 0) = 0, 0 < x < L,

where c2 = EI/ρ.
(b) Solve this problem using the finite Fourier transform associated with Sturm-Liouville system

5.1 of Chapter 5.

44. Find a formula for the solution of the general one-dimensional vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

, 0 < x < L, t > 0,

−l1
∂y

∂x
+ h1y = f1(t), x = 0, t > 0,

l2
∂y

∂x
+ h2y = f2(t), x = L, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L.

45. The end x = 0 of a horizontal elastic bar of length L is kept fixed, and the other end has a massm
attached to it. The mass m is then subjected to a horizontal periodic force F = F0 sinωt. If the
bar is initially unstrained and at rest, set up the initial boundary value problem for longitudinal
displacements in the bar. Can we solve this problem with finite Fourier transforms?

46. (a) A taut string of length L is at rest along the x-axis. At time t = 0, a concentrated force is
placed at one of the nodes of one of the modes of vibration of the string. Show that when
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ends of the string satisfy homogeneous Robin conditions, this mode does not contribute to
the motion of the string.

(b) Is the result in part (a) true if the string has a nonzero initial displacement and/or velocity?

47. (a) A taut string with ends at x = 0 and x = L fixed on the x-axis is at rest along the x-axis.
At time t = 0, a concentrated force is placed at the midpoint of the string. Show that the
displacement of the string contains only odd harmonics.

(b) Is the result in part (a) true if the string has a nonzero initial displacement and/or velocity?

Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

48. A charge distribution with density σ(x, y) coulombs per cubic metre occupies the volume R in
space bounded by the planes x = 0, x = L, y = 0, and y = L′, and these planes are all held at
potential zero.
(a) Use finite Fourier transforms to find the potential V (x, y) in R when σ is constant. Find

two series, one by transforming the x-variable and the other by transforming the y-variable.
(b) If σ = σ(x) is a function of x only, find V (x, y).
(c) Find V (x, y) if σ = xy.

49. A uniform charge distribution of density σ coulombs per cubic metre occupies the volume R
bounded by the planes x = 0, x = L, y = 0, and y = L′. If the electrostatic potential on the
planes x = 0, y = 0, and y = L′ is zero and that on x = L is f(y), find the potential in R.

50. Repeat 49 when planes x = 0, x = L, and y = L′ are held at zero potential and y = 0 is at
potential g(x).

51. Repeat 49 when planes x = L, and y = L′ are held at zero potential and x = 0 and y = 0 are
at potentials f(y) and g(x), respectively.

52. The following problem describes steady-state temperature in a rectangular plate with constant
heat generation, two sides of the plate insulated, and two sides at temperature zero:

∂2U

∂x2
+
∂2U

∂y2
= −C, 0 < x < L, 0 < x < L′,

Ux(0, y) = 0, 0 < y < L′,

U(L, y) = 0, 0 < y < L′,

Uy(x, 0) = 0, 0 < x < L,

U(x,L′) = 0, 0 < x < L.

Use a finite Fourier transform with respect to x, to find U(x, t).

53. Use a finite Fourier transform with respect to x to find a formula for the solution of the two-
dimensional Dirichlet boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), 0 < x < L, 0 < x < L′,

V (0, y) = f1(y), 0 < y < L′,

V (L, y) = f2(y), 0 < y < L′,

V (x, 0) = g1(x), 0 < x < L,

V (x,L′) = g2(x), 0 < x < L.
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54. An alternative to a single series solution of the problem in Exercise 53 is a double series produced
by taking finite Fourier transforms wiwth respect to x and y. Find this solution.

55. (a) The boundary value problem for steady-state temperature in Exercise 20 of Section 6.3
could only be solved by separation of variables when boundary conditions were U(r, 0) = k1

and U(r, α) = k2, where k1 and k2 were constants. Find the ordinary differential equation
that must be satisfied by the transform of the temperature function when a finite Fourier
transform associated with the θ-variable is applied to the PDE.

(b) Find steady-state temperature in the plate when boundary conditions are as in part (a).
Simplify the solution as much as possible.

(c) Find the solution when U(r, 0) = r and U(r, α) = 0.

56. We suggested at the end of this section that two-dimensional boundary value problems on
rectangles with four nonhomogeneous boundary conditions and homogeneous PDEs can be
subdivided into two problems, each of which has two homogeneous and two nonhomogeneous
boundary conditions. There is an exception to this, namely the Neumann problem. For example,
the Neumann problem associated with Laplace’s equation is

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′,

∂V (0, y)
∂x

= f1(y), 0 < y < L′,

∂V (L, y)
∂x

= f2(y), 0 < y < L′,

∂V (x, 0)
∂y

= g1(x), 0 < x < L,

∂y(x,L′)
∂y

= g2(x), 0 < x < L,

where the nonhomogeneities must satisfy the consistency condition
∫ L

0

[g2(x) − g1(x)] dx+
∫ L′

0

[f2(y)− f1(y)] dy = 0.

Our previous suggestion would indicate that V (x, y) should be set equal to V (x, y) = V1(x, y)+
V2(x, y) where V1 and V2 satisfy Laplace’s equation on the rectangle and the following boundary
conditions:

∂V1(0, y)
∂x

= f1(y), 0 < y < L′,

∂V1(L, y)
∂x

= f2(y), 0 < y < L′,

∂V1(x, 0)
∂y

= 0, 0 < x < L,

∂V1(x,L′)
∂y

= 0, 0 < x < L;

∂V2(0, y)
∂x

= 0, 0 < y < L′,

∂V2(L, y)
∂x

= 0, 0 < y < L′,

∂V2(x, 0)
∂y

= g1(x), 0 < x < L,

∂V2(x,L′)
∂y

= g2(x), 0 < x < L.

But these Neumann problems must satisfy the consistency conditions
∫ L′

0

[f2(y)− f1(y)] dy = 0,
∫ L

0

[g2(x) − g1(x)] dx = 0.
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The difficulty is that the combined consistency condition on f1, f2, g1 and g2 may not imply
these separately. In general, then, solutions for V1 and V2 may not exist. With finite Fourier
transforms, this difficulty presents no problem. Find V (x, y) using such a transform.
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§7.3 Higher-Dimensional Problems in Cartesian Coordinates

To solve nonhomogeneous initial boundary value problems in three and four vari-
ables, we can once again remove space variables from the problem with finite Fourier
transforms, leaving an ODE in the transform of the function regarded as a function
of time. There are two ways to do this. Successive finite Fourier transforms, each a
transform in only one space variable, can be applied to the PDE. This corresponds to
successively separating off space variables in homogeneous problems. Alternatively,
multi-dimensional finite Fourier transforms associated with multi-dimensional eigen-
value problems (see Section 6.5) can be introduced. We take the former approach.
To illustrate, consider the following initial boundary value problem.

Example 7.5 Solve the heat conduction problem

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0, (7.57a)

U(0, y, t) = U1, 0 < y < L′, t > 0, (7.57b)
U(L, y, t) = 0, 0 < y < L′, t > 0, (7.57c)
U(x, 0, t) = U2, 0 < x < L, t > 0, (7.57d)

Uy(x,L′, t) = 0, 0 < x < L, t > 0, (7.57e)
U(x, y, 0) = 0, 0 < x < L, 0 < y < L′. (7.57f)

Described is a horizontal plate that is insulated top and bottom and along the edge
y = L′. Initially the temperature is zero throughout the plate, and for t > 0,
faces x = 0, x = L, and y = 0 are held at constant temperatures U1, 0, and U2,
respectively.

Solution The finite Fourier transform associated with the x-variable is

f̃(λn) =
∫ L

0

f(x)Xn(x) dx, (7.58)

where λ2
n = n2π2/L2 and Xn(x) =

√
2/L sin (nπx/L) are the eigenpairs of the

Sturm-Liouville system

X ′′ + λ2X = 0, 0 < x < L,

X(0) = X(L) = 0.

This is the system that would result were separation of variables applied to problem
7.57 with homogeneous boundary conditions. If we apply this transform to PDE
7.57a, and use integration by parts,

∫ L

0

∂U

∂t
Xn dx = k

∫ L

0

(
∂2U

∂x2
+
∂2U

∂y2

)
Xn dx

= k
∂2

∂y2

∫ L

0

UXn dx+ k

{
∂U

∂x
Xn

}L

0

− k

∫ L

0

∂U

∂x
X ′

n dx.

Since Xn(0) = Xn(L) = 0,
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∂

∂t

∫ L

0

UXn dx = k
∂2Ũ (λn, y, t)

∂y2
− k
{
UX ′

n

}L

0
+ k

∫ L

0

UX ′′
n dx.

Boundary conditions 7.57b,c and the fact that X ′′
n = −λ2

nXn now give

∂Ũ

∂t
= k

∂2Ũ

∂y2
+ kU1X

′
n(0) + k

∫ L

0

U(−λ2
nXn) dx.

Thus, Ũ(λn, y, t) must satisfy the PDE

∂Ũ

∂t
= k

∂2Ũ

∂y2
+ kU1X

′
n(0)− kλ2

nŨ , 0 < y < L′, t > 0, (7.59a)

subject to the transforms of conditions 7.57d,e,f,

Ũ(λn, 0, t) = U21̃n, t > 0, (7.59b)
Ũy(λn, L

′, t) = 0, t > 0, (7.59c)

Ũ(λn, y, 0) = 0, 0 < y < L′, (7.59d)

where

1̃n =
∫ L

0

Xn dx =
∫ L

0

√
2
L

sin
nπx

L
dx =

√
2L[1 + (−1)n+1]

nπ
. (7.59e)

The finite Fourier transform associated with the y-variable in problem 7.59 is

f̃(µm) =
∫ L′

0

f(y)Ym(y) dy, (7.60)

where µ2
m = (2m−1)2π2/(4L′2) and Ym(y) =

√
2/L′ sin [(2m− 1)πy/(2L′)] are the

eigenpairs of the Sturm-Liouville system

Y ′′ + µ2Y = 0, 0 < y < L′,

Y (0) = Y ′(L′) = 0.

If we apply this transform to PDE 7.59a,
∫ L′

0

∂Ũ

∂t
Ym dy = k

∫ L′

0

∂2Ũ

∂y2
Ym dy +

∫ L′

0

[kU1X
′
n(0)− kλ2

nŨ ]Ym dy,

and use integration by parts,

∂ ˜̃U (λn, µm, t)
∂t

− kU1X
′
n(0)1̃m + kλ2

n
˜̃U = k

{
∂Ũ

∂y
Ym

}L′

0

− k

∫ L′

0

∂Ũ

∂y
Y ′

m dy,

where

1̃m =
∫ L′

0

Ym dy =
∫ L′

0

√
2
L′ sin

(2m− 1)πy
2L′ dy =

2
√

2L′

(2m− 1)π
.

Since Ym(0) = 0 and ∂Ũ (λn, L
′, t)/∂y = 0,

∂ ˜̃U
∂t

− kU1X
′
n(0)1̃m + kλ2

n
˜̃U = −k

{
ŨY ′

m

}L′

0
+ k

∫ L′

0

ŨY ′′
m dy.



312 SECTION 7.3

Boundary condition 7.59b and the facts that Y ′
m(L′) = 0 and Y ′′

m = −µ2
mYm yield

∂ ˜̃U
∂t

− kU1X
′
n(0)1̃m + kλ2

n
˜̃U = kU2Y

′
m(0)1̃n + k

∫ L′

0

Ũ (−µ2
mYm) dy

or,

d ˜̃U
dt

+ k(λ2
n + µ2

m) ˜̃U = k[U2Y
′
m(0)1̃n + U1X

′
n(0)1̃m]. (7.61a)

Accompanying this ODE in ˜̃U(λn, µm, t) is the transform of initial condition 7.59d,

˜̃U(λn, µm, 0) = 0. (7.61b)

Because the right side of ODE 7.61a is a constant with respect to t, a general
solution of this ODE is

˜̃U(λn, µm, t) = Amne
−k(λ2

n+µ2
m)t +

U2Y
′
m(0)1̃n + U1X

′
n(0)1̃m

λ2
n + µ2

m

,

where the Amn are constants. Initial condition 7.61b requires

0 = Amn +
U2Y

′
m(0)1̃n + U1X

′
n(0)1̃m

λ2
n + µ2

m

,

and therefore

˜̃U(λn, µm, t) =
U2Y

′
m(0)1̃n + U1X

′
n(0)1̃m

λ2
n + µ2

m

[1 − e−k(λ2
n+µ2

m)t]. (7.62)

To find U(x, y, t) we now invert transforms 7.58 and 7.60,

U(x, y, t) =
∞∑

m=1

∞∑

n=1

˜̃U (λn, µm, t)Ym(y)Xn(x).

Substitutions for ˜̃U (λn, µm, t), Ym(y), and Xn(x) lead to

U(x, y, t) = 8
∞∑

m=1

∞∑

n=1

Bmn{1 − e−[n2/L2+(2m−1)2/(4L′2)]π2kt} sin
nπx

L
sin

(2m− 1)πy
2L′ ,

(7.63a)

where

Bmn =
[1 + (−1)n+1](2m− 1)2L2U2 + 4(2n− 1)2L′2U1

n(2m− 1)[4n2π2L′2 + (2m− 1)2π2L2]
. (7.63b)

Terms vanish for even n, and we therefore rewrite the solution displaying only
nonzero terms,

U(x, y, t) = 16
∞∑

m=1

∞∑

n=1

Bmn{1− e−[(2n−1)2/L2+(2m−1)2/(4L′2)]π2kt} sin
(2n− 1)πx

L
sin

(2m− 1)πy
2L′ ,

(7.64a)
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where

Bmn =
(2m− 1)2L2U2 + 4n2L′2U1

(2n− 1)(2m− 1)[4(2n− 1)2π2L′2 + (2m− 1)2π2L2]
. (7.64b)

As a second example, we consider a boundary value problem in three dimen-
sions.

Example 7.6 Find the potential inside the region bounded by the planes x = 0, x = L, y = 0,
y = L′, z = 0, and z = L′′ if all such planes are held at potential zero and the region
contains a uniform charge distribution with density σ coulombs per cubic metre.

Solution The boundary value problem for potential V (x, y, z) in the region is

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= −σ

ε
, 0 < x < L, 0 < y < L′, 0 < z < L′′, (7.65a)

V (0, y, z) = 0, 0 < y < L′, 0 < z < L′′, (7.65b)
V (L, y, z) = 0, 0 < y < L′, 0 < z < L′′, (7.65c)
V (x, 0, z) = 0, 0 < x < L, 0 < z < L′′, (7.65d)
V (x,L′, z) = 0, 0 < x < L, 0 < z < L′′, (7.65e)
V (x, y, 0) = 0, 0 < x < L, 0 < y < L′, (7.65f)

V (x, y, L′′) = 0, 0 < x < L, 0 < y < L′. (7.65g)

The finite Fourier transform associated with the x-variable is

f̃(λn) =
∫ L

0

f(x)Xn(x) dx, (7.66)

where λ2
n = n2π2/L2 and Xn(x) =

√
2/L sin (nπx/L) are the eigenpairs of the

Sturm-Liouville system

X ′′ + λ2X = 0, 0 < x < L,

X(0) = X(L) = 0.

When we apply this transform to the PDE and use integration by parts,
∫ L

0

(
∂2V

∂y2
+
∂2V

∂z2
+
σ

ε

)
Xn dx = −

∫ L

0

∂2V

∂x2
Xn dx

= −
{
∂V

∂x
Xn

}L

0

+
∫ L

0

∂V

∂x
X ′

n dx

[and since Xn(0) = Xn(L) = 0]

=
{
V X ′

n

}L

0
−
∫ L

0

V X ′′
n dx

[and since V (L, y, z) = V (0, y, z) = 0]

= −
∫ L

0

V (−λ2
nXn) dx = λ2

nṼ (λn, y, z).

Thus, Ṽ (λn, y, z) must satisfy the PDE
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∂2Ṽ

∂y2
+
∂2Ṽ

∂z2
− λ2

nṼ = −σ
ε
1̃n, 0 < y < L′, 0 < z < L′′, (7.67a)

subject to the boundary conditions

Ṽ (λn, 0, z) = 0, 0 < z < L′′, (7.67b)
Ṽ (λn, L

′, z) = 0, 0 < z < L′′, (7.67c)
Ṽ (λn, y, 0) = 0, 0 < y < L′, (7.67d)

Ṽ (λn, y, L
′′) = 0, 0 < y < L′, (7.67e)

and

1̃n =
∫ L

0

Xn dx =
√

2L[1 + (−1)n+1]
nπ

. (7.67f)

To eliminate y from this problem, we use the finite Fourier transform

f̃(µm) =
∫ L′

0

f(y)Ym(y) dy, (7.68)

where µ2
m = m2π2/L′2 and Ym(y) =

√
2/L′ sin (mπy/L′) are the eigenpairs of the

Sturm-Liouville system

Y ′′ + µ2Y = 0, 0 < y < L′,

Y (0) = Y (L′) = 0.

Application of this transform to the PDE yields
∫ L′

0

(
∂2Ṽ

∂z2
− λ2

nṼ +
σ

ε
1̃n

)
Ym dy = −

∫ L′

0

∂2Ṽ

∂y2
Ym dy

= −

{
∂Ṽ

∂y
Ym

}L′

0

+
∫ L′

0

∂Ṽ

∂y
Y ′

m dy

[and since Ym(0) = Ym(L′) = 0]

=
{
Ṽ Y ′

m

}L′

0
−
∫ L′

0

Ṽ Y ′′
m dy

[and since Ṽ (λn, 0, z) = Ṽ (λn, L
′, z) = 0]

= −
∫ L′

0

Ṽ (−µ2
mYm) dy = µ2

m
˜̃V (λn, µm, z).

Thus, ˜̃V (λn, µm, z) must satisfy the ODE

d2 ˜̃V
dz2

− (λ2
n + µ2

m) ˜̃V = −σ
ε
˜̃1nm, 0 < z < L′′, (7.69a)

subject to

˜̃V (λn, µm, 0) = 0, (7.69b)
˜̃V (λn, µm, L

′′) = 0, (7.69c)
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and

˜̃1nm =
∫ L′

0

1̃nYm dy =
2
√
LL′[1 + (−1)n+1][1 + (−1)m+1]

mnπ2
. (7.69d)

A general solution of the ODE is

˜̃V (λm, µm, z) = Amn cosh
√
λ2

n + µ2
mz +Bmn sinh

√
λ2

n + µ2
mz +

(σ/ε)˜̃1nm

λ2
n + µ2

m

. (7.70)

Boundary conditions 7.69b,c require

0 = Amn +
(σ/ε)˜̃1nm

λ2
n + µ2

m

,

0 = Amn cosh
√
λ2

n + µ2
mL

′′ +Bmn sinh
√
λ2

n + µ2
mL

′′ +
(σ/ε)˜̃1nm

λ2
n + µ2

m

.

When these are solved for Amn and Bmn and substituted into 7.70, ˜̃V (λn, µm, z)
simplifies to

˜̃V (λn, µm, z) =
−(σ/ε)˜̃1nm

(λ2
n + µ2

m) sinh
√
λ2

n + µ2
mL

′′
[sinh

√
λ2

n + µ2
m(L′′ − z)

+ sinh
√
λ2

n + µ2
mz − sinh

√
λ2

n + µ2
mL

′′]. (7.71)

The solution of problem 7.65 is therefore

V (x, y, z) =
∞∑

m=1

∞∑

n=1

˜̃V (λn, µm, z)Xn(x)Ym(y). (7.72)

EXERCISES 7.3
Part A Heat Conduction

1. An isotropic, homogeneous, horizontal plate has its top and bottom faces insulated. Edges
x = 0, x = L, y = 0, and y = L′ are all held at constant temperatures U1, U2, U3, and U4,
respectively, for time t > 0. If the temperature of the plate at time t = 0 is f(x, y), 0 ≤ x ≤ L,
0 ≤ y ≤ L′, find its temperature thereafter.

2. (a) Solve the following heat conduction problem:

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0,

U(0, y, t) = U1, 0 < y < L′, t > 0,
U(L, y, t) = U2, 0 < y < L′, t > 0,
Uy(x, 0, t) = κ−1

1 φ1, 0 < x < L, t > 0,
Uy(x,L′, t) = −κ−1

2 φ2, 0 < x < L, t > 0,
U(x, y, 0) = 0, 0 < x < L, 0 < y < L′,
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where U1, U2, φ1, and φ2 are constants. Interpret the problem physically.
(b) What is the solution when φ1 = φ2 = 0?

3. Repeat Exercise 2(a) when U1, U2, φ1, and φ2 are functions of time.

4. Find a formula for the solution of the general two-dimensional heat conduction problem

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
kg(x, y, t)

κ
, 0 < x < L, 0 < y < L′, t > 0,

−l1
∂U

∂x
+ h1U = f1(y, t), x = 0, 0 < y < L′, t > 0,

l2
∂U

∂x
+ h2U = f2(y, t), x = L, 0 < y < L′, t > 0,

−l3
∂U

∂y
+ h3U = f3(x, t), y = 0, 0 < x < L, t > 0,

l4
∂U

∂y
+ h4U = f4(x, t), y = L′, 0 < x < L, t > 0,

U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′.

Part B Vibrations

5. A rectangular membrane of side lengths L and L′ has its edges fixed on the xy-plane. If it
is released from rest at a displacement given by f(x, y), find subsequent displacements of the
membrane if gravity is taken into account.

6. A square membrane of side length L, which is initially at rest on the xy-plane, has its edges fixed
on the xy-plane. If a periodic force per unit area A cosωt, (A a constant), acts at every point in
the membrane for t > 0, find displacements in the membrane. Assume that ω 6= cπ

√
n2 +m2/L

for any positive integers m and n.
7. Repeat Exercise 6 if ω =

√
2πc/L. 8. Repeat Exercise 6 if ω =

√
17πc/L.

9. Repeat Exercise 6 if ω =
√

65πc/L. 10. Repeat Exercise 6 if ω =
√

10πc/L.

11. Repeat Exercise 6 if ω =
√

130πc/L.

12. Find a formula for the solution of the general two-dimensional vibration problem

∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
+
F (x, y, t)

ρ
, 0 < x < L, 0 < y < L′, t > 0,

−l1
∂z

∂x
+ h1z = f1(y, t), x = 0, 0 < y < L′, t > 0,

l2
∂z

∂x
+ h2z = f2(y, t), x = L, 0 < y < L′, t > 0,

−l3
∂z

∂y
+ h3z = f3(x, t), y = 0, 0 < x < L, t > 0,

l4
∂z

∂y
+ h4z = f4(x, t), y = L′, 0 < x < L, t > 0,

z(x, y, 0) = g(x, y), 0 < x < L, 0 < y < L′,

zt(x, y, 0) = h(x, y), 0 < x < L, 0 < y < L′.
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CHAPTER 8 SPECIAL FUNCTIONS

§8.1 Introduction

In Chapters 4–7, discussions have been confined to (initial) boundary value problems
expressed in Cartesian coordinates (with the exception of Laplace’s equation in polar
coordinates in Section 6.3). When separation of variables, finite Fourier transforms,
and Laplace transforms are applied to initial boundary value problems in polar,
cylindrical, and spherical coordinates, new functions arise, namely, Bessel functions
and Legendre functions. In Sections 8.3 and 8.5 we introduce these functions as
solutions of ordinary differential equations, as this is how they arise in the context
of PDEs. Bessel’s differential equation and Legendre’s differential equation are
homogeneous, second-order, linear differential equations with variable coefficients.
The most general form of such an equation is

P (x)
d2y

dx2
+Q(x)

dy

dx
+ R(x)y = 0. (8.1)

A point x0 is said to be an ordinary point of this differential equation when
the functions Q(x)/P (x) and R(x)/P (x) have convergent Taylor series about x0;
otherwise, x0 is called a singular point. When x0 is an ordinary point of equation
8.1, there exist two independent solutions y1(x) and y2(x) both with Taylor series
convergent in some interval |x − x0| < δ. A general solution of the differential
equation valid in this interval is c1y1(x) + c2y2(x), where c1 and c2 are constants.

When x0 is a singular point of equation 8.1, independent solutions in the form of
power series

∑∞
n=0 an(x− x0)n about x0 may not exist. In this case, it is customary

to search for solutions in the form

(x− x0)r
∞∑

n=0

an(x− x0)n =
∞∑

n=0

an(x− x0)n+r, (8.2)

called Frobenius solutions. Solutions of this type may or may not exist, depending
on the severity of the singularity. A singular point x0 is said to be regular if

(x− x0)
Q(x)
P (x)

and (x− x0)2
R(x)
P (x)

both have Taylor series expansions about x0. Otherwise, x0 is said to be an irreg-
ular singular point.

When x0 is a regular singular point of equation 8.1, a Frobenius solution always
leads to a quadratic equation for the unknown index r. Depending on the nature
of the roots of this quadratic, called the indicial equation, three situations arise;
they are summarized in the following theorem.

Theorem 8.1 Let r1 and r2 be the indicial roots for a Frobenius solution of differential equation
8.1 about a regular singular point x0. To find linearly independent solutions of the
differential equation, it is necessary to consider the cases in which the difference
r1 − r2 is not an integer, is zero, or is a positive integer (assuming r1 ≥ r2).
Case 1: r1 6= r2 and r1 − r2 6= integer
In this case, two linearly independent solutions
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y1(x) = (x− x0)r1

∞∑

n=1

an(x− x0)n with a0 = 1 (8.3a)

y2(x) = (x− x0)r2

∞∑

n=1

bn(x− x0)n with b0 = 1 (8.3b)

always exist.
Case 2: r1 = r2 = r

In this case, one Frobenius solution

y1(x) = (x− x0)r
∞∑

n=0

an(x− x0)n with a0 = 1 (8.4a)

is obtained. A second (independent) solution exists in the form

y2(x) = y1(x) ln (x− x0) + (x− x0)r
∞∑

n=1

An(x− x0)n, x > x0. (8.4b)

Case 3: r1 − r2 = positive integer
In this case, one Frobenius solution can always be obtained from the larger root r1,

y1(x) = (x− x0)r1

∞∑

n=0

an(x− x0)n with a0 = 1. (8.5a)

The smaller root r2 may yield no solution, one solution, or a general solution. In
the event that it yields no solution, a second (independent) solution can always be
found in the form

y2(x) = Ay1(x) ln (x− x0) + (x− x0)r2

∞∑

n=0

An(x− x0)n with A0 = 1, x > x0.(8.5b)

In all cases, a general solution of the differential equation is y(x) = c1y1(x)+c2y2(x).



SECTION 8.2 319

§8.2 Gamma Function

The gamma function is a generalization of the factorial operation to noninteger
values. For ν > 0, it is defined by the convergent improper integral

Γ(ν) =
∫ ∞

0

xν−1e−x dx. (8.6)

Integration by parts yields the recursive formula

Γ(ν + 1) = νΓ(ν), ν > 0. (8.7a)

With this formula, and the fact that the gamma function is well tabulated in many
references for 1 ≤ ν < 2, Γ(ν) can be calculated quickly for all ν > 0. We note, in
particular, that

Γ(1) =
∫ ∞

0

e−x dx = 1, (8.8)

and hence for ν a positive integer,

Γ(ν + 1) = ν!. (8.9)

Example 8.1 Evaluate Γ(4.2).

Solution With recursive formula 8.7a,

Γ(4.2) = 3.2Γ(3.2) = (3.2)(2.2)Γ(2.2) = (3.2)(2.2)(1.2)Γ(1.2).

But from tables Γ(1.2) = 0.918 169, and therefore

Γ(4.2) = (3.2)(2.2)(1.2)(0.918 169) = 7.7567.•

If ν ≤ 0, the improper integral in equation 8.6 diverges (at x = 0), so that
the integral cannot be used to define Γ(ν) for ν ≤ 0. Instead we reverse recursive
formula 8.7a,

Γ(ν) =
Γ(ν + 1)

ν
, (8.10b)

and iterate to define

Γ(ν) =
Γ(ν + k)

ν(ν + 1)(ν + 2) · · · (ν + k − 1)
, (8.13)

where k is chosen such that 1 < ν + k < 2. With equation 8.13 as the definition of
Γ(ν) for ν < 1, Γ(ν) is now defined for all ν except ν = 0,−1,−2, . . ., and its graph
is as shown in Figure 8.1.

y

n

5

1 2 3 4

-5

-1-2-3
(1.462,0.886)

(1/2, )p,

Figure 8.1
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Example 8.2 Evaluate Γ(−2.3).

Solution We use equation 8.13b to write

Γ(−2.3) =
Γ(−1.3)
−2.3

=
Γ(−0.3)

(−2.3)(−1.3)
=

Γ(0.7)
(−2.3)(−1.3)(−0.3)

=
Γ(1.7)

(−2.3)(−1.3)(−0.3)(0.7)
.

But from tables, Γ(1.7) = 0.908 639, and therefore

Γ(−2.3) =
0.908 639

(−2.3)(−1.3)(−0.3)(0.7)
= −1.4471.•

EXERCISES 8.2

1. Use tables for the gamma function, or otherwise, to evaluate:
(a) Γ(6) (b) Γ(3.4) (c) Γ(4.16) (d) Γ(−0.8) (e) Γ(−3.2) (f) Γ(−2.44)

2. Show that
∫ ∞

0

xνe−αx dx =
Γ(ν + 1)
αν+1

, ν > −1, α > 0.

3. (a) To evaluate the integral

I =
∫ ∞

−∞
e−kx2

dx = 2
∫ ∞

0

e−kx2
dx,

we write

I2

4
=
(∫ ∞

0

e−kx2
dx

)(∫ ∞

0

e−ky2
dy

)
=
∫ ∞

0

∫ ∞

0

e−k(x2+y2) dy dx

and transform the double integral into polar coordinates. Show that I =
√
π/k.

(b) By equation 8.6,

Γ(1/2) =
∫ ∞

0

x−1/2e−x dx.

Set x = y2 to show that

Γ(1/2) = 2
∫ ∞

0

e−y2
dy,

and use the result of part (a) to obtain Γ(1/2) =
√
π.

4. Prove that for n a positive integer,

Γ(n+ 1/2) =
(2n)!

√
π

22nn!
.
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§8.3 Bessel Functions

Bessel functions arise when separation of variables is applied to initial boundary
value problems expressed in polar, cylindrical, and spherical coordinates. They are
solutions of the linear, homogeneous, second-order ODE

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0, ν ≥ 0, (8.14)

called Bessel’s differential equation of order ν. When we assume a Frobe-
nius solution y(x) =

∑∞
n=0 anx

n+r (x = 0 being a regular singular point for the
differential equation), we obtain the indicial equation

r2 − ν2 = 0, (8.15a)

and the following equations defining coefficients,

a1[(r + 1)2 − ν2] = 0, (8.15b)
an[(n+ r)2 − ν2] + an−2 = 0, n ≥ 2. (8.15c)

For the nonnegative indicial root r = ν, we must choose a1 = 0, and iteration of
equation 8.15c yields, for n > 0,

a2n+1 = 0, (8.16a)

a2n =
(−1)na0

22nn!(ν + 1)(ν + 2) · · · (ν + n)
. (8.16b)

If we choose a0 = 1/[2νΓ(ν + 1)], the particular solution of Bessel’s differential
equation corresponding to the indicial root r = ν is denoted by

Jν(x) =
(x

2

)ν ∞∑

n=0

(−1)n

n! Γ(n+ ν + 1)

(x
2

)2n

(8.17)

and is called the Bessel function of the first kind of order ν. Because this
series converges for all x, Jν(x) is a solution of Bessel’s differential equation for all
x ≥ 0.

When ν is a nonnegative integer, the gamma function can be expressed as a
factorial:

Jν(x) =
(x

2

)ν
∞∑

n=0

(−1)n

n!(n+ ν)!

(x
2

)2n

, ν = 0, 1, 2, . . . . (8.18)

Graphs of Jν(x) for ν = 0, 1, 2 are shown in Figure 8.2.

y
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-0.5
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0( )J x

1( )J x
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Figure 8.2
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To obtain a second independent solution of Bessel’s differential equation, three
cases arise, depending on whether ν is not an integer, ν is zero, or ν is a positive
integer.

Case 1: ν is not an integer.
We could iterate recursive relation 8.15c with the negative indicial root r = −ν (see
Exercise 1), but there is a more direct route to the same solution. We examine the
function obtained by replacing ν by −ν in Jν(x),

J−ν(x) =
(x

2

)−ν
∞∑

n=0

(−1)n

n! Γ(n− ν + 1)

(x
2

)2n

. (8.19)

It is clear that this function also satisfies Bessel’s differential equation (since the
differential equation involves only ν2). Further, it is independent of Jν(x), since
Jν(0) = 0, and limx→0+ J−ν(x) = ∞. Thus, if ν is not an integer, a general solution
of Bessel’s differential equation is

y(x) = AJν(x) +BJ−ν(x), (8.20)

which certainly is valid for x > 0 (and may or may not be valid for x < 0, depending
on the value of ν). In the special case that ν is one-half an odd integer (1/2,3/2,5/2,
etc.), the indicial roots differ by an integer, and this general solution is generated
by the negative indicial root alone. The solutions in this case are called spherical
Bessel functions (see Exercise 6).

Case 2: ν = 0
When ν = 0, the indicial roots are equal, and a solution of Bessel’s differential
equation of order zero,

x
d2y

dx2
+
dy

dx
+ xy = 0, (8.21)

independent of

J0(x) =
∞∑

n=0

(−1)n

22n(n!)2
x2n, (8.22)

can be found in the form

y(x) = J0(x) lnx+
∞∑

n=1

Anx
n

(see Case 2 of Theorem 8.1 in Section 8.1). Substitution of this solution into Bessel’s
differential equation leads to

2xJ ′
0 +

∞∑

n=1

n(n− 1)Anx
n +

∞∑

n=1

nAnx
n +

∞∑

n=1

Anx
n+2 = 0.

When J ′
0(x) is calculated using equation 8.22 and the remaining three summations

are combined, the result is

A1x+ 4A2x
2 +

∞∑

n=3

(n2An +An−2)xn +
∞∑

n=1

(−1)n

n!(n− 1)!22n−2
x2n = 0.
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Evidently, A1 = 0, and if n is odd, the recursive formula

n2An +An−2 = 0

yields A2n+1 = 0 for n > 0. From the terms in x2, A2 = 1/4, and from those in
x2n, n ≥ 2,

(2n)2A2n +A2n−2 +
(−1)n

n!(n− 1)!22n−2
= 0. (8.23)

Iteration of this result gives

A2n =
(−1)n+1

22n(n!)2

(
1 +

1
2

+
1
3

+ · · · + 1
n

)
, n ≥ 1. (8.24)

With the notation

φ(n) =
n∑

r=1

1
r
, (8.25)

we obtain the independent solution

y(x) = J0(x) lnx+
∞∑

n=1

(−1)n+1φ(n)
(n!)2

(x
2

)2n

, (8.26)

called Neumann’s Bessel function (of the second kind) of order zero. The
series converges for all x, but the logarithm term restricts the function to x > 0.
Any linear combination of this solution and J0(x),

aJ0(x) + by(x)

constitutes a general solution of Bessel’s differential equation of order zero. Often
taken are

a = A+
2B
π

(γ − ln 2), b =
2
π
B,

where γ is Euler’s constant, defined by

γ = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · + 1
n
− lnn

)
, (8.27)

and A and B are arbitrary constants. In this case, a general solution of Bessel’s
differential equation of order zero is

y(x) = AJ0(x) + BY0(x), (8.28a)

where

Y0(x) =
2
π

{
J0(x)

[
ln
(x

2

)
+ γ

]
+

∞∑

n=1

(−1)n+1φ(n)
(n!)2

(x
2

)2n
}
. (8.28b)

Solution Y0(x) is called Weber’s Bessel function (of the second kind) of order
zero.

Case 3: ν is a positive integer
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When ν is a positive integer, the indicial roots differ by an integer, and we find that
r = −ν once again yields Jν(x) (see Exercise 2). A second solution can be found in
the form

y(x) = AJν(x) lnx+
∞∑

n=0

Anx
n−ν (8.29)

(see Case 3 in Theorem 8.1 of Section 8.1). Substitution of this series into Bessel’s
differential equation 8.14 gives

2AxJ ′
ν +

∞∑

n=0

(n− ν)(n− ν − 1)Anx
n−ν +

∞∑

n=0

(n− ν)Anx
n−ν + (x2 − ν2)

∞∑

n=0

Anx
n−ν = 0,

and, if this equation is multiplied by xν and the summations are combined,

(1 − 2ν)A1x+
∞∑

n=2

[n(n− 2ν)An + An−2]xn +
∞∑

n=0

(−1)nA(2n+ ν)
n!(n+ ν)!22n+ν−1

x2n+2ν = 0.

Evidently, A1 = 0, and if n is odd, the recursive formula

n(n− 2ν)An + An−2 = 0

requires A2n+1 = 0 for n > 0. Since this recursive formula is also valid for even n
and 0 < n < 2ν, iteration gives

A2n =
A0(ν − n− 1)!
22nn!(ν − 1)!

, 0 < n < ν. (8.30)

From the coefficient of x2ν ,

A2ν−2 +
Aν

ν!2ν−1
= 0,

which can be used with n = ν − 1 in equation 8.30 to get

A =
−A0

2ν−1(ν − 1)!
. (8.31)

From the terms in x2n+2ν , n > 0,

2n(2n+ 2ν)A2n+2ν +A2n+2ν−2 +
(−1)nA(2n+ ν)
n!(n+ ν)!22n+ν−1

= 0.

Iteration of this result gives

A2n+2ν =
(−1)n+1A[φ(n) + φ(n+ ν)]

n!(n+ ν)!22n+ν+1
, n > 0, (8.32a)

provided we make the choice

A2ν =
−Aφ(ν)
2ν+1ν!

. (8.32b)

Finally, then, the solution is
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y(x) = AJν(x) lnx+ x−ν

[
ν−1∑

n=0

A0(ν − n− 1)!
n!(ν − 1)!

(x
2

)2n

− Aφ(ν)
2ν+1ν!

x2ν

+
∞∑

n=1

(−1)n+1A[φ(n) + φ(n+ ν)]
n!(n+ ν)!22n+ν+1

x2n+2ν

]
. (8.33)

The particular solution obtained by setting A0 = −2ν−1(ν − 1)! is

y(x) = Jν(x) lnx− 1
2

(x
2

)−ν
ν−1∑

n=0

(ν − n− 1)!
n!

(x
2

)2n

− 1
2

(x
2

)ν ∞∑

n=0

(−1)n[φ(n) + φ(n+ ν)]
n!(n+ ν)!

(x
2

)2n

, (8.34)

where we have adopted the convention that φ(0) = 0. This solution is called Neu-
mann’s Bessel function (of the second kind) of order ν. Any linear combi-
nation of this solution and Jν(x),

aJν(x) + by(x),

constitutes a general solution of Bessel’s differential equation of order ν, when ν is
a positive integer. Often taken are a and b as in the ν = 0 case, in which case a
general solution of Bessel’s differential equation of positive integer order ν is

y(x) = AJν(x) + BYν(x), (8.35a)

where

Yν(x) =
2
π

{
Jν(x)

[
ln
(x

2

)
+ γ
]
− 1

2

(x
2

)−ν
ν−1∑

n=0

(ν − n− 1)!
n!

(x
2

)2n

− 1
2

(x
2

)ν
∞∑

n=0

(−1)n[φ(n) + φ(n+ ν)]
n!(n+ ν)!

(x
2

)2n}
. (8.35b)

The solution Yν(x) is called Weber’s Bessel function (of the second kind) of
order ν.

Notice that in the special case that ν = 0, Yν(x) reduces to Y0(x), provided we
stipulate that the first sum vanish. Graphs of Y0(x) and Y1(x) are shown in Figure
8.3.

y

x

0.5

-0.5

5 10

0( )Y x

( )Y x1

Figure 8.3

For nonnegative integer values of ν, a general solution of Bessel’s differential
equation has been obtained in the form y(x) = AJν(x)+BYν(x), and, for noninteger
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ν, the solution is y(x) = AJν(x) + BJ−ν(x). This situation is not completely
satisfactory because the second solution is defined differently, depending on whether
ν is an integer. To provide uniformity of formalism and numerical tabulation, a form
of the second solution valid for all orders is sometimes preferable. Such a form is
contained in

Yν(x) =
1

sin νπ
[Jν(x) cos νπ − J−ν(x)], ν 6= integer, (8.36a)

Yn(x) = lim
ν→n

Yν(x), n = integer. (8.36b)

If ν is not an integer, Yν(x) is simply a linear combination of Jν(x) and J−ν(x), and
since Jν(x) and Yν(x) must therefore be independent,

AJν(x) +BYν(x) (8.37)

is a general solution of Bessel’s differential equation. It can be shown that as ν
approaches n, Yν(x) is also given by 8.28b or 8.35b. Consequently, a general solution
of Bessel’s differential equation 8.14 is 8.37, where Jν(x) is given by 8.17 and Yν(x)
is given by 8.36. When ν is an integer, Yν(x) is also given by 8.28b or 8.35b.

Recurrence Relations

Bessel functions of lower orders are well tabulated. With recurrence relations, it is
then possible to evaluate Bessel functions of higher orders. We now develop some
of these relations.

Using series 8.17,

Jν−1(x) + Jν+1(x) =
∞∑

n=0

(−1)n

n! Γ(n+ ν)

(x
2

)2n+ν−1

+
∞∑

n=0

(−1)n

n! Γ(n+ ν + 2)

(x
2

)2n+ν+1

=
∞∑

n=0

(−1)n

n! Γ(n+ ν)

(x
2

)2n+ν−1

+
∞∑

n=1

(−1)n−1

(n− 1)! Γ(n+ ν + 1)

(x
2

)2n+ν−1

=
1

Γ(ν)

(x
2

)ν−1

+
∞∑

n=1

(−1)n−1

n! Γ(n+ ν + 1)
[−(n+ ν) + n]

(x
2

)2n+ν−1

=
ν

Γ(ν + 1)

(x
2

)ν−1

+
∞∑

n=1

(−1)nν

n! Γ(n+ ν + 1)

(x
2

)2n+ν−1

=
∞∑

n=0

(−1)nν

n! Γ(n+ ν + 1)

(x
2

)2n+ν−1

=
2ν
x

∞∑

n=0

(−1)n

n! Γ(n+ ν + 1)

(x
2

)2n+ν

=
2ν
x
Jν(x).

Thus, we have the recurrence relation

Jν+1(x) =
2ν
x
Jν(x) − Jν−1(x), ν ≥ 1, (8.38)

which allows evaluation of Bessel functions of higher order by means of Bessel func-
tions of lower order.
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In addition to this functional relation, there exist many relationships among
the Bessel functions and their derivatives. A derivation similar to the above yields

2J ′
ν(x) = Jν−1(x) − Jν+1(x), ν ≥ 1, (8.39)

(see Exercise 5). This result combines with recurrence relation 8.38 to give

J ′
ν(x) = −ν

x
Jν(x) + Jν−1(x), ν ≥ 1, (8.40)

and

J ′
ν(x) =

ν

x
Jν(x) − Jν+1(x), ν ≥ 0. (8.41)

Further, multiplication of these equations by xν and x−ν , respectively, implies that

d

dx
[xνJν(x)] = xνJν−1(x), ν ≥ 1, (8.42)

and

d

dx
[x−νJν(x)] = −x−νJν+1(x), ν ≥ 0. (8.43)

The results in equations 8.38–8.43 are also valid for Yν(x).

Zeros of Bessel Functions
Zeros of Bessel functions play an important role in Sturm-Liouville systems involving
Bessel’s differential equation (see Section 8.4). We shall show that Jν(x) has an
infinite number of positive zeros and that these zeros cannot be contained in an
interval of finite length; that is, there must be arbitrarily large zeros of Jν(x). (The
result will also be valid for Yν(x), but our interest is in Jν(x), and we shall therefore
deal directly with Jν(x).) We begin by changing dependent variables in Bessel’s
differential equation 8.14 according to R =

√
xy(x) for x > 0 (see Exercise 7). The

result is

d2R

dx2
+
(

1 +
1/4− ν2

x2

)
R = 0, x > 0, (8.44)

and R(x) =
√
xJν(x) is a solution of this equation. When 0 < ε < 1, the differential

equation

d2R

dx2
+ ε2R = 0, x > 0, (8.45)

has general solution R(x) = A sin (εx+ φ), where A and φ (0 < φ < π) are arbitrary
constants, and this solution has an infinity of positive zeros, x = (nπ− φ)/ε, where
n > 0.

According to the Sturm Comparison Theorem 5.8 in Section 5.3, if 1 + (1/4−
ν2)/x2 is geater than or equal to ε2, every solution of equation 8.44 has a zero
between every consecutive pair of zeros of A sin (εx+ φ). But

1 +
1/4 − ν2

x2
> ε2 (8.46)

if, and only if,
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x2 >
ν2 − 1/4
1 − ε2

.

When 0 ≤ ν ≤ 1/2, this is valid for all x > 0. When ν > 1/2, this is valid for all
x > x0 if x0 =

√
(ν2 − 1/4)/(1− ε2). In other words, it is always possible to find an

interval x > x0 ≥ 0 on which inequality 8.46 is valid. On this interval then, R(x),
and therefore Jν(x) has at least one zero between every consecutive pair of zeros of
A sin (εx+ φ). Since the zeros x = (nπ − φ)/ε of A sin (εx+ φ) become indefinitely
large with increasing n, it follows that Jν(x) must also have arbitrarily large zeros.
The first five zeros of J0(x), J1(x), and J2(x) are shown in Figure 8.2.

EXERCISES 8.3

1. Show that when ν is not an integer, solution 8.19 of Bessel’s differential equation can be obtained
from the negative indicial root.

2. Show that when ν is a positive integer, the solution obtained from the negative indicial root
r = −ν is Jν(x).

3. Use series 8.18 to find values of the following, correct to four decimals: (a) J0(0.4) (b) J0(1.3)
(c) J1(0.8) (d) J1(3.6) (e) J2(3.6) (f) J2(6.2) (g) J3(4.1) (h) J4(2.9)

4. Calculate the following using recurrence relation 8.38 and tabulated values of J0 and J1:
(a) J2(3.6) (b) J2(6.2) (c) J3(4.1) (d) J4(2.9)

5. Verify identity 8.39.

6. Bessel functions of the first kind of order ±(n + 1/2), n a nonnegative integer, are called
spherical Bessel functions. They can be expressed in terms of sines and cosines.
(a) Use series 8.17 and the result of Exercise 4 in Section 8.2 to show that

J1/2(x) =

√
2
πx

sin x, J−1/2(x) =

√
2
πx

cosx.

(b) Use properties 8.42 and 8.43 to show that
(

1
x

d

dx

)n

[x−νJν(x)] = (−1)nx−ν−nJν+n(x),
(

1
x

d

dx

)n

[xνJν(x)] = xν−nJν−n(x),

where the left sides mean to apply the operator x−1d/dx successively n times.
(c) Prove that for n = 0, 1, 2, . . .,

Jn+1/2(x) = (−1)n

√
2
π
xn+1/2

(
1
x

d

dx

)n( sin x
x

)
, J1/2−n(x) =

√
2
π
xn−1/2

(
1
x

d

dx

)n

(sinx).

7. Show that the change of dependent variable R(x) =
√
xy(x) transforms Bessel’s differential

equation into equation 8.44.

8. Show that the function ex(t−1/t)/2 can be expressed as the product of the series

ex(t−1/t)/2 =

[ ∞∑

k=0

(x
2

)k tk

k!

] [ ∞∑

n=0

(
−x

2

)n t−n

n!

]

and that the product can be rearranged into the form
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ex(t−1/t)/2 = J0(x) +
∞∑

m=1

[Jm(x)tm + (−1)mJm(x)t−m].

Because of this, ex(t−1/t)/2 is said to be a generating function for Jm(x), m a nonnegative
integer.

9. Use integration by parts and the facts that d[xJ1(x)]/dx = xJ0(x) and dJ0(x)/dx = −J1(x)
(see identities 8.42 and 8.41) to derive the reduction formula

∫
xnJ0(x) dx = xnJ1(x) + (n− 1)xn−1J0(x)− (n− 1)2

∫
xn−2J0(x) dx, n ≥ 2.

10. (a) The differential equation

x2 d
2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0, ν ≥ 0,

is called Bessel’s modified differential equation of order ν. Show that the change of
independent variable z = ix reduces it to Bessel’s differential equation of order ν.

(b) Verify that the function Iν(x) = i−νJν(ix), called the modified Bessel function of the
first kind of order ν, is a solution of Bessel’s modified differential equation. Find the
Maclaurin series for Iν(x) to illustrate why the factor i−ν is included in its definition.

(c) Sketch graphs of I0(x) and I1(x) for x ≥ 0.
(d) A second (linearly independent) solution of the modified equation is called the modified

Bessel function of the second kind of order ν. Its definition is analogous to definition
8.36 for Yν(x):

Kν(x) =
π

2 sin νπ
[I−ν(x) − Iν(x)], ν 6= integer,

Kn(x) = lim
ν→n

Kν(x), n = integer.

It can be shown that this definition leads to the following expressions for Kν(x) when ν is
an integer:

K0(x) = −I0(x)
[
ln
(x

2

)
+ γ
]

+
∞∑

n=1

φ(n)
(n!)2

(x
2

)2n

,

Kν(x) = (−1)ν+1Iν(x)
[
ln
(x

2

)
+ γ
]

+
1
2

(x
2

)−ν ν−1∑

n=0

(−1)n(ν − n− 1)!
n!

(x
2

)2n

+
1
2

(
−x

2

)ν ∞∑

n=0

[φ(n) + φ(n+ ν)]
n!(ν + n)!

(x
2

)2n

, ν > 0.

Express Kν(x) in terms of Jν(ix) and Yν(ix) when ν is an integer.
(e) Show that Kν(x) is unbounded near x = 0 when ν is an integer.
In the remaining exercises we develop useful integral representations of, and inte-
grals involving, Bessel functions of the first kind.

11. (a) Substitute t = eθi into the generating function of Exercise 8 to obtain the equations

cos (x sin θ) = J0(x) + 2
∞∑

m=1

J2m(x) cos 2mθ, sin (x sin θ) = 2
∞∑

m=0

J2m+1(x) sin (2m+ 1)θ.
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(b) Use the facts that the sets of functions

{
1√
π
,

√
2
π

cos 2nθ

}
and

{√
2
π

sin (2n+ 1)θ

}
are

orthonormal on the interval 0 ≤ θ ≤ π to show that for n ≥ 0 an integer,

J2n(x) =
1
π

∫ π

0

cos (x sin θ) cos 2nθ dθ and J2n+1(x) =
1
π

∫ π

0

sin (x sin θ) sin (2n+ 1)θ dθ.

(c) Show that when n is odd,
∫ π

0

cos (x sin θ) cosnθ dθ = 0,

and that when n is even,
∫ π

0

sin (x sin θ) sinnθ dθ = 0.

(d) Combine these results to show that

Jn(x) =
1
π

∫ π

0

cos (x sin θ − nθ)dθ.

12. (a) Use an analysis similar to that in Exercise 11 to show that for n ≥ 0 an integer,

J2n(x) =
(−1)n

π

∫ π

0

cos (x cos θ) cos 2nθ dθ, J2n+1(x) =
(−1)n

π

∫ π

0

sin (x cos θ) cos (2n+ 1)θ dθ.

Hint: Set t = ieθi in the generating function for Bessel functions.
(b) Verify that the results in part (a) are contained in

Jn(x) =
(−i)n

π

∫ π

0

eix cos θ cosnθ dθ.

13. In this exercise we verify the following integral representation for Bessel functions

Jn(x) =
2√

π Γ(n+ 1/2)

(x
2

)n
∫ π/2

0

cos (x sin θ) cos2n θ dθ.

Let In =
∫ π/2

0

cos (x sin θ) cos2n θ dθ, expand cos (x sin θ) in a Maclaurin series, and integrate

term-by-term to obtain

In =
∞∑

m=0

(−1)mx2m

(2m)!

∫ π/2

0

sin2m θ cos2n θ dθ.

Now use the integration formula
∫ π/2

0

sin2m θ cos2n θ dθ =
Γ(m+ 1/2) Γ(n+ 1/2)

2Γ(m+ n+ 1)
to verify the

required integral representation of Jn(x).

14. Multiply the power series representation of J0(bx) by e−ax and interchange orders of integration
and summation to show that when a > 0 and b > 0 are constants,

∫ ∞

0

e−axJ0(bx) dx =
∞∑

n=0

(−1)n(2n)!b2n

22n(n!)2a2n+1
.



SECTION 8.3 331

Now show that the right side of this equation is the binomial expansion for 1/
√
a2 + b2, and

hence that
∫ ∞

0

e−axJ0(bx) dx =
1√

a2 + b2
.

15. Use Exercise 14 to prove that
∫ ∞

0

J0(bx) dx =
1
b

and
∫ ∞

0

J0(x) dx = 1.

16. Although the integral in Exercise 14 was derived on the basis that a and b were positive constants
with a > b, assume that a and b are arbitrary constants and that a can be replaced by ai to
show that:

(a) if b > a > 0,

∫ ∞

0

J0(bx) cosax dx =
1√

b2 − a2
,

∫ ∞

0

J0(bx) sin ax dx = 0;

(b) if a > b > 0,

∫ ∞

0

J0(bx) sin ax dx =
1√

a2 − b2
,

∫ ∞

0

J0(bx) cosax dx = 0.

These are often called Weber’s discontinuous integrals.

17. (a) Use mathematical induction, or otherwise, to show that when n is a nonnegative integer
and a and b are positive constants,

∫ ∞

0

xne−axJn(bx) dx =
(2b)nΓ(n+ 1/2)√
π(a2 + b2)n+1/2

.

(b) Prove that
∫ ∞

0

xn+1e−axJn(bx) dx =
2a(2b)nΓ(n+ 3/2)√
π(a2 + b2)n+3/2

.

18. Use part (a) of Exercise 17 with n = 1 to verify that
∫ ∞

0

e−axJ1(bx) dx =
1
b
− a

b
√
a2 + b2

.

19. Use the result of Exercise 16 to show that when a > 0 and b > 0,

∫ ∞

0

1
x
J0(bx) sin ax dx =





Sin−1
(a
b

)
, a < b

π

2
, a > b.

20. (a) Substitute for Jn(bx) from Exercise 12 and reverse the order of integration to show that for
a > 0, b > 0, and n a nonnegative integer,

∫ ∞

0

e−axJn(bx) dx =
(−i)n

π

∫ π

0

cosnθ
a− ib cos θ

dθ.
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(b) Evaluate the contour integral
∫
©∨

C

zn

bz2 + 2iaz + b
dz around the unit circle C in the complex

plane to show that
∫ π

0

cosnθ
a− ib cos θ

dθ =
πin√
a2 + b2

(√
a2 + b2 − a

b

)n

,

and hence verify that
∫ ∞

0

e−axJn(bx) dx =
1√

a2 + b2

(√
a2 + b2 − a

b

)n

.

Is Exercise 14 a special case of this when n = 0?

21. (a) Although the integral in Exercise 20 was derived on the basis that a and b were positive
constants, assume that a can be replaced by ai to show that when a > b:

∫ ∞

0

Jn(bx) cosax dx = − sin
nπ

2
1√

a2 − b2

(
a−

√
a2 − b2

b

)n

,

∫ ∞

0

Jn(bx) sin ax dx = cos
nπ

2
1√

a2 − b2

(
a−

√
a2 − b2

b

)n

.

(b) Why do we not derive results for the case that a < b as in Exercise 16 when n = 0?
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§8.4 Sturm-Liouville Systems and Bessel’s Differential Equation

When separation of variables is applied to initial boundary value problems in polar,
cylindrical, and spherical coordinates (and we shall do this in Chapter 9), both reg-
ular and singular Sturm-Liouville systems in the radial coordinate r occur. Regular
systems take the form

d

dr

(
r
dR

dr

)
+
(
λ2r − ν2

r

)
R = 0, 0 < r1 < r < r2, (8.47a)

−l1R′(r1) + h1R(r1) = 0, (8.47b)
l2R

′(r2) + h2R(r2) = 0, (8.47c)

where l1, l2, h1, h2, and ν are nonnegative constants. Eigenvalues have been repre-
sented as λ2, since 8.47 is a proper Sturm-Liouville system (the eigenvalues of which
must be nonnegative). More important to our discussions is the singular system

d

dr

(
r
dR

dr

)
+
(
λ2r − ν2

r

)
R = 0, 0 < r < a, (8.48a)

lR′(a) + hR(a) = 0, (8.48b)

where l, h and ν are nonnegative constants.
Properties of system 8.47 are a straightforward application of the general theory

in Section 5.1. Although we make limited use of the results, we include a brief
discussion; the notation introduced and some of the results obtained are useful in
the discussion of singular system 8.48.

We begin by making a change of independent variable x = λr in differential
equation 8.47a. Since d/dr = λd/dx, the resulting differential equation is

λ
d

dx

(
x
dR

dx

)
+
(
λx− λ

x
ν2

)
R = 0,

or,

x2 d
2R

dx2
+ x

dR

dx
+ (x2 − ν2)R = 0, (8.49)

Bessel’s differential equation of order ν. According to equation 8.37, a general
solution of this equation is

R = AJν(x) +BYν(x), (8.50)

where A and B are arbitrary constants and Jν and Yν are Bessel functions of the
first and second kind of order ν. Consequently, a general solution of differential
equation 8.47a is

R(λ, r) = AJν(λr) +BYν(λr). (8.51)

If we let J ′
ν denote the derivative of Jν with respect to its argument; that is, if

J ′
ν(x) =

d

dx
Jν(x), then

d

dr
Jν(λr) = λJ ′

ν(λr).

With this notation, boundary conditions 8.47b,c require
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−l1λ[AJ ′
ν(λr1) +BY ′

ν(λr1)] + h1[AJν(λr1) + BYν(λr1)] = 0, (8.52a)
l2λ[AJ ′

ν(λr2) +BY ′
ν(λr2)] + h2[AJν(λr2) + BYν(λr2)] = 0. (8.52b)

From the second of these,

B = −A
[
λl2J

′
ν(λr2) + h2Jν(λr2)

λl2Y ′
ν(λr2) + h2Yν(λr2)

]
,

which, substituted into the first yields

−λl1J ′
ν(λr1) + h1Jν(λr1)

−λl2J ′
ν(λr2) + h2Jν(λr2)

=
−λl1Y ′

ν(λr1) + h1Yν(λr1)
λl2Y ′

ν(λr2) + h2Yν(λr2)
. (8.53)

This is the eigenvalue equation, the equation defining eigenvalues of Sturm-Liouville
system 8.47. Because values of λ will depend on the value of ν in differential equation
8.47a, we denote eigenvalues of equation 8.53 by λνn (n = 1, 2, . . .) (although, in
fact, (λνn)2 are the eigenvalues of the Sturm-Liouville system). Corresponding
orthonormal eigenfunctions can be expressed in the form

Rνn(r) =
1
N

[
Jν(λνnr)

λνnl2J ′
ν(λνnr2) + h2Jν(λνnr2)

− Yν(λνnr)
λνnl2Y ′

ν(λνnr2) + h2Yν(λνnr2)

]
,(8.54a)

where the normalizing factor N−1 is given by

N2 =
∫ r2

r1

r

[
Jν(λνnr)

λνnl2J ′
ν(λνnr2) + h2Jν(λνnr2)

− Yν(λνnr)
λνnl2Y ′

ν(λνnr2) + h2Yν(λνnr2)

]2
dr.(8.54b)

This integral is evaluated in Exercise 1. We end our discussion of system 8.47 by
noting that according to Theorem 5.2 in Section 5.2, functions of r can be expressed
in terms of the orthonormal eigenfunctions Rνn(r). Indeed, when f(r) is piecewise
smooth for r1 ≤ r ≤ r2, we find that at any point in the open interval r1 < r < r2,

f(r+) + f(r−)
2

=
∞∑

n=1

cnRνn(r) where cn =
∫ r2

r1

rf(r)Rνn(r) dr. (8.55)

This is often called the Fourier-Bessel series for f(r). It is important to remember
that ν has been fixed throughout this discussion; that is, for a fixed value of ν ≥ 0,
there is a sequence of eigenvalues {λ2

νn} of system 8.47 together with corresponding
orthonormal eigenfunctions Rνn(r) and an eigenfunction expansion 8.55. Changing
the value of ν results in another set of eigenpairs and a new eigenfunction expansion.

More important for our discussions is singular Sturm-Liouville system 8.48; we
consider it in detail. The system is singular because no boundary condition exists
at r = 0. Notice also that q(r) = −ν2/r is not continuous at r = 0.

We are not really justified in denoting eigenvalues of a singular system by λ2,
since we cannot yet be sure that eigenvalues are nonnegative. However, because
we shall show shortly that all eigenvalues must indeed be nonnegative, and because
use of λ2 has the immediate advantage of avoiding square roots in subsequent dis-
cussions, it is convenient to adopt this notation. Since the coefficient function of
R′(r) vanishes at r = 0, the corollary to Theorem 5.1 in Section 5.1 indicates that
a boundary condition at r = 0 is unnecessary for that theorem. Examination of
the proof of the theorem also indicates that continuity of q(r) at r = 0 is unneces-
sary. Consequently, eigenvalues of this singular system are real and corresponding
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eigenfunctions are orthogonal. As in the discussion of system 8.47, the change of
independent variable x = λr leads to the general solution

R = AJν(λr) +BYν(λr) (8.56)

of differential equation 8.48a. Because Yν(λr) is unbounded near r = 0, B must be
set equal to zero, and we take

R = AJν(λr). (8.57)

Boundary condition 8.48b yields the eigenvalue equation

lλJ ′
ν(λa) + hJν(λa) = 0, (8.58)

where once again the prime in the first term indicates differentiation of Jν with
respect to its argument.

Because the Sturm-Liouville system is singular, we cannot quote the results of
Theorem 5.2 in Section 5.2; we must verify that the theorem is valid for this system.
We first show that there is an infinity of eigenvalues, all of which are positive (except
when ν = h = 0, in which case zero is also an eigenvalue). We divide our discussion
into three cases, depending on whether l = 0, h = 0, or hl 6= 0.

Case 1: l = 0
In this case, we set h = 1, and from equation 8.58 eigenvalues are defined by

Jν(λa) = 0; (8.59)

that is, eigenvalues are the zeros of Bessel function Jν(x) divided by a. In Section
8.3 we verified that Bessel functions have an infinity of positive zeros.

Case 2: h = 0
In this case, we set l = 1, and eigenvalues are defined by the equation

J ′
ν(λa) = 0; (8.60)

that is, eigenvalues are critical values of Bessel function Jν(x) divided by a. Since
Jν(x) has a continuous first derivative, Rolle’s theorem from elementary calculus
indicates that between every pair of zeros of Jν(x), there is at least one point
at which its derivative vanishes. Hence, equation 8.60 has an infinity of positive
solutions. (The first few positive critical values of J0(x), J1(x), and J2(x) are
shown in Figure 8.2.)

Case 3: hl 6= 0
In this case, eigenvalues are defined by equation 8.58. If we set x = λa, eigenvalues
are roots of the equation

Q(x) = xJ ′
ν(x) +

ah

l
Jν(x) = 0 (8.61)

divided by a. When xj and xj+1 are consecutive positive zeros of Jν(x), Q(x) has
one sign at xj and the opposite sign at xj+1. Because Q(x) is continuous, it must
have at least one zero between xj and xj+1. It follows, therefore, that equation 8.61
must have an infinity of positive solutions.
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We have shown that each of the eigenvalue equations 8.58, 8.59, and 8.60 has
an infinity of positive solutions λ. These solutions define positive eigenvalues λ2 of
the singular Sturm-Liouville system. To show that the system can have no negative
eigenvalues, we set λ = iφ (φ real and not equal to zero). Equation 8.58 with λ = iφ
then reads

ilφJ ′
ν(iφa) + hJν(iφa) = 0.

If we replace J ′
ν by Jν and Jν+1 according to equation 8.41, this equation becomes

(ah+ νl)Jν(iφa) − iφalJν+1(iφa) = 0.

We now express Jν(iφa) and Jν+1(iφa) in terms of their power series; the result is

0 =
(
iφa

2

)ν
[
(ah+ νl)

∞∑

n=0

1
n! Γ(n+ ν + 1)

(
φa

2

)2n

+
φ2a2l

2

∞∑

n=0

1
n! Γ(n+ ν + 2)

(
φa

2

)2n
]
.

Because ah + νl ≥ 0 and l ≥ 0, and both series contain only positive terms, there
can be no solution φ. Thus, all eigenvalues of equation 8.58 must be nonnegative.

We now show that λ = 0 is an eigenvalue only when h = ν = 0. Since the
eigenfunction corresponding to an eigenvalue λ is always Jν(λr), it is clear that the
eigenfunction will be identically zero if λ = 0 is an eigenvalue, except when ν = 0
(when ν = 0, the eigenfunction corresponding to λ = 0 is J0(0) = 1). Because
J0(0) 6= 0 and J ′

0(0) = 0, it follows that λ = 0 is an eigenvalue of equation 8.60 but
not of 8.58 or 8.59. Thus, there is only one possibility for a zero eigenvalue — both
h and ν must be equal to zero.

One last point remains to be cleared up. If ν is such that Jν is defined for
negative arguments, then for every positive solution λ of equations 8.58, 8.59, and
8.60, −λ is also a solution. However, the power series expansion for Jν clearly
indicates that the eigenfunction Jν(−λr) is, except for a multiplicative constant,
identical to Jν(λr). Thus, negative solutions of the eigenvalue equations lead to the
same eigenvalues λ2 of the Sturm-Liouville system and the same eigenfunctions.

We have now shown that singular Sturm-Liouville system 8.48 has an infinity
of eigenvalues, all of which are positive (except when ν = h = 0, in which case zero
is also an eigenvalue). If we denote these eigenvalues by λνn (n = 1, 2, . . .), then
from equation 8.57, corresponding orthonormal eigenfunctions are

Rνn(r) =
1
N
Jν(λνnr) where N2 =

∫ a

0

r[Jν(λνnr)]2 dr. (8.62)

To avoid direct integration of Jν , we note that any function R satisfying differential
equation 8.48a also satisfies

0 = 2rR′(rR′)′ +
(
λ2r − ν2

r

)
2rRR′ =

d

dr
(rR′)2 + (λ2r2 − ν2)

d

dr
(R2).

Integration of this equation with respect to r from r = 0 to r = a gives
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0 =
{

(rR′)2 − ν2R2
}a

0
+ λ2

∫ a

0

r2
d

dr
(R2) dr

=
{

(rR′)2 − ν2R2
}a

0
+ λ2

{
aR2

}a

0
− λ2

∫ a

0

2rR2 dr,

and when this is solved for the remaining integral,

2λ2

∫ a

0

rR2 dr =
{

(rR′)2 − ν2R2 + λ2r2R2
}a

0
.

If we now replace λ with λνn and R with solution Jν(λνnr) of 8.48a,

2λ2
νn

∫ a

0

r[Jν(λνnr)]2 dr = a2λ2
νn[J ′

ν(λνna))]2 + (λ2
νna

2 − ν2)[Jν(λνna)]2,

from which

2N2 = 2
∫ a

0

r[Jν(λνnr)]2 dr = a2[J ′
ν(λνna)]2 +

(
a2 − ν2

λ2
νn

)
[Jν(λνna)]2

= a2

[
−hJν(λνna)

λνnl

]2
+

[
a2 −

(
ν

λνn

)2
]

[Jν(λνna)]2

= a2

[
1 −

(
ν

λνna

)2

+
(

h

λνnl

)2
]

[Jν(λνna)]2.

In summary, orthonormal eigenfunctions of singular system 8.48 are

Rνn(r) =
1
N
Jν(λνnr), (8.63a)

where

2N2 = a2

[
1 −

(
ν

λνna

)2

+
(

h

λνnl

)2
]

[Jν(λνna)]2 (8.63b)

and eigenvalues λνn are defined by the equation lλJ ′
ν(λa)+hJν(λa) = 0. There are

three possible boundary conditions at r = a, depending on whether l = 0, h = 0, or
lh 6= 0. The results for all three cases are listed in Table 8.1.

Condition Eigenvalue
at r = a Equation NRνn 2N2

hl 6= 0 lλJ ′
ν(λa) + hJν(λa) = 0 Jν(λνnr) a2

[
1 −

(
ν

λνna

)2

+
(

h

λνnl

)2
]

[Jν(λνna)]2

h = 0 J ′
ν(λa) = 0 Jν(λνnr) a2

[
1 −

(
ν

λνna

)2
]

[Jν(λνna)]2

l = 0 Jν(λa) = 0 Jν(λνnr) a2[J ′
ν(λνna)]2 = a2[Jν+1(λνna)]2

Table 8.1
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According to the following theorem, piecewise smooth functions of r can be
expanded in Fourier Bessel series of these eigenfunctions.

Theorem 8.2 If a function f(r) is piecewise smooth on the interval 0 ≤ r ≤ a, then for each r in
0 < r < a,

f(r+) + f(r−)
2

=
∞∑

n=1

cnRνn(r) where cn =
∫ a

0

rf(r)Rνn(r) dr. (8.64)

The extra r in the integrand is the weight function p(r) = r for Sturm-Liouville
system 8.48. It is no coincidence that this is the same r that appears in evaluation
of double integrals in polar coordinates.

Example 8.3 Find the Fourier Bessel series for the function f(r) = r2 in terms of the eigenfunc-
tions of Sturm-Liouville system 8.48 when a = 1, l = 0, h = 1, and ν = 0. Plot the
fifth and tenth partial sums of the expansion.

Solution Orthonormal eigenfunctions of

d

dr

(
r
dR

dr

)
+ λ2rR = 0, 0 < r < 1,

R(1) = 0,

are given in line three of Table 8.1 with ν = 0. When we suppress the first subscript
ν = 0 in the eigenfunctions Rνn and the eigenvalues λνn, we have

Rn(r) =
√

2J0(λnr)
J1(λn)

,

where eigenvalues λn are solutions of J0(λ) = 0. The Fourier Bessel series of r2 is

r2 =
∞∑

n=1

cnRn(r),

where

cn =
∫ 1

0

r3Rn(r) dr =
√

2
J1(λn)

∫ 1

0

r3J0(λnr) dr.

To evaluate this integral, we first set x = λnr, in which case

cn =
√

2
J1(λn)

∫ λn

0

(
x

λn

)3

J0(x)
dx

λn
=

√
2

λ4
nJ1(λn)

∫ λn

0

x3J0(x) dx.

We now use the reduction formula in Exercise 9 of Section 8.3,

cn =
√

2
λ4

nJ1(λn)

[{
x3J1(x) + 2x2J0(x)

}λn

0
− 4

∫ λn

0

xJ0(x) dx

]

=
√

2
λ4

nJ1(λn)

[
λ3

nJ1(λn) − 4
∫ λn

0

d

dx
[xJ1(x)] dx

]
(see identity 8.42 with ν = 1)

=
√

2
λ4

nJ1(λn)
[λ3

nJ1(λn) − 4λnJ1(λn)] =
√

2(λ2
n − 4)
λ3

n

.
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Consequently,

r2 =
∞∑

n=1

√
2(λ2

n − 4)
λ3

n

√
2J0(λnr)
J1(λn)

= 2
∞∑

n=1

λ2
n − 4

λ3
nJ1(λn)

J0(λnr), 0 < r < 1.

The first ten eigenvalues of the Sturm-Liouville system, obtained from the eigenvalue
equation J0(λ) = 0, are

λ1 = 2.40483, λ2 = 5.52008, λ3 = 8.65373, λ4 = 11.7915, λ5 = 14.9309,

λ6 = 18.0711, λ7 = 21.2116, λ8 = 24.3525, λ9 = 27.4935, λ10 = 30.6346.

Using these, the fifth and tenth partial sums of the series are plotted in Figures
8.4a,b. Needless to say, many more terms are required to obtain a reasonable
approximation.•

r

1

0.5

0.5 1

f r r( )= 2

Fifth partial sum

r

1

0.5

0.5 1

f r r( )= 2

Tenth partial sum

Figure 8.4a Figure 8.4b

Finding coefficients in Fourier Bessel series is far more formidable than finding co-
efficients in the generalized Fourier series of Section 5.2, where orthonormal eigen-
functions consisted of trigonometric functions. With enough perseverance we could
find the generalized Fourier series for any polynomial whatsoever. Such is not the
case for Fourier Bessel series. For instance, in calculating coefficients for the Fourier
Bessel series of r2 in Example 8.3, the reduction formula from Exercise 9 of Section
8.3 was indispensable. Unfortunately, it yields cn in closed form only when r is
raised to an even power (see Exercise 5 when the power is 1). When ν 6= 0, calcu-
lation of coefficients in closed form is usually impossible. Exercise 2 deals with an
exceptional case when r is raised to power ν.

EXERCISES 8.4

1. Use the following argument to evaluate the normalizing factor N−1 in equation 8.54b.
(a) Show that any solution of differential equation 8.47a also satisfies

d

dr
(rR′)2 + (λ2r2 − ν2)

d

dr
(R2) = 0.

(b) Integrate this equation from r1 to r2 to obtain

2λ2

∫ r2

r1

rR2 dr =
{

(rR′)2 + (λ2r2 − ν2)R2
}r2

r1

.

(c) Use boundary conditions 8.47b,c to write this expression in the form
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2λ2

∫ r2

r1

rR2 dr = [r2R(r2)]2
[
λ2 −

(
ν

r2

)2

+
(
h2

l2

)2
]
− [r1R(r1)]2

[
λ2 −

(
ν

r1

)2

+
(
h1

l1

)2
]
.

(d) Substitute λ = λνn and R = Rνn (from 8.54a, without the normalizing factor N−1) to
obtain an expression for N−1.

2. Find the Fourier Bessel series for the function rν (ν ≥ 1) in terms of the eigenfunctions of
Sturm-Liouville system 8.48 when (a) l = 0 and (b) h = 0.

3. Find the Fourier Bessel series for the function f(r) = 1 in terms of the eigenfunctions of Sturm-
Liouville system 8.48 when ν = 0.

4. Plot the tenth partial sum of the series in Exercise 3 in the case that a = 1 and l = 0.

5. Show that it is not possible to find coefficients in the Fourier Bessel series of the function
f(r) = r in closed form using the orthonormal eigenfunctions in Example 8.3.

6. Show that eigenpairs for the singular Sturm-Liouville system

d

dr

(
r
dR

dr

)
+
(
λ2r − ν2

r

)
R = 0, 0 < r < a, ν > 0,

lR′(a) − hR(a) = 0,

where l > 0 and h > 0, are also given in the first line of Table 8.1 (with h replaced by −h).

7. (a) Use a Frobenius series to obtain the general solution

R(r) =
{
A/r + B, λ = 0
(A cosλr + B sinλr)/r, λ 6= 0

of the differential equation

d

dr

(
r2
dR

dr

)
+ λ2r2R = 0, 0 < r < a.

(b) Show that the change of dependent variable Z(r) =
√
λrR(r) leads to the differential

equation

d

dr

(
r
dZ

dr

)
+
(
λ2r − 1/4

r

)
Z = 0, 0 < r < a,

and the solutions in part (a).

8. The singular Sturm-Liouville system

d

dr

(
r2
dR

dr

)
+ λ2r2R = 0, 0 < r < a,

lR′(a) + hR(a) = 0,

associated with the differential equation in Exercise 7 arises when separation of variables is
applied to heat conduction problems in a sphere when temperature is a function of only radial
distance r and time. Use the general solution of the differential equation derived in Exercise 7
to confirm the tabulated results below for the three cases l = 0, h = 0, and lh 6= 0. Illustrate
the eigenvalues graphically when hl 6= 0 and h = 0. Assume that ah < l in line 1.
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Condition Eigenvalue
at r = a Equation NRmn 2N2

hl 6= 0 tanλa =
λa

1 − ha/l

1
r

sinλnr a

[
1 +

ha/l − 1
λ2

na
2 + (1 − ha/l)2

]

h = 0 tanλa = λa
1 , n = 0

1
r

sin λnr, n > 0

2a3

3
, n = 0

a3λ2
n

1 + λ2
na

2
, n > 0

l = 0
sinλa = 0

λn =
nπ

a
, n = 1, 2, . . .

1
r

sin
nπr

a
a

9. The singular Sturm-Liouville system

d

dr

(
r2
dR

dr

)
+ [λ2r2 −m(m+ 1)]R = 0, 0 < r < a,

lR′(a) + hR(a) = 0,

where m ≥ 0 is an integer and l ≥ 0 and h ≥ 0 arises when separation of variables is applied
to heat conduction problems in a sphere when temperature is a function of radial distance r,
angle θ, and time. Use the change of variable in part (b) of Exercise 7 to confirm the tabulated
results below for the three cases l = 0, h = 0, and lh 6= 0.

Condition Eigenvalue
at r = a Equation NRmn 2N2

hl 6= 0
0 = 2λaJ ′

m+1/2(λa)

+
(

2ha− l

l

)
Jm+1/2(λa)

Jm+1/2(λmnr)√
r

a2

[
1 −

(
m+ 1/2
λmna

)2

+
(

2ha/l− 1
2λmna

)2
]
[Jm+1/2(λmna)]2

h = 0
0 = 2λaJ ′

m+1/2(λr)

− Jm+1/2(λa)

Jm+1/2(λmnr)√
r

a2

[
1 −

(
m+ 1/2
λmna

)2

+
(

1
2λmna

)2
]
[Jm+1/2(λmna)]2

l = 0 0 = Jm+1/2(λa)
Jm+1/2(λmnr)√

r
a2[J ′

m+1/2(λmna)]2 = a2[Jm+3/2(λmna)]2

10. The Sturm-Liouville system

d

dr

(
r2
dR

dr

)
+ λ2r2R = 0, r1 < r < r2,
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−l1R′(r1) + h1R(r1) = 0
l2R

′(r2) + h2R(r2) = 0,

where l1, l2, h1, and h2 are nonnegative constants, is associated with the differential equation
in Exercise 7. It arises when separation of variables is applied to heat conduction problems in
spherical shells when temperature is a function of radial distance r and time. Use the general
solution of the differential equation derived in Exercise 7 to confirm the tabulated results below
for the four cases shown.

Condition Condition Eigenvalue
at r = r1 at r = r2 Equation NRn 2N2

h1 = 0
(l1 = 1)

h2 = 0
(l2 = 1)

sin λ(r2 − r1) = 0

λn =
nπ

r2 − r1
, n = 0, 1, 2, . . .

cosλnr
r2 − r1 (n 6= 0)

2(r2 − r1) (n = 0)

h1 = 0
(l1 = 1)

l2 = 0
(h2 = 1) tanλ(r2 − r1) = −λr1

1
r

sinλn(r2 − r) r2 − r1 +
r1

1 + λ2
nr

2
1

l1 = 0
(h1 = 1)

h2 = 0
(l2 = 1) tanλ(r2 − r1) = λr2

1
r

sinλn(r − r1) r2 − r1

l1 = 0
(h1 = 1)

l2 = 0
(h2 = 1)

sin λ(r2 − r1) = 0

λn =
nπ

r2 − r1
, n = 1, 2, . . .

1
r

sin
nπ(r − r1)
r2 − r1

r2 − r1
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§8.5 Legendre Functions

Legendre functions arise when separation of variables is applied to (initial) boundary
value problems expressed in spherical coordinates. They are solutions of the linear,
homogeneous, second-order differential equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0, (8.65)

called Legendre’s differential equation. If we assume a power series solution
y(x) =

∑∞
k=0 akx

k (x = 0 being an ordinary point of the differential equation), we
obtain arbitrary a0 and a1 and the recurrence relation

ak = − (n− k + 2)(n+ k − 1)
k(k− 1)

ak−2, k ≥ 2. (8.66)

Iteration of this result leads to the general solution

y(x) = a0

[
1 +

∞∑

k=1

(−1)k (n− 2k + 2) · · · (n− 2)n(n+ 1)(n+ 3) · · · (n+ 2k − 1)
(2k)!

x2k

]

+ a1

[
x+

∞∑

k=1

(−1)k (n− 2k + 1) · · · (n− 3)(n− 1)(n+ 2)(n+ 4) · · · (n+ 2k)
(2k + 1)!

x2k+1

]
,

(8.67)

which converges for |x| < 1.
When n is a nonnegative integer, one of these series reduces to a polynomial

while the other remains an infinite series. In particular, if n is an even integer, all
terms in the first series vanish for 2k > n, and if n is odd, all terms in the second
series vanish for 2k+ 1 > n. Thus, in either case, the solution defines a polynomial
of degree n. To express these polynomials compactly, we reverse recurrence relation
8.66 to write

ak−2 = − k(k− 1)
(n− k + 2)(n+ k − 1)

ak

and iterate to obtain

an−2k =
(−1)kn(n− 1)(n− 2) · · · (n− 2k + 1)
2kk!(2n− 1)(2n− 3) · · · (2n− 2k + 1)

an. (8.68)

When we choose an = (2n)!/[2n(n!)2], this becomes

an−2k =
(−1)k(2n− 2k)!

2nk!(n− 2k)!(n− k)!
, k = 1, 2, . . . , bn/2c, (8.69)

where bn/2c denotes the integer part of n/2. With this choice for an, the particular
polynomial solution of Legendre’s differential equation 8.65 is called the Legendre
polynomial of degree n, denoted by

Pn(x) =
bn/2c∑

k=0

(−1)k(2n− 2k)!
2nk!(n− 2k)!(n− k)!

xn−2k. (8.70)
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The first five Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x
2

, P4(x) =
35x4 − 30x2 + 3

8
.

The remaining solution of differential equation 8.65 for n a nonnegative integer
is in the form of an infinite series valid for |x| < 1. When n is even, and a1 is chosen
as (−1)n/22n[(n/2)!]2/n!, the series solution is denoted by

Qn(x) =
(−1)n/22n[(n/2)!]2

n!

[
x+

∞∑

k=1

(−1)k(n− 2k + 1) · · · (n− 3)(n− 1)(n+ 2)(n+ 4) · · · (n+ 2k)
(2k + 1)!

x2k+1
]
.

(8.71a)

When n is odd, and a0 is set equal to (−1)(n+1)/22n−1{[(n− 1)/2]!}2/n!, the series
solution is

Qn(x) =
(−1)(n+1)/22n−1{[(n− 1)/2]!}2

n!

[
1+

∞∑

k=1

(−1)k(n− 2k + 2) · · · (n− 2)n(n+ 1)(n+ 3) · · · (n+ 2k − 1)
(2k)!

x2k

]
.

(8.71b)

These solutions are called Legendre functions of the second kind of order n.
Closed-form representations are discussed in Exercise 10; they are unbounded near
x = ±1.

In summary, a general solution of Legendre’s differential equation 8.65 for n a
nonnegative integer is

y(x) = APn(x) +BQn(x), (8.72)

where A and B are arbitrary constants. Legendre polynomials Pn(x) are given by
equation 8.70, and Legendre functions Qn(x) of the second kind are defined by 8.71.
Our discussions concentrate on Legendre polynomials.

Generating Function for Legendre Polynomials
When the binomial expansion is applied to the function (1− 2xt+ t2)−1/2,

1
(1 − 2xt+ t2)1/2

= 1 +
∞∑

m=1

(1/2)(3/2) · · · (1/2 +m− 1)
m!

(2xt− t2)m,

and the binomial theorem is then used on (2xt− t2)m,

1
(1 − 2xt+ t2)1/2

= 1 +
∞∑

m=1

(1)(3)(5) · · · (2m− 1)
2mm!

m∑

k=0

(−1)k
(m
k

)
(2x)m−ktm+k.
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Terms in tn occur when k +m = n, and since k ranges from 0 to m, it follows that
the coefficient of tn is

n∑

m=b(n+1)/2c

(1)(3)(5) · · · (2m− 1)
2mm!

(−1)n−m

(
m

n−m

)
(2x)2m−n.

If we set k = n−m in this summation, the coefficient of tn is
0∑

k=n−b(n+1)/2c

(1)(3)(5) · · · (2n− 2k − 1)
2n−k(n− k)!

(−1)k

(
n− k

k

)
(2x)n−2k,

and this immediately reduces to

bn/2c∑

k=0

(−1)k(2n− 2k)!
2nk!(n− 2k)!(n− k)!

xn−2k;

that is,

1
(1 − 2xt+ t2)1/2

=
∞∑

n=0



bn/2c∑

k=0

(−1)k(2n− 2k)!
2nk!(n− 2k)!(n− k)!

xn−2k


 tn. (8.73)

The coefficient of tn is Pn(x), and we say that (1 − 2xt + t2)−1/2 is a generating
function for Pn(x),

1√
1 − 2xt+ t2

=
∞∑

n=0

Pn(x)tn. (8.74)

Recurrence Relations

When we differentiate equation 8.74 with respect to t,

x− t

(1− 2xt+ t2)3/2
=

∞∑

n=0

nPn(x)tn−1, (8.75)

from which

(x− t)
∞∑

n=0

Pn(x)tn = (1− 2xt+ t2)
∞∑

n=0

nPn(x)tn−1.

Equating coefficients of like powers of t gives the recurrence relation

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0, n ≥ 1, (8.76)

which permits evaluation of Legendre polynomials of higher orders in terms of those
of lower orders. Useful relations among the derivatives of Legendre polynomials also
exist. Differentiation of equation 8.74 with respect to x gives

t

(1 − 2xt+ t2)3/2
=

∞∑

n=0

P ′
n(x)tn,

which, together with equation 8.75, implies that
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t
∞∑

n=0

nPn(x)tn−1 = (x− t)
∞∑

n=0

P ′
n(x)tn. (8.77)

Equating coefficients yields

xP ′
n(x)− P ′

n−1(x) − nPn(x) = 0, n ≥ 1. (8.78)

Differentiation of recurrence relation 8.76 gives

(n+ 1)P ′
n+1(x) − (2n+ 1)Pn(x) − (2n+ 1)xP ′

n(x) + nP ′
n−1(x) = 0, n ≥ 1. (8.79)

Elimination of P ′
n(x) between the last two equations yields

P ′
n+1(x) − P ′

n−1(x) = (2n+ 1)Pn(x), n ≥ 1 (8.80)

and, in addition,

P ′
n+1(x) − xP ′

n(x) = (n+ 1)Pn(x), n ≥ 0. (8.81)

We now show that Pn(x) is a constant multiple of dn(x2 − 1)n/dxn. We first
note that

d

dx
(x2 − 1)n = 2nx(x2 − 1)n−1 =⇒ (x2 − 1)

d

dx
(x2 − 1)n = 2nx(x2 − 1)n.

Differentiation of this equation n+ 1 times with Leibniz’s rule* gives
n+1∑

k=0

(
n+ 1
k

)
dk

dxk
(x2 − 1)

dn−k+2

dxn−k+2
(x2 − 1)n = 2n

n+1∑

k=0

(
n+ 1
k

)
dk

dxk
x
dn−k+1

dxn−k+1
(x2 − 1)n,

but only the first three terms on the left and the first two terms on the right do not
vanish. When these terms are written out and rearranged,

(1− x2)
d2

dx2

[
dn

dxn
(x2 − 1)n

]
− 2x

d

dx

[
dn

dxn
(x2 − 1)n

]
+ n(n+ 1)

[
dn

dxn
(x2 − 1)n

]
= 0.

This equation indicates that the function dn(x2 − 1)n/dxn satisfies Legendre’s dif-
ferential equation 8.65. Since the function is a polynomial in x, it follows that

Pn(x) = A
dn

dxn
(x2 − 1)n.

To obtain the constant A, we equate coefficients of xn on each side,

(2n)!
2n(n!)2

= A(2n)(2n− 1) · · · (n+ 1).

Thus, A = 1/(2nn!), and we obtain what is called Rodrigues’ formula,

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n. (8.82)

* Leibniz’s rule for the nth derivative of a product is

dn

dxn
[f(x)g(x)] =

n∑

k=0

(n
k

)[ dk

dxk
f(x)

][
dn−k

dxn−k
g(x)

]
.
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Rodrigues’ formula is useful in the evaluation of definite integrals involving Legen-
dre’s polynomials. In addition, it quickly yields values for Pn(±1). With x2 − 1 in
factored form, Leibniz’s rule gives

Pn(±1) =
1

2nn!

[
dn

dxn
(x2 − 1)n

]

|x=±1

=
1

2nn!

[
n∑

k=0

(n
k

) dk

dxk
(x+ 1)n dn−k

dxn−k
(x− 1)n

]

|x=±1

.

The only term in the summation that does not involve x − 1 occurs when k = 0,
and therefore

Pn(1) =

(n
0

)
2nn!

2nn!
= 1. (8.83a)

Similarly, because k = n is the only term without a factor x+ 1,

Pn(−1) =

(n
n

)
n!(−2)n

2nn!
= (−1)n. (8.83b)

Associated Legendre Functions

Legendre’s associated differential equation is

(1 − x2)
d2y

dx2
− 2x

dy

dx
+
[
n(n+ 1) − m2

1 − x2

]
y = 0, (8.84)

where m is some given nonnegative integer. When m = 0, it reduces to Legendre’s
differential equation 8.65. It is straightforward to show (see Exercise 9) that when
y(x) is a solution of 8.65, (1 − x2)m/2dmy/dxm is a solution of 8.84. This means
that a general solution of 8.84 is

y(x) = (1− x2)m/2

[
A
dmPn(x)
dxm

+B
dmQn(x)
dxm

]
, (8.85)

where Pn(x) are Legendre polynomials and Qn(x) are Legendre functions of the
second kind. The functions

Pmn(x) = (1− x2)m/2 d
mPn(x)
dxm

, (8.86a)

Qmn(x) = (1− x2)m/2 d
mQn(x)
dxm

, (8.86b)

are called associated Legendre functions of degree n and order m of the
first and second kind. Since Pn(x) is a polynomial of degree n, it follows that
Pmn(x) is nonvanishing only when n ≥ m.

EXERCISES 8.5

1. Calculate the first seven Legendre polynomials using (a) equation 8.82 (b) equation 8.70.

2. Show that Legendre polynomials Pn(x) are even when n is even and odd when n is odd.
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3. Use P0(x) = 1, P1(x) = x, and recurrence relation 8.76 to obtain P2(x), P3(x), P4(x), P5(x),
and P6(x).

4. Prove the following:

(a) P2n+1(0) = 0 (b) P2n(0) =
(−1)n(2n)!
22n(n!)2

(c) P ′
2n(0) = 0 (d) P ′

2n+1(0) =
(−1)n(2n+ 1)!

22n(n!)2

(e) P ′
n(1) =

n(n+ 1)
2

(f) P ′
n(−1) =

(−1)n−1n(n+ 1)
2

5. Verify the following identities for Legendre polynomials:
(a) nPn−1(x)− P ′

n(x) + xP ′
n−1(x) = 0, n ≥ 1

Hint: Show that the generating function for Pn(x) satisfies

t
∂

∂t

(
t√

1 − 2xt+ t2

)
+ (tx− 1)

∂

∂x

(
1√

1 − 2xt+ t2

)
= 0.

(b) (1 − x2)P ′
n(x) = nPn−1(x)− nxPn(x), n ≥ 1

(c) nPn(x) = nxPn−1(x) + (x2 − 1)P ′
n−1(x), n ≥ 1

6. Verify that when f(x) has continuous derivatives of orders up to and including n,
∫ 1

−1

f(x)Pn(x) dx =
(−1)n

2nn!

∫ 1

−1

f (n)(x)(x2 − 1)n dx.

7. Verify the following results:

(a)
∫ 1

−1

Pn(x) dx =
{

2, n = 0
0, n 6= 0

(b)
∫ 1

−1

Pm(x)Pn(x) dx =
{

0, n 6= m
2/(2n+ 1), n = m

Hint: Use Exercise 6

(c)
∫ 1

−1

xPn(x)P ′
n(x) dx =

2n
2n+ 1

, n ≥ 0

(d)
∫ 1

−1

xPn(x)Pn−1(x) dx =
2n

4n2 − 1
, n ≥ 1

(e)
∫ 1

−1

Pn(x)P ′
n+1(x) dx = 2, n ≥ 1

(f)
∫ 1

−1

xmPn(x) dx =





0, m < n
2n+1(n!)2

(2n+ 1)!
, m = n

0, m− n > 0 is odd
2n+1m!

(
m+n

2

)
!

(m+ n+ 1)!
(

m−n
2

)
!
, m− n > 0 is even

Hint: Use Exercise 6.

8. Verify that

(a)
∫ 1

0

Pn(x) dx =





1, n = 0
0, n > 0 even

(−1)(n−1)/2(n− 1)!

2n

(
n+ 1

2

)
!
(
n− 1

2

)
!
, n odd
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(b)
∫ 1

0

xPn(x) dx =





0, n ≥ 3 odd
1/2, n = 0
1/3, n = 1

(−1)(n−2)/2(n− 2)!

2n

(
n− 2

2

)
!
(
n+ 2

2

)
!
, n ≥ 2 even

9. Verify that whenever y(x) is a solution of Legendre’s differential equation 8.65, then the function
(1− x2)m/2dmy/dxm is a solution of Legendre’s associated equation 8.84.

10. (a) Use series 8.71a,b to show that

Q0(x) = Tanh−1x =
1
2

ln
(

1 + x

1 − x

)
, Q1(x) = xQ0(x) − 1.

(b) Assuming that the Qn(x) also satisfy recurrence relation 8.76, express Q2(x), Q3(x), and
Q4(x) in terms of Q0(x).

(c) Express Qn(x) (n = 2, 3, 4) in terms of Q0(x) and Pn(x).

11. Prove the following recurrence relations for Pmn(x):
(a) Pm+1,n+1(x)− Pm+1,n−1(x) = (2n+ 1)

√
1 − x2Pmn(x)

(b) xPm+1,n(x)− Pm+1,n−1(x) = (n−m)
√

1 − x2Pmn(x)
(c) (n−m+ 1)Pm,n+1(x) − (2n+ 1)xPmn(x) + (n+m)Pm,n−1(x) = 0
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§8.6 Sturm-Liouville Systems and Legendre’s Differential Equation

When separation of variables is applied to (initial) boundary value problems ex-
pressed in spherical coordinates, the following singular Sturm-Liouville system often
results:

d

dφ

(
sinφ

dΦ
∂φ

)
+
(
λ sinφ− m2

sinφ

)
Φ = 0, 0 < φ < π, (8.87)

where m is some given nonnegative integer. The system is singular because there
are no boundary conditions and also because q(φ) = −m2/ sinφ is not continuous
at φ = 0 and φ = π. Because the coefficient sinφ of dΦ/dφ vanishes at φ = 0
and φ = π, the corollary to Theorem 5.1 of Section 5.1 indicates that boundary
conditions at φ = 0 and φ = π are unnecessary for that theorem. Examination of
the proof of the theorem also indicates that continuity of q(φ) at φ = 0 and φ = π
is not necessary. Consequently, eigenvalues of this singular system are real, and
corresponding eigenfunctions are orthogonal.

With a change of independent variable µ = cosφ, and d/dµ = −(sinφ)−1d/dφ,
differential equation 8.87 is replaced by

d

dµ

[
(1− µ2)

dΦ
dφ

]
+
(
λ− m2

1− µ2

)
Φ = 0,

or,

(1 − µ2)
d2Φ
dµ2

− 2µ
dΦ
dµ

+
(
λ− m2

1 − µ2

)
Φ = 0, −1 < µ < 1, (8.88)

Legendre’s associated differential equation. When λ is set equal to n(n+ 1), where
n ≥ m is an integer, this equation has general solution

Φ = APmn(µ) + BQmn(µ), (8.89)

where A and B are arbitrary constants and Pmn and Qmn are associated Legendre
functions of degree n and order m of the first and second kind. Since Qmn(µ) is
unbounded near µ = ±1, bounded solutions are

Φ = APmn(µ). (8.90)

In other words, λmn = n(n + 1), where n ≥ m, are eigenvalues of this singular
Sturm-Liouville system with corresponding orthonormal eigenfunctions

Φmn(φ) = Φ(λmn, φ) =
1
N
Pmn(cosφ), (8.91a)

where

N2 =
∫ π

0

sinφ[Pmn(cosφ)]2 dφ =
∫ 1

−1

[Pmn(µ)]2 dµ. (8.91b)

To evaluate N , we proceed as follows. Since

Pmn(µ) = (1 − u2)m/2 dm

dµm
Pn(µ),
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where Pn(µ) is the Legendre polynomial of degree n, differentiation with respect to
µ yields

d

dµ
Pmn(µ) = −µm(1 − µ2)m/2−1 dm

dµm
Pn(µ) + (1 − µ2)m/2 d

m+1

dµm+1
Pn(µ).

Multiplication of this result by (1− µ2)1/2 gives

(1 − u2)1/2 d

dµ
Pmn(µ) =

−µm(1 − µ2)m/2

(1− µ2)1/2

dm

dµm
Pn(µ) + (1− µ2)(m+1)/2 d

m+1

dµm+1
Pn(µ)

=
−µm

(1 − µ2)1/2
Pmn(µ) + Pm+1,n(µ).

When this equation is solved for Pm+1,n(µ), squared, and integrated between the
limits µ = ±1,

∫ 1

−1

(Pm+1,n)2 dµ =
∫ 1

−1

(1 − µ2)
(
d

dµ
Pmn

)2

dµ+ 2m
∫ 1

−1

µPmn
d

dµ
Pmn dµ

+m2

∫ 1

−1

µ2

1 − µ2
(Pmn)2 dµ.

Integration by parts on the first two integrals on the right gives

∫ 1

−1

(Pm+1,n)2 dµ =
{

(1− µ2)
dPmn

dµ
Pmn

}1

−1

−
∫ 1

−1

Pmn
d

dµ

[
(1− µ2)

dPmn

dµ

]
dµ

+ 2m
{µ

2
(Pmn)2

}1

−1
− 2m

∫ 1

−1

1
2
(Pmn)2 dµ+m2

∫ 1

−1

µ2

1 − µ2
(Pmn)2 dµ

=
∫ 1

−1

Pmn

{
− d

dµ

[
(1− µ2)

dPmn

dµ

]
−mPmn +

m2µ2

1 − µ2
Pmn

}
dµ,

since Pmn(±1) = 0 for m > 0; P0n(1) = Pn(1) = 1, and P0n(−1) = Pn(−1) =
(−1)n. Now, using Legendre’s associated differential equation 8.84, we obtain

∫ 1

−1

(Pm+1,n)2 dµ =
∫ 1

−1

Pmn

{[
−m2

1 −mu2
+ n(n+ 1)

]
Pmn −mPmn +

(
m2

1 − µ2
−m2

)
Pmn

}
dµ

=
∫ 1

−1

(Pmn)2[n(n+ 1) −m−m2] dµ

or,
∫ 1

−1

(Pmn)2 dµ =
1

(n−m)(n+m+ 1)

∫ 1

−1

(Pm+1,n)2 dµ.

Iteration of this result on m from m to n gives
∫ 1

−1

(Pmn)2 dµ =
(n+m)!

(n−m)!(2n)!

∫ 1

−1

(Pnn)2 dµ. (8.92)

Now,
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Pnn = (1− µ2)n/2 d
n

dµn
Pn = (1− µ2)n/2 d

n

dµn

[
1

2nn!
dn

dµn
(µ2 − 1)n

]

=
(1− µ2)n/2

2nn!
d2n

dµ2n
(µ2 − 1)n =

(2n)!
2nn!

(1− µ2)n/2,

and substitution of this into equation 8.92 yields
∫ 1

−1

(Pmn)2 dµ =
(n+m)!

(n−m)!(2n)!
[(2n)!]2

22n(n!)2

∫ 1

−1

(1 − µ2)n dµ.

In elementary calculus (see also Exercise 7(a) in Section 8.5), it is shown that
∫ 1

−1

(1 − µ2)n dµ =
22n+1(n!)2

(2n+ 1)!
,

and therefore

N2 =
∫ 1

−1

[Pmn(µ)]2 dµ =
(n+m)!

(n−m)!(2n)!
[(2n)!]2

22n(n!)2
22n+1(n!)2

(2n+ 1)!
=

(n+m)!
(n−m)!

2
2n+ 1

. (8.93)

In summary, orthonormal eigenfunctions of singular Sturm-Liouville system
8.87 are

Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ), (8.94)

corresponding to eigenvalues λmn = n(n+ 1), where n is an integer greater than or
equal to m.

Because the Sturm-Liouville system is singular, we cannot quote the results of
Theorem 5.2 in Section 5.2. We have already shown that there is an infinite number
of eigenvalues, all of which are positive, except when m = 0, in which case λ = 0 is
also an eigenvalue. According to the following theorem, piecewise smooth functions
can be expanded in Fourier Legendre series in terms of these eigenfunctions.

Theorem 8.3 If a function f(φ) is piecewise smooth on the interval 0 ≤ φ ≤ π, then for each φ in
0 < φ < π,

f(φ+) + f(φ−)
2

=
∞∑

n=m

cnΦmn(φ) where cn =
∫ π

0

sinφ f(φ)Φmn(φ) dφ. (8.95)

Example 8.4 Find the Fourier Legendre series for the function

f(φ) =





1, 0 ≤ φ < π/2
0, φ = π/2
−1, π/2 < φ ≤ π

in terms of the eigenfunctions of Sturm-Liouville system 8.87 when m = 0.

Solution Orthonormal eigenfunctions of

d

dφ

(
sinφ

dΦ
dφ

)
+ λ sinφΦ = 0, 0 < φ < π,
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are Legendre polynomials

Φ0n(φ) =

√
2n+ 1

2
Pn(cosφ), n ≥ 0.

The Fourier Legendre series of f(φ) is

f(φ) =
∞∑

n=0

cnΦ0n(φ) where cn =
∫ π

0

sinφ f(φ)Φ0n(φ) dφ.

When we set µ = cosφ,√
2

2n+ 1
cn =

∫ −1

1

f [φ(µ)]Pn(µ)(−dµ) = −
∫ 0

−1

Pn(µ) dµ+
∫ 1

0

Pn(µ) dµ

=





0, n even

2
∫ 1

0

Pn(µ) dµ, n odd

=





0, n even
(−1)(n−1)/2(n− 1)!

2n−1

(
n+ 1

2

)
!
(
n− 1

2

)
!
, n odd

(see Exercise 8 in Section 8.5). Consequently,

f(φ) =
∞∑

n=1

√
4n− 1

2
(−1)n−1(2n− 2)!
22n−2n!(n− 1)!

√
4n− 1

2
P2n−1(cosφ)

=
∞∑

n=1

(−1)n−1(2n− 2)!(4n− 1)
22n−1n!(n− 1)!

P2n−1(cosφ).•

EXERCISES 8.6
In Exercises 1–4, find the Fourier Legendre series for the function in terms of the
eigenfunctions of Sturm-Liouville system 8.87 when m = 0.

1. f(φ) =
{

1, 0 ≤ φ < π/2
0, π/2 < φ < π

2. f(φ) = cos4 φ

3. f(φ) =
{

cosφ, 0 ≤ φ ≤ π/2
0, π/2 < φ ≤ π

4. f(φ) =
{

cosφ, 0 ≤ φ ≤ π/2
− cosφ, π/2 < φ ≤ π

5. Find eigenvalues and orthonormal eigenfunctions of the singular Sturm-Liouville system
d

dφ

(
sinφ

dΦ
dφ

)
+ λ sinφΦ = 0, 0 < φ < π/2,

Φ(π/2) = 0.

6. Repeat Exercise 5 if the boundary condition is Φ′(π/2) = 0.
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CHAPTER 9 PROBLEMS IN POLAR, CYLINDRICAL

AND SPHERICAL COORDINATES

§9.1 Homogeneous Problems in Polar, Cylindrical, and Spherical Coordinates

In Section 6.3, separation of variables was used to solve homogeneous boundary
value problems expressed in polar coordinates. With the results of Chapter 8, we
are in a position to tackle boundary value problems in cylindrical and spherical
coordinates and initial boundary value problems in all three coordinate systems.
Homogeneous problems are discussed in this section; nonhomogeneous problems
are discussed in Section 9.2.

We begin with the following heat conduction problem.

Example 9.1 An infinitely long cylinder of radius a is initially at temperature f(r) = a2 − r2,
and for time t > 0, the boundary r = a is insulated. Find the temperature in the
cylinder for t > 0.
Solution With the initial temperature a function of r and the surface of the
cylinder insulated, temperature in the cylinder is a function U(r, t) of r and t only.
It satisfies the initial boundary value problem

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < a, t > 0, (9.1a)

∂U(a, t)
∂r

= 0, t > 0, (9.1b)

U(r, 0) = a2 − r2, 0 < r < a. (9.1c)

When a function U(r, t) = R(r)T (t) with variables separated is substituted into the
PDE, and the equation is divided by kRT , the result is

T ′

kT
=
R′′

R
+
R′

rR
= α = constant independent of r and t.

This equation and boundary condition 9.1b yield the Sturm-Liouville system

(rR′)′ − αrR = 0, 0 < r < a, (9.2a)
R′(a) = 0. (9.2b)

This singular system was discussed in Section 8.4 (see Table 8.1 with ν = 0). If we
set α = −λ2, eigenvalues are defined by the equation J1(λa) = 0, and normalized
eigenfunctions are

Rn(r) =
√

2J0(λnr)
aJ0(λna)

, n ≥ 0. (9.3)

(For simplicity of notation, we have dropped the zero subscript on R0n and λ0n.)
The differential equation

T ′ + kλ2
nT = 0 (9.4)

has general solution
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T (t) = Ce−kλ2
nt. (9.5)

In order to satisfy initial condition 9.1c, we superpose separated functions and take

U(r, t) =
∞∑

n=0

Cne
−kλ2

ntRn(r), (9.6)

where the Cn are constants. Condition 9.1c requires these constants to satisfy

a2 − r2 =
∞∑

n=0

CnRn(r), 0 < r < a. (9.7)

Thus, the Cn are coefficients in the Fourier Bessel series of a2 − r2, and, according
to equation 8.64 in Section 8.4,

Cn =
∫ a

0

r(a2 − r2)Rn(r) dr =
√

2
aJ0(λna)

∫ a

0

r(a2 − r2)J0(λnr) dr.

To evaluate this integral when n > 0, we set u = λnr, in which case

Cn =
√

2
aJ0(λna)

∫ λna

0

(
a2u

λn
− u3

λ3
n

)
J0(u)

du

λn

=
√

2
λ4

naJ0(λna)

∫ λna

0

(a2λ2
nu− u3)J0(u) du.

For the term involving u3, we use the reduction formula in Exercise 9 of Section 8.3,

Cn =
√

2
λ4

naJ0(λna)

[
a2λ2

n

∫ λna

0

uJ0(u) du−
{
u3J1(u)

}λna

0

−
{
2u2J0(u)

}λna

0
+ 4

∫ λna

0

uJ0(u) du

]
.

If we recall the eigenvalue equation J1(λa) = 0, and equation 8.42 in Section 8.3
with ν = 1, we may write

Cn =
√

2
λ4

naJ0(λna)

[
−2λ2

na
2J0(λna) + (a2λ2

n + 4)
∫ λna

0

d

du
[uJ1(u)] du

]

=
√

2
λ4

naJ0(λna)

[
−2λ2

na
2J0(λna) + (a2λ2

n + 4)
{
uJ1(u)

}λna

0

]

=
−2

√
2a

λ2
n

.

When n = 0, the eigenfunction is R0(r) =
√

2/a, and

C0 =
∫ a

0

r(a2 − r2)R0(r) dr =
√

2
a

{
a2r2

2
− r4

4

}a

0

=
√

2a3

4
.

The solution of problem 9.1 is therefore
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U(r, t) =
√

2a3

4

(√
2
a

)
+

∞∑

n=1

−2
√

2a
λ2

n

e−kλ2
nt

√
2J0(λnr)
aJ0(λna)

=
a2

2
− 4

∞∑

n=1

e−kλ2
nt

λ2
n

J0(λnr)
J0(λna)

. (9.8)

Notice that for large t, the limit of this solution is a2/2, and this is the average
value of a2 − r2 over the circle r ≤ a.•

In the following heat conduction problem, we add angular dependence to the
temperature function.

Example 9.2 An infinitely long rod with semicircular cross section is initially (t = 0) at a constant
nonzero temperature throughout. For t > 0, its flat side is held at temperature 0◦C
while its round side is insulated. Find temperature in the rod for t > 0.

Solution Temperature in that half of the
rod for which x < 0 in Figure 9.1 is iden-
tical to that in the half for which x ≥ 0;
no heat crosses the x = 0 plane. As a result,
the temperature function U(r, θ, t) (and it
is independent of z) must satisfy the initial
boundary value problem x

z

y

r
r2

2

Figure 9.1

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
, 0 < r < a, 0 < θ <

π

2
, t > 0, (9.9a)

U(r, 0, t) = 0, 0 < r < a, t > 0, (9.9b)

Uθ

(
r,
π

2
, t
)

= 0, 0 < r < a, t > 0, (9.9c)

Ur(a, θ, t) = 0, 0 < θ <
π

2
, t > 0, (9.9d)

U(r, θ, 0) = U0, 0 < r < a, 0 < θ <
π

2
. (9.9e)

(In Exercise 4, the problem is solved for 0 < θ < π with the condition U(r, π, t) = 0
in place of 9.9c.)

When a function with variables separated, U(r, θ, t) = R(r)H(θ)T (t), is sub-
stituted into the PDE,

RHT ′ = k(R′′HT + r−1R′HT + r−2RH ′′T )

or,

−H
′′

H
=
r2R′′

R
+
rR′

R
− r2T ′

kT
= α = constant independent of r, θ, and t.

When boundary conditions 9.9b,c are imposed on the separated function, a Sturm-
Liouville system in H(θ) results,

H ′′ + αH = 0, 0 < θ < π/2, (9.10a)
H(0) = 0 = H ′(π/2). (9.10b)
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This system was discussed in Section 5.2. If we set α = ν2, then according to Table
5.1, eigenvalues are ν2

m = (2m−1)2 (m = 1, 2, . . .), with orthonormal eigenfunctions

Hm(θ) =
2√
π

sin (2m− 1)θ. (9.11)

Continued separation of the equation in R(r) and T (t) gives

R′′ + r−1R′

R
− ν2

m

r2
=

T ′

kT
= β = constant independent of r and t.

Boundary condition 9.9d leads to the Sturm-Liouville system

(rR′)′ +
[
−βr − (2m− 1)2

r

]
R = 0, 0 < r < a, (9.12a)

R′(a) = 0. (9.12b)

This is singular Sturm-Liouville system 8.48 of Section 8.4. If we set β = −λ2,
eigenvalues λmn are defined by the equation

J ′
2m−1(λa) = 0 (9.13)

with corresponding eigenfunctions

Rmn(r) =
1
N
J2m−1(λmnr), (9.14a)

where

2N2 = a2

[
1 −

(
2m− 1
λmna

)2
]

[J2m−1(λmna)]2. (9.14b)

The differential equation

T ′ = −kλ2
mnT (9.15)

has general solution

T (t) = Ce−kλ2
mnt. (9.16)

To satisfy initial condition 9.9e, we superpose separated functions and take

U(r, θ, t) =
∞∑

m=1

∞∑

n=1

Cmne
−kλ2

mntRmn(r)Hm(θ), (9.17)

where Cmn are constants. The initial condition requires these constants to satisfy

U0 =
∞∑

m=1

∞∑

n=1

CmnRmn(r)Hm(θ), 0 < r < a, 0 < θ < π/2. (9.18)

If we multiply this equation by Hi(θ) and integrate with respect to θ from θ = 0 to
θ = π/2, orthogonality of the eigenfunctions Hm(θ) gives
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∞∑

n=1

CinRin(r) =
∫ π/2

0

U0Hi(θ) dθ = U0

∫ π/2

0

2√
π

sin (2i− 1)θ dθ

=
2U0√
π

{
−1

2i− 1
cos (2i− 1)θ

}π/2

0

=
2U0

(2i− 1)
√
π
.

But this equation implies that the Cin are Fourier Bessel coefficients for the function
2U0/[(2i− 1)

√
π]; that is,

Cin =
∫ a

0

2U0

(2i− 1)
√
π
rRin(r) dr.

Thus, the solution of problem 9.9 for 0 ≤ θ ≤ π/2 is 9.17, where

Cmn =
2U0

(2m− 1)
√
π

∫ a

0

rRmn(r) dr. (9.19)

For an angle θ between π/2 and π, we should evaluate U(r, π − θ, t). Since

Hm(π − θ) =
2√
π

sin (2m− 1)(π − θ) =
2√
π

sin (2m− 1)θ,

it follows that U(r, π−θ, t) = U(r, θ, t). Hence, solution 9.17 is valid for 0 ≤ θ ≤ π.•

Our next example is a vibration problem.

Example 9.3 Solve the initial boundary value problem

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2

)
, 0 < r < a, −π < θ ≤ π, t > 0, (9.20a)

z(a, θ, t) = 0, −π < θ ≤ π, t > 0, (9.20b)
z(r, θ, 0) = f(r, θ), 0 < r < a, −π < θ ≤ π, (9.20c)
zt(r, θ, 0) = 0, 0 < r < a, −π < θ ≤ π. (9.20d)

Described is a membrane stretched over the circle r ≤ a that has an initial displace-
ment f(r, θ) and zero initial velocity. Boundary condition 9.20b states that the edge
of the membrane is fixed on the xy-plane.

Solution When a separated function z(r, θ, t) = R(r)H(θ)T (t), is substituted
into the PDE,

RHT ′′ = c2(R′′HT + r−1R′HT + r−2RH ′′T )

or,

−H
′′

H
= r2

(
R′′ + r−1R′

R
− T ′′

c2T

)
= α = constant independent of r, θ, and t.

Since the solution and its first derivative with respect to θ must be 2π-periodic in
θ, it follows that H(θ) must satisfy the periodic Sturm-Liouville system

H ′′ + αH = 0, −π < θ ≤ π, (9.21a)
H(−π) = H(π), (9.21b)
H ′(−π) = H ′(π). (9.21c)
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This system was discussed in Chapter 5 (Example 5.2 and equation 5.20). Eigen-
values are α = m2, m a nonnegative integer, with orthonormal eigenfunctions

1√
2π
,

1√
π

sinmθ,
1√
π

cosmθ. (9.22)

Continued separation of the equation in R(r) and T (t) gives

R′′ + r−1R′

R
− m2

r2
=

T ′′

c2T
= β = constant independent of r and t.

When boundary condition 9.20b is imposed on the separated function, a Sturm-
Liouville system in R(r) results,

(rR′)′ +
(
−βr − m2

r

)
R = 0, 0 < r < a, (9.23a)

R(a) = 0. (9.23b)

This is, once again, singular system 8.48 in Section 8.4. If we set β = −λ2, eigen-
values λmn are defined by

Jm(λa) = 0, (9.24)

with corresponding orthonormal eigenfunctions

Rmn(r) =
√

2Jm(λmnr)
aJm+1(λmna)

(9.25)

(see Table 8.1). The differential equation

T ′′ + c2λ2
mnT = 0 (9.26)

has general solution

T (t) = d cos cλmnt+ b sin cλmnt, (9.27)

where d and b are constants. Initial condition 9.20d implies that b = 0, and hence

T (t) = d cos cλmnt. (9.28)

In order to satisfy the final initial condition 9.20c, we superpose separated functions
and take

z(r, θ, t) =
∞∑

n=1

d0n
R0n(r)√

2π
cos cλ0nt

+
∞∑

m=1

∞∑

n=1

Rmn(r)
(
dmn

cosmθ√
π

+ fmn
sinmθ√

π

)
cos cλmnt, (9.29)

where dmn and fmn are constants. Condition 9.20c requires these constants to
satisfy

f(r, θ) =
∞∑

n=1

d0n
R0n(r)√

2π
+

∞∑

m=1

∞∑

n=1

Rmn(r)
(
dmn

cosmθ√
π

+ fmn
sinmθ√

π

)
(9.30)
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for 0 < r < a, −π < θ ≤ π. If we multiply this equation by (1/
√
π) cos iθ and

integrate with respect to θ from θ = −π to θ = π, orthogonality of the eigenfunctions
in θ gives

∫ π

−π

f(r, θ)
cos iθ√
π
dθ =

∞∑

n=1

dinRin(r).

Multiplication of this equation by rRij(r) and integration with respect to r from
r = 0 to r = a yields (because of orthogonality of the Rij for fixed i)

∫ a

0

∫ π

−π

rf(r, θ)Rij
cos iθ√
π
dθ dr = dij ;

that is

dmn =
∫ π

−π

∫ a

0

rRmn
cosmθ√

π
f(r, θ) dr dθ. (9.31a)

Similarly,

fmn =
∫ π

−π

∫ a

0

rRmn
sinmθ√

π
f(r, θ) dr dθ, (9.31b)

and

d0n =
∫ π

−π

∫ a

0

rR0n
f(r, θ)√

2π
dr dθ. (9.31c)

The solution of problem 9.20 is therefore 9.29, where dmn and fmn are defined by
9.31.•

Coefficients dmn and fmn in this example were calculated by first using or-
thogonality of the trigonometric eigenfunctions and then using orthogonality of the
Rmn(r). An alternative procedure is to determine the multi-dimensional eigenfunc-
tions for problem 9.20. This approach is discussed in Exercise 27.

Our final example on separation is a potential problem.

Example 9.4 Find the potential interior to a sphere when the potential is f(φ, θ) on the sphere.

Solution The boundary value problem for the potential V (r, φ, θ) is

∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂V

∂φ

)
+

1
r2 sin2 φ

∂2V

∂θ2
= 0,

0 < r < a, 0 < φ < π, −π < θ ≤ π, (9.32a)
V (a, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π. (9.32b)

When a function with variables separated, V (r, φ, θ) = R(r)Φ(φ)H(θ), is substituted
into PDE 9.32a,

R′′ΦH +
2
r
R′ΦH +

1
r2 sinφ

∂

∂φ
(sinφRΦ′H) +

RΦH ′′

r2 sin2 φ
= 0

or,

r2 sin2 φ

[
R′′

R
+

2R′

rR
+

1
r2 sinφΦ

d

dφ
(sinφΦ′)

]
= −H

′′

H

= α = constant independent of r, φ, and θ.
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Because V (r, φ, θ) must be 2π-periodic in θ, as must its first derivative with respect
to θ, it follows that H(θ) must satisfy the periodic Sturm-Liouville system

H ′′ + αH = 0, −π < θ ≤ π, (9.33a)
H(−π) = H(π), (9.33b)
H ′(−π) = H ′(π). (9.33c)

This is Sturm-Liouville system 9.21 with eigenvalues α = m2 and orthonormal
eigenfunctions

1√
2π
,

1√
π

cosmθ,
1√
π

sinmθ.

Continued separation of the equation in R(r) and Φ(φ) gives

r2R′′

R
+

2rR′

R
=

m2

sin2 φ
− 1

Φ sinφ
d

dφ
(sinφΦ′) = β = constant independent of r and φ.

Thus, Φ(φ) must satisfy the singular Sturm-Liouville system

d

dφ

(
sinφ

dΦ
dφ

)
+
(
β sinφ− m2

sinφ

)
Φ = 0, 0 < φ < π. (9.34)

According to the results of Section 8.6, eigenvalues are β = n(n+ 1), where n ≥ m
is an integer, with orthonormal eigenfunctions

Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ). (9.35)

The remaining differential equation

r2R′′ + 2rR′ − n(n+ 1)R = 0 (9.36)

is a Cauchy-Euler equation that can be solved by setting R(r) = rs, s an unknown
constant. This results in the general solution

R(r) =
C

rn+1
+Arn. (9.37)

For R(r) to remain bounded as r approaches zero, we must set C = 0. Superposition
of separated functions now yields

V (r, φ, θ) =
∞∑

n=0

1√
2π
A0nr

nΦ0n(φ)

+
∞∑

m=1

∞∑

n=m

rnΦmn(φ)
(
Amn

cosmθ√
π

+Bmn
sinmθ√

π

)
, (9.38)

where Amn and Bmn are constants. Boundary condition 9.32b requires these con-
stants to satisfy

f(φ, θ) =
∞∑

n=0

1√
2π
A0na

nΦ0n(φ)

+
∞∑

m=1

∞∑

n=m

anΦmn(φ)
(
Amn

cosmθ√
π

+ Bmn
sinmθ√

π

)
(9.39)



362 SECTION 9.1

for 0 ≤ φ ≤ π, −π < θ ≤ π. Because of orthogonality of eigenfunctions in φ and θ,
multiplication by (1/

√
2π) sinφΦ0j(φ) and integration with respect to φ and θ give

A0j =
1
aj

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ0j(φ) dφ dθ. (9.40a)

Similarly,

Amn =
1
an

∫ π

−π

∫ π

0

f(φ, θ)
cosmθ√

π
sinφΦmn(φ) dφ dθ, (9.40b)

Bmn =
1
an

∫ π

−π

∫ π

0

f(φ, θ)
sinmθ√

π
sinφΦmn(φ) dφ dθ. (9.40c)

Notice that the potential at the centre of the sphere is

V (0, φ, θ) =
1√
2π
A00Φ00(φ) =

1√
2π

[∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ00(φ) dφ dθ
]

Φ00(φ).

Since Φ00(φ) = 1/
√

2,

V (0, φ, θ) =
1
4π

∫ π

−π

∫ π

0

f(φ, θ) sinφdφdθ

=
1

4πa2

∫ π

−π

∫ π

0

f(φ, θ)a2 sinφdφdθ,

and this is the average value of f(φ, θ) over the surface of the sphere. We can
develop an integral formula for the solution analogous to Poisson’s integral formula
for a circle, equation 6.34. We change variables of integration for the coefficients to
α and β, substitute the coefficients into summation 9.38 and interchange orders of
integration and summation

V (r, φ, θ) =
∫ π

0

∫ π

−π

[
1
2π

∞∑

n=0

( r
a

)n

f(α, β) sinαΦ0n(φ)Φ0n(α)

+
1
π

∞∑

m=1

∞∑

n=1

(r
a

)n

f(α, β) sinαΦmn(φ)Φmn(α)(cosmθ cosmβ + sinmθ sinmβ)

]
dβ dα

=
1
π

∫ π

0

∫ π

−π

f(α, β) sinα

[
1
2

∞∑

n=0

( r
a

)n

Φ0n(φ)Φ0n(α)

+
∞∑

m=1

∞∑

n=1

( r
a

)n

Φmn(φ)Φmn(α) cosm(θ − β)

]
dβ dα.

Let us define

S(r, φ, θ) =
1
2

∞∑

n=0

( r
a

)n

Φ0n(φ)Φ0n(α) +
∞∑

m=1

∞∑

n=1

( r
a

)n

Φmn(φ)Φmn(α) cosm(θ − β).

Consider the potential at a point inside the sphere and on the z-axis with spherical
coordinates (r, 0, θ), where θ is arbitrary and 0 < r < a. For such a point,

S(r, 0, θ) =
1
2

∞∑

n=0

( r
a

)n

Φ0n(0)Φ0n(α) +
∞∑

m=1

∞∑

n=1

( r
a

)n

Φmn(0)Φmn(α) cosm(θ − β).
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Since

Φ0n(0) =

√
2n+ 1

2
Pn(1) =

√
2n+ 1

2
, Φmn(0) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(1) = 0,

S(r, 0, θ) =
1
2

∞∑

n=0

( r
a

)n
(

2n+ 1
2

)
Pn(cosα) =

1
4

∞∑

n=0

(2n+ 1)
(r
a

)n

Pn(cosα).

To find a closed value for this summation, we differentiate the generating function
8.74 for Legendre polynomials

1√
1 − 2xt+ t2

=
∞∑

n=0

Pn(x)tn

with respect to t,

x− t

(1− 2xt+ t2)3/2
=

∞∑

n=0

nPn(x)tn−1.

If we multiply this by 2t and add it to the generating function, we obtain
∞∑

n=0

(2n+ 1)Pn(x)tn =
2t(x− t)

(1 − 2xt+ t2)3/2
+

1√
1 − 2xt+ t2

=
1 − t2

(1− 2xt+ t2)3/2
.

It follows that

S(r, 0, θ) =
1
4




1 − r2

a2

(
1 − 2r cosα

a
+
r2

a2

)3/2


 =

a(a2 − r2)
4(a2 − 2ar cosα + r2)3/2

.

Thus,

V (r, 0, θ) =
1
π

∫ π

0

∫ π

−π

a(a2 − r2)
4(a2 − 2ar cosα+ r2)3/2

f(α, β) sinα dβ dα

=
a(a2 − r2)

4π

∫ π

0

∫ π

−π

f(α, β) sinα
(a2 − 2ar cosα+ r2)3/2

dβ dα.

This is the potential at a point (r, 0, θ) on the z-axis. The distance between this
point and a point (a, α, β) on the sphere is

√
(a sinα cosβ)2 + (a sinα sinβ)2 + (a cosα− r)2 =

√
r2 + a2 − 2ar cosα.

The denominator in the above integral is therefore the cube of the distance from
points on the sphere to the point at which the potential is calculated. Since the
axes could always be rotated so that the observation point is on the z-axis, it follows
that to find the potential at any point with spherical coordinates (r, φ, θ) inside the
sphere, we need only replace

√
r2 + a2 − 2ar cosα with the distance from (r, φ, θ)

to (a, α, β), namely,
√

(r sinφ cos θ − a sinα cosβ)2 + (r sinφ sin θ − a sinα sin β)2 + (r cosφ− a cosα)2

=
√
r2 + a2 − 2ar[sinφ sinα cos (θ − β) + cosφ cosα].
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Thus,

V (r, φ, θ) =
a(a2 − r2)

4π

∫ π

0

∫ π

−π

f(α, β) sinα
{r2 + a2 − 2ar[sinφ sinα cos (θ − β) + cosφ cosα]}3/2

dβ dα.

(9.41)

This is called Poisson’s integral formula for a sphere.•

EXERCISES 9.1

Part A Heat Conduction

1. (a) The initial temperature of an infinitely long cylinder of radius a is f(r). If, for time t > 0,
the outer surface is held at 0◦C, find the temperature in the cylinder.

(b) Simplify the solution in part (a) when f(r) is a constant U0.
(c) Find the solution when f(r) = a2 − r2.

2. An infinitely long cylinder of radius a is initially at temperature f(r) and, for time t > 0, the
boundary r = a is insulated.
(a) Find the temperature U(r, t) in the cylinder.
(b) What is the limit of U(r, t) for large t?

3. A thin circular plate of radius a is insulated top and bottom. At time t = 0 its temperature is
f(r, θ). If the temperature of its edge is held at 0◦C for t > 0, find its interior temperature for
t > 0.

4. Solve Example 9.2 using the boundary condition U(r, π, t) = 0 in place of ∂U(r, π/2, t)/∂θ = 0.

5. An infinitely long cylinder is bounded by the surfaces r = a, θ = 0, and θ = π/2. At time
t = 0, its temperature is f(r, θ), and for t > 0, all surfaces are held at temperature zero. Find
temperature in the cylinder.

6. Repeat Exercise 5 if the flat sides are insulated.

7. Repeat Exercise 5 if the curved side is insulated.

8. Repeat Exercise 5 if all sides are insulated. Show that the limit of the temperature as t → ∞
is the average of f(r, θ) over the cylinder.

9. A flat plate in the form of a sector of a circle of radius 1 and angle α is insulated top and
bottom. At time t = 0, the temperature of the plate increases linearly from 0◦C at r = 0 to
a constant value U

◦
C at r = 1 (and is therefore independent of θ). If, for t > 0, the rounded

edge is insulated and the straight edges are held at temperature 0◦C, find the temperature in
the plate for t > 0. Prove that heat never crosses the line θ = α/2.

10. Find the temperature in the plate of Exercise 9 if the initial temperature is f(r), the straight
sides are insulated, and the curved edge is held at temperature 0◦C.

11. Repeat Exercise 10 if the initial temperature is a function of r and θ, namely, f(r, θ).

12. A cylinder occupies the region r ≤ a, 0 ≤ z ≤ L. It has temperature f(r, z) at time t = 0. For
t > 0, its end z = 0 is insulated, and the remaining two surfaces are held at temperature 0◦C.
Find the temperature in the cylinder.
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13. Solve Exercise 1(a),(b) if heat is transferred at r = a according to Newton’s law of cooling to
an environment at temperature zero.

14. (a) A sphere of radius a is initially at temperature f(r) and, for time t > 0, the boundary r = a
is held at temperature zero. Find the temperature in the sphere for t > 0. (You will need
the results of Exercise 8 in Section 8.4). Compare the solution to that in Exercise 12 of
Section 4.2.

(b) Simplify the solution when f(r) = U0, a constant.
(c) Suppose the sphere has radius 20 cm and is made of steel with k = 12.4 × 10−6. Find the

temperature at the centre of the sphere after 10 minutes when f(r) = U0 as in part (b).
(d) Repeat part (c) if the sphere is asbestos with k = 0.247× 10−6.

15. Repeat parts (a) and (b) of Exercise 14 if the surface of the sphere is insulated. (See Exercise
8 in Section 8.4.) What is the temperature for large t?

16. Repeat parts (a) and (b) of Exercise 14 if the surface transfers heat to an environment at
temperature zero according to Newton’s law of cooling; that is, take as boundary condition

κ
∂U(a, t)
∂r

+ µU(a, t) = 0, t > 0.

(Assume that µa < κ and see Exercise 8 in Section 8.4.)

17. Repeat Exercise 14(a) if the initial temperature is also a function of φ. (You will need the
results of Exercise 9 in Section 8.4.)

18. (a) Repeat Exercise 14(a) if the initial temperature is also a function of φ and the surface of
the sphere is insulated. (You will need the results of Exercise 9 in Section 8.4.)

(b) What is the limit of the solution for large t?

19. The result of this exercise is analogous to that in Exercise 9 of Section 6.4. Show that the
solution of the homogeneous heat conduction problem

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+
∂2U

∂z2

)
, 0 < r < a, 0 < z < L, t > 0,

−l1
∂U

∂z
+ h1U = 0, z = 0, 0 < r < a, t > 0,

l2
∂U

∂z
+ h2U = 0, z = L, 0 < r < a, t > 0,

l3
∂U

∂r
+ h3U = 0, r = a, 0 < z < L, t > 0,

U(r, z, 0) = f(r)g(z), 0 < r < a, 0 < z < L,

where the initial temperature is the product of a function of r and a function of z, is the product
of the solutions of the problems

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < a, t > 0,

l3
∂U(a, t)
∂r

+ h3U(a, t) = 0, t > 0,

U(r, 0) = f(r), 0 < r < a;

and
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∂U

∂t
= k

∂2U

∂z2
, 0 < z < L, t > 0,

−l1
∂U(0, t)
∂z

+ h1U(0, t) = 0, t > 0,

l2
∂U(L, t)
∂z

+ h2U(L, t) = 0, t > 0,

U(z, 0) = g(z), 0 < z < L.

20. Solve the heat conduction problem

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+
∂2U

∂z2

)
, 0 < r < a, 0 < z < L, t > 0,

Uz(r, 0, t) = 0, 0 < r < a, t > 0,
U(r, L, t) = 0, 0 < r < a, t > 0,
Ur(a, z, t) = 0, 0 < z < L, t > 0,
U(r, z, 0) = (a2 − r2)(L− z), 0 < r < a, 0 < z < L,

(a) by using the results of Exercise 19, Example 9.1, and Exercise 1(a) in Section 6.2.
(b) by separation of variables.

Part B Vibrations

21. (a) A vibrating circular membrane of radius a is given an initial displacement that is a func-
tion only of r, namely, f(r), 0 ≤ r ≤ a, and zero initial velocity. Show that subsequent
displacements of the membrane, if its edge r = a is fixed on the xy-plane, are of the form

z(r, t) =
√

2
a

∞∑

n=1

An cos cλnt
J0(λnr)
J1(λna)

.

What is An?
(b) The first term in the series in part (a), called the fundamental mode of vibration for

the membrane, is

H1(r, t) =
√

2
a
A1 cos cλ1t

J0(λ1r)
J1(λ1a)

.

Simplify and describe this mode when a = 1. Does H1(r, t) have nodal curves?
(c) Repeat part (b) for the second mode of vibration.
(d) Are frequencies of higher modes of vibration integer multiples of the frequency of the fun-

damental mode? Were they for a vibrating string with fixed ends?

22. A circular membrane of radius a has its edge fixed on the xy-plane. In addition, a clamp holds
the membrane on the xy-plane along a radial line from the centre to the circumference. If the
membrane is released from rest at a displacement f(r, θ), find subsequent displacements. (For
consistency, we require f(r, θ) to vanish along the clamped radial line.)

23. Simplify the solution in part (a) of Exercise 21 when f(r) = a2 − r2. (See Example 9.1.)

24. A circular membrane of radius a is parallel to the xy-plane and is falling with constant speed
v0. At time t = 0, it strikes the xy-plane. For t > 0, the edge of the membrane is fixed on the
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xy-plane, but the remainder of the membrane is free to vibrate vertically. Find displacements
of the membrane.

25. Equation 9.29 with coefficients defined in 9.31 describes displacements of a circular membrane
with fixed edge when oscillations are initiated from rest at some prescribed displacement. In
this exercise we examine nodal curves for various modes of vibration.
(a) The first mode of vibration is the term (d01/

√
2π)R01(r) cos cλ01t. Show that this mode has

no nodal curves.
(b) Show that the mode (d02/

√
2π)R02(r) cos cλ02t has one nodal curve, a circle.

(c) Show that the mode (d03/
√

2π)R03(r) cos cλ03t has two circular nodal curves.
(d) On the basis of parts (a), (b), and (c), what are the nodal curves for the mode

(d0n/
√

2π)R0n(r) cos cλ0nt?
(e) Corresponding to n = m = 1, there are two modes, (d11/

√
π)R11(r) cos cλ11t cos θ and

(f11/
√
π)R11(r) cos cλ11t sin θ. Show that each of these modes has only one nodal curve, a

straight line.
(f) Find nodal curves for the modes (d12/

√
π)R12(r) cos cλ12t cos θ and

(f12/
√
π)R12(r) cos cλ12t sin θ.

(g) Find nodal curves for the modes (d22/
√
π)R22(r) cos cλ22t cos 2θ and

(f22/
√
π)R22(r) cos cλ22t sin 2θ.

(h) On the basis of parts (e), (f), and (g), what are the nodal curves for the modes
(dmn/

√
π)Rmn(r) cos cλmnt cosmθ and (fmn/

√
π)Rmn(r) cos cλmnt sinmθ?

26. The initial boundary value problem for small horizontal displacements of a suspended cable
when gravity is the only force acting on the cable is

∂2y

∂t2
= g

∂

∂x

(
x
∂y

∂x

)
, 0 < x < L, t > 0,

y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = h(x), 0 < x < L.

(See Exercise 26 in Section 2.3.)
(a) Show that when a new independent variable z =

√
4x/g is introduced, y(z, t) must satisfy

∂2y

∂t2
=

1
z

∂

∂z

(
z
∂y

∂z

)
, 0 < z < M, t > 0,

y(M, t) = 0, t > 0,
y(z, 0) = f(gz2/4), 0 < z < M,

yt(z, 0) = h(gz2/4), 0 < z < M,

where M =
√

4L/g.
(b) Solve this problem by separation of variables, and hence find y(x, t).

27. Multidimensional eigenfunctions for problem 9.20 are solutions of the two-dimensional eigen-
value problem

∂2W

∂r2
+

1
r

∂W

∂r
+

1
r2
∂2W

∂θ2
+ λ2W = 0, 0 < r < a, −π < θ ≤ π,

W (a, θ) = 0, −π < θ ≤ π.
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(a) Find eigenfunctions (normalized with respect to the unit weight function over the circle
r ≤ a).

(b) Use the eigenfunctions in part (a) to solve problem 9.20.

Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

28. (a) Solve the following boundary value problem associated with the Helmholtz equation on a
circle

∇2V + k2V = 0, 0 < r < a, −π < θ ≤ π (k > 0 a constant)
V (a, θ) = f(θ), −π < θ ≤ π.

(b) Is V (0, θ) the average value of f(θ) on r = a?
(c) What is the solution when f(θ) = 1?

29. Solve the following problem for potential in a cylinder

∂2V

∂r2
+

1
r

∂V

∂r
+
∂2V

∂z2
= 0, 0 < r < a, 0 < z < L,

V (a, z) = 0, 0 < z < L,

V (r, 0) = 0, 0 < r < a,

V (r, L) = f(r), 0 < r < a.

30. Find the potential inside a cylinder of length L and radius a when potential on the curved
surface is zero and potentials on the flat ends are nonzero.

31. (a) Find the steady-state temperature in a cylinder of radius a and length L if the end z = 0
is maintained at temperature f(r), the end z = L is kept at temperature zero, and heat is
transferred on r = a to a medium at temperature zero according to Newton’s law of cooling.

(b) Simplify the solution when f(r) = U0, a constant.

32. The temperature in a semi-infinite cylinder 0 < r < a, z > 0 is in a steady-state situation. Find
the temperature if the cylindrical wall is at temperature zero and the temperature of the base
z = 0 is f(r).

33. Repeat Exercise 32 if the cylindrical wall is insulated.

34. Use separation of variables to find the potential inside a sphere of radius a when the potential
on the sphere is a function f(φ) of φ only. Does the solution for Example 9.4 specialize to this
result? What is the solution when f(φ) is a constant function?

35. Show that if the potential on the surface of a sphere is a function f(θ) of θ only, the potential
interior to the sphere is still a function of r, φ, and θ.

36. Find the potential interior to a sphere of radius a when the potential must satisfy a Neumann
condition on the sphere,

∂V (a, φ, θ)
∂r

= f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π.

37. Find the potential interior to a sphere of radius a when the potential must satisfy a Robin
condition on the sphere,
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l
∂V (a, φ, θ)

∂r
+ hV (a, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π.

38. Find the steady-state temperature inside a hemisphere r ≤ a, z ≥ 0 when temperature on z = 0
is zero and that on r = a is a function of φ only. (Hint: See Exercise 5 in Section 8.6.) Simplify
the solution when f(φ) is a constant function.

39. Repeat Exercise 38 if the base of the hemisphere is insulated. (Hint: See Exercise 6 in Section
8.6.)

40. Find the bounded potential outside the hemisphere r ≤ a, z ≥ 0 when potential on z = 0 is
zero and that on r = a is a function of φ only. (Hint: See the results of Exercise 5 in Section
8.6.)

41. Find the potential interior to a sphere of radius a when the potential on the upper half is a
constant V0 and the potential on the lower half is zero.

42. Use the result of Exercise 41 to find the potential inside a sphere of radius a when potentials
on the top and bottom halves are constant values V0 and V1, respectively.

43. Find the potential in the region between two concentric spheres when the potential on each
sphere is
(a) a constant;
(b) a function of φ only (and show that the solution reduces to that in part (a) when the

functions are constant;
(c) a function of φ and θ (and show that the solution reduces to that in part (b) when the

functions depend only on φ.

44. (a) Show that the negative of Poisson’s integral formula 9.41 is the solution to Laplace’s equation
exterior to the sphere r = a if V (r, φ, θ) is required to vanish at infinity.

(b) Show that if V (r, φ, θ) is the solution to the interior problem, then (a/r)V (a2/r, φ, θ) is the
solution to the exterior problem. Do this using the result in part (a), and also by checking
that the function satisfies the boundary value problem.

45. (a) What is the potential interior to a sphere of radius a when its value on the sphere is a
constant V0?

(b) Determine the potential exterior to a sphere of radius a when its value on the sphere is a
constant V0, and the potential must vanish at infinity. Do this in two ways, using separation
of variables, and the result of Exercise 44.

46. What is the potential exterior to a sphere of radius a when the potential must vanish at infinity
and satisfy a Neumann condition on the sphere,

−∂V (a, φ, θ)
∂r

= f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π.

47. What is the potential exterior to a sphere of radius a when the potential must vanish at infinity
and satisfy a Robin condition on the sphere,

−l ∂V (a, φ, θ)
∂r

+ hV (a, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π.

48. Consider the following boundary value problem for steady-state temperature inside a cylinder
of length L and radius a when the temperature of each end is zero:
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∂2U

∂r2
+

1
r

∂U

∂r
+
∂2U

∂z2
= 0, 0 < r < a, 0 < z < L,

U(r, 0) = 0, 0 < r < a,

U(r, L) = 0, 0 < r < a,

U(a, z) = f(z), 0 < z < L.

(a) Verify that separation of variables U(r, z) = R(r)Z(z) leads to a Sturm-Liouville system in
Z(z) and the following differential equation in R(r):

r
d2R

dr2
+
dR

dr
− λ2rR = 0, 0 < r < a.

(b) Show that the change of variable x = λr leads to Bessel’s modified differential equation of
order zero,

x
d2R

dx2
+
dR

dx
− xR = 0.

(See Exercise 10 in Section 8.3.)
(c) Find functions Rn(r) corresponding to eigenvalues λn, and use superposition to solve the

boundary value problem.
(d) Simplify the solution in part (c) in the case that f(z) is a constant value U0.

49. Solve the boundary value problem in Exercise 48 if the ends of the cylinder are insulated.

50. (a) A charge Q is distributed uniformly
around a thin ring of radius a in the
xy-plane with centre at the origin
(figure to the right). Show that potential
at every point on the z-axis due to this
charge is

V =
Q

4πε0
√
a2 + r2

.

(b) The potential at other points in x

z

y

a
a

space must be independent of the spherical coordinate θ. Show that V (r, φ) must be of the
form

V (r, φ) =
∞∑

n=0

(
Anr

n +
Bn

rn+1

)√
2n+ 1

2
Pn(cosφ).

What does this result predict for potential at points on the positive z-axis?
(c) Equate expressions from parts (a) and (b) for V on the positive z-axis and expand 1/

√
a2 + r2

in powers of r/a and a/r to find V (r, φ).

51. Repeat Exercise 50 in the case that charge Q is distributed uniformly over a disc of radius a in
the xy-plane with centre at the origin.
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§9.2 Nonhomogeneous Problems in Polar, Cylindrical, and Spherical Coordinates

Nonhomogeneities in problems expressed in polar, cylindrical, and spherical coordi-
nates can be treated in the same way that they were treated in Cartesian coordinates
— split off steady-state or static deflection solutions, or use variation of constants,
or use finite Fourier transforms. It is always an advantage to split off steady-state
and static deflection solutions in initial boundary value problems, and we will con-
tinue to do this whenever nonhomogeneities are time-independent (and it is feasible
to do so). Our work in Chapter 7, demonstrated the simplicity of finite Fourier
transforms over variation of constants for problems in Cartesian coordinates. The
same can be said about nonhomogeneous problems in polar, cylindrical, and spher-
ical coordinates. Finite Fourier transforms are substantially easier than variation of
constants. With this in mind, we discuss finite Fourier transforms associated with
Sturm-Liouville sytems in Sections 8.4 and 8.6. For the singular system

(rR′)′ +
(
λ2r − ν2

r

)
R = 0, 0 < r < a, (9.42a)

lR′(a) + hR(a) = 0, (9.42b)

with eigenvalues and eigenfunctions in Table 8.1, we define the transform

f̃(λνn) =
∫ a

0

rf(r)Rνn(r) dr, (9.43a)

called a finite Hankel transform. It associates with a function f(r), the sequence
{f̃(λνn)} of coefficients in the Fourier Bessel series of f(r) in terms of the Rνn(r).
The inverse transform of 9.43a is the Fourier Bessel series

f(r) =
∞∑

n=1

f̃(λνn)Rνn(r), 0 < r < a, (9.43b)

provided that f(r) is defined as the average of right and left limits at any point of
discontinuity. Finite Hankel transforms are used to eliminate the r-variable from
initial boundary value problems in polar, cylindrical, and spherical coordinates.
Most often this transform involves Bessel functions, but not always. We will continue
to call finite Fourier transforms that eliminate r Hankel transforms even when Bessel
functions are not present.

With the singular Sturm-Liouville system

(sinφΦ′)′ +
(
λ sinφ− m2

sinφ

)
Φ = 0, 0 < φ < π, (9.44)

(m ≥ 0 an integer) is associated the Legendre transform

f̃(m,n) =
∫ π

0

sinφf(φ)Φmn(φ) dφ, (9.45a)

where eigenvalues are λmn = n(n+ 1), n ≥ m an integer, and Φmn are normalized
associated Legendre functions of the first kind (see equation 8.94 in Section 8.6).
The inverse transform is the series
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f(φ) =
∞∑

n=m

f̃(m,n)Φmn(φ). (9.45b)

This transform removes the φ-variable from problems in spherical coordinates.
To complete the set of finite Fourier transforms, we associate a transform with

the periodic Sturm-Liouville system

H ′′ + λ2H = 0, −π < θ ≤ π, (9.46a)
H(−π) = H(π), (9.46b)
H ′(−π) = H ′(π), (9.46c)

which arises in so many of our problems. Eigenvalues of this system are λ2
m = m2,

m a nonnegative integer, with orthonormal eigenfunctions

1√
2π

↔ λ0 = 0;
1√
π

cosmθ,
1√
π

sinmθ ↔ λm, m > 0.

Periodic functions f(θ) may be expressed in terms of these eigenfunctions as ordi-
nary trigonometric Fourier series:

f(θ) =
a0√
2π

+
∞∑

m=1

(
am

cosmθ√
π

+ bm
sinmθ√

π

)
, (9.47a)

where

a0 =
∫ π

−π

f(θ)√
2π
dθ, am =

∫ π

−π

f(θ)
cosmθ√

π
dθ, bm =

∫ π

−π

f(θ)
sinmθ√

π
dθ. (9.47b)

The complex representation of this series in Exercise 27 of Section 3.1 provides
the finite Fourier transform. We may rewrite equation 9.47 in the form

f(θ) =
1
2π

∞∑

m=−∞
Cme

imθ, (9.48a)

where

Cm =
∫ π

−π

f(θ)e−imθdθ. (9.48b)

(We took the liberty in Exercise 27 of Section 3.1 of incorporating the 2π-factor
into the series rather than the coefficient Cm. The series representation of f(θ) is
the same in either case.) Associated with this representation is the finite Fourier
transform of 2π-periodic functions

f̃(m) =
∫ π

−π

f(θ)e−imθdθ (9.49a)

and its inverse

f(θ) =
1
2π

∞∑

m=−∞
f̃(m)eimθ. (9.49b)
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(The exponentials in equations 9.49 could be interchanged to give an alternative
transform; this uses the complex representation of equation 3.15 in Section 3.1.)

The following examples illustrate how these transforms facilitate the solution
of nonhomogeneous (initial) boundary value problems.

Example 9.5 A circular plate of radius a is insulated top and bottom. At time t = 0, its temper-
ature is 0◦C throughout. If, for t > 0, all points on the edge of the plate have the
same temperature U , find the temperature in the plate for t > 0.

Solution The initial boundary value problem for U(r, t) is

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < a, t > 0, (9.50a)

U(a, t) = U, t > 0, (9.50b)
U(r, 0) = 0, 0 < r < a. (9.50c)

For comparison, we solve the problem by splitting off the steady-state solution and
by finite Hankel transforms.

Finite Fourier Transforms
To eliminate r from the problem, we use the finite Hankel transform

f̃(λn) =
∫ a

0

rf(r)Rn(r) dr, (9.51)

where Rn(r) =
√

2J0(λnr)/[aJ1(λna)] are eigenfunctions of the Sturm-Liouville
system

(rR′)′ + λ2rR = 0, 0 < r < a, (9.52a)
R(a) = 0. (9.52b)

(This is the system that would result were separation of variables applied to the
corresponding homogeneous problem.) Application of the transform to the PDE
gives

∫ a

0

r
∂U

∂t
Rn dr = k

∫ a

0

r

(
∂2U

∂r2
+

1
r

∂U

∂r

)
Rn dr.

An interchange of differentiation with respect to t and integration with respect to
r on the left, and integration by parts on the right, yield

∂Ũ

∂t
= k

{
r
∂U

∂r
Rn

}a

0

+ k

∫ a

0

∂U

∂r

[
− d

dr
(rRn) +Rn

]
dr

= −k
∫ a

0

r
∂U

∂r
R′

n dr (because of 9.52b)

= −k
{
UrR′

n

}a

0
+ k

∫ a

0

U(rR′
n)′dr (by a second integration by parts)

= −kaR′
n(a)U + k

∫ a

0

U(−λ2
nrRn) dr (from 9.50b and 9.52a)

= −kUaR′
n(a)− kλ2

nŨ .
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Thus, Ũ(λn, t) must satisfy the ODE

dŨ

dt
+ kλ2

nŨ = −kUaR′
n(a) (9.53a)

subject to the transform of initial condition 9.50c,

Ũ (λn, 0) = 0. (9.53b)

Since the solution of problem 9.53 is

Ũ (λn, t) =
UaR′

n(a)
λ2

n

(−1 + e−kλ2
nt), (9.54)

we obtain

U(r, t) =
∞∑

n=1

Ũ(λn, t)Rn(r)

=
∞∑

n=1

Ua
√

2λnJ
′
0(λna)

aJ1(λna)λ2
n

(e−kλ2
nt − 1)

√
2J0(λnr)
aJ1(λna)

=
2U
a

∞∑

n=1

−J1(λna)
λn[J1(λna)]2

(e−kλ2
nt − 1)J0(λnr)

=
2U
a

∞∑

n=1

1
λnJ1(λna)

(1− e−kλ2
nt)J0(λnr). (9.55)

The limit of this temperature function for large t is

lim
t→∞

U(r, t) =
2U
a

∞∑

n=1

J0(λnr)
λnJ1(λna)

.

The transform 1̃n of the function f(r) ≡ 1 is

1̃n =
∫ a

0

r

√
2J0(λnr)
aJ1(λna)

dr =
√

2
aJ1(λna)

∫ λna

0

(
u

λn

)
J0(u)

(
du

λn

)

=
√

2
aλ2

nJ1(λna)

∫ λna

0

d

du
[uJ1(u)] du (see identity 8.42 in Section 8.3 with ν = 1)

=
√

2
aλ2

nJ1(λna)

{
uJ1(u)

}λna

0
=

√
2

λn
.

Consequently,

1 =
∞∑

n=1

√
2

λn

√
2J0(λnr)
aJ1(λna)

=
2
a

∞∑

n=1

J0(λnr)
λnJ1(λna)

, (9.56)

and it follows that

lim
t→∞

U(r, t) = U,

as expected. Furthermore, this suggests that we write U(r, t) in the form
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U(r, t) = U − 2U
a

∞∑

n=1

1
λnJ1(λna)

e−kλ2
ntJ0(λnr). (9.57)

Splitting off the Steady-state Solution
Because the nonhomogeneity in boundary condition 9.50b is independent of

time, we can split off the steady-state solution. We set U(r, t) = V (r, t) + ψ(r),
where ψ(r) is the solution of

d2ψ

dr2
+

1
r

dψ

dr
= 0, 0 < r < a, (9.58a)

ψ(a) = U. (9.58b)

The only bounded solution of this system is ψ(r) = U . With this steady-state
solution, V (r, t) must satisfy the homogeneous problem

∂V

∂t
= k

(
∂2V

∂r2
+

1
r

∂V

∂r

)
, 0 < r < a, t > 0, (9.59a)

V (a, t) = 0, t > 0, (9.59b)
V (r, 0) = −U, 0 < r < a. (9.59c)

Separation V (r, t) = R(r)T (t) leads to Sturm-Liouville system 9.52 in R(r) and the
ODE

T ′ + kλ2T = 0, t > 0. (9.60)

Eigenvalues are defined by J0(λa) = 0, and normalized eigenfunctions are
Rn(r) =

√
2J0(λnr)/[aJ1(λna)]. Corresponding solutions of differential equation

9.60 are

T (t) = Ce−kλ2
nt. (9.61)

Superposition of separated functions yields

V (r, t) =
∞∑

n=1

Cne
−kλ2

ntRn(r), (9.62)

and initial condition 9.59c requires

−U =
∞∑

n=1

CnRn(r). (9.63)

The Cn are therefore Fourier coefficients in the eigenfunction expansion of the func-
tion −U ; that is,

Cn =
∫ a

0

r(−U)Rn(r) dr = −U
∫ a

0

r

√
2J0(λnr)
aJ1(λna)

dr =
−
√

2U
λn

.

(This integral was evaluated in the above transform solution.) Consequently,

U(r, t) = U +
∞∑

n=1

−
√

2U
λn

e−kλ2
nt

√
2J0(λnr)
aJ1(λna)

= U − 2U
a

∞∑

n=1

1
λnJ1(λna)

e−kλ2
ntJ0(λnr),
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the same solution as that obtained by the finite Hankel transform.•

Our next example is a vibration problem.

Example 9.6 A circular membrane of radius a has an initial displacement at time t = 0 described
by the function f(r, θ), 0 ≤ r ≤ a, −π < θ ≤ π, but no initial velocity. For time
t > 0, its edge r = a is forced to undergo periodic oscillations described by A sinωt,
A a constant. (For consistency, we assume that f(a, θ) = 0.) Find its displacement
as a function of r, θ, and t.

Solution The initial boundary value problem for z(r, θ, t) is

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2

)
, 0 < r < a, −π < θ ≤ π, t > 0, (9.64a)

z(a, θ, t) = A sinωt, −π < θ ≤ π, t > 0, (9.64b)
z(r, θ, 0) = f(r, θ), 0 < r < a, −π < θ ≤ π, (9.64c)
zt(r, θ, 0) = 0, 0 < r < a, −π < θ ≤ π. (9.64d)

To remove θ from the problem, we apply transform 9.49a to the PDE,
∫ π

−π

∂2z

∂t2
e−imθdθ = c2

∫ π

−π

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2

)
e−imθdθ.

Integrations with respect to θ and differentiations with respect to t and r may be
interchanged, with the result that

∂2z̃

∂t2
− c2

(
∂2z̃

∂r2
+

1
r

∂z̃

∂r

)
=
c2

r2

∫ π

−π

∂2z

∂θ2
e−imθdθ.

Integration by parts on the remaining integral gives
∫ π

−π

∂2z

∂θ2
e−imθdθ =

{
∂z

∂θ
e−imθ

}π

−π

+
∫ π

−π

im
∂z

∂θ
e−imθdθ

=
∂z(r, π, t)

∂θ
cos (−mπ)− ∂z(r,−π, t)

∂θ
cosmπ + im

∫ π

−π

∂z

∂θ
e−imθdθ.

Because ∂z/∂θ must be 2π-periodic, it follows that ∂z(r, π, t)/∂θ = ∂z(r,−π, t)/∂θ,
and therefore
∫ π

−π

∂2z

∂θ2
e−imθdθ = im

∫ π

−π

∂z

∂θ
e−imθdθ

= im
{
ze−imθ

}π

−π
+ im

∫ π

−π

imze−imθdθ

= im[z(r, π, t) cos (−mπ) − z(r,−π, t) cosmπ] −m2

∫ π

−π

ze−imθdθ

= −m2z̃,

since z(r, θ, t) must also be 2π-periodic. Consequently, z̃(r,m, t) must satisfy the
PDE

∂2z̃

∂t2
= c2

(
∂2z̃

∂r2
+

1
r

∂z̃

∂r
− m2

r2
z̃

)
, 0 < r < a, t > 0, (9.65a)
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subject to the transforms of conditions 9.64b,c,d,

z̃(a,m, t) = A sinωt 1̃m, t > 0, (9.65b)
z̃(r,m, 0) = f̃(r,m), 0 < r < a, (9.65c)
z̃t(r,m, 0) = 0, 0 < r < a, (9.65d)

where

1̃m =
∫ π

−π

e−imθdθ =
{

2π, m = 0
0, m 6= 0. (9.65e)

To eliminate r from this problem, we use the finite Hankel transform

f̃(λmn) =
∫ a

0

rf(r)Rmn(r) dr, (9.66)

where Rmn(r) are the orthonormal eigenfunctions of the Sturm-Liouville system

(rR′)′ +
(
λ2r − m2

r

)
R = 0, 0 < r < a, (9.67a)

R(a) = 0, (9.67b)

(the system that would result were separation performed on problem 9.65 with
the homogeneous version of 9.65b). Application of the transform to the PDE and
integration by parts give

∂2˜̃z
∂t2

= c2
∫ a

0

r

(
∂2z̃

∂r2
+

1
r

∂z̃

∂r
− m2

r2
z̃

)
Rmn dr

= c2
{
rRmn

∂z̃

∂r

}a

0

+ c2
∫ a

0

[
−∂z̃
∂r

(rRmn)′ +
∂z̃

∂r
Rmn − m2

r
z̃Rmn

]
dr

= c2
∫ a

0

(
−r∂z̃

∂r
R′

mn − m2

r
z̃Rmn

)
dr (since Rmn(a) = 0)

= c2
{
−rz̃R′

mn

}a

0
+ c2

∫ a

0

[
z̃(rR′

mn)′ − m2

r
z̃Rmn

]
dr

= −ac2A sinωt1̃mR
′
mn(a) + c2

∫ a

0

z̃

[
(rR′

mn)′ − m2

r
Rmn

)
dr (by 9.65b)

= −ac2A1̃mR
′
mn(a) sinωt+ c2

∫ a

0

z̃(−λ2
mnr)Rmn dr (by 9.67a)

= −ac21̃mAR
′
mn(a) sinωt− c2λ2

mn
˜̃z.

Thus, ˜̃z(λmn,m, t) must satisfy the ODE

d2˜̃z
dt2

+ c2λ2
mn

˜̃z = −ac2A1̃m sinωt, (9.68a)

subject to transforms of conditions 9.65c,d,

˜̃z(λmn,m, 0) = ˜̃
f(λmn,m), (9.68b)

˜̃zt(λmn,m, 0) = 0. (9.68c)
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A general solution of this ODE is

˜̃z(λmn,m, t) =




B0n cos cλ0nt+D0n sin cλ0nt+

2πac2AR′
0n(a) sinωt

ω2 − c2λ2
0n

, m = 0

Bmn cos cλmnt+Dmn sin cλmnt, m 6= 0
(9.69)

provided ω 6= cλ0n for any n. Discussion of this special case is given in Exercise 24.
Initial conditions 9.68b,c yield

˜̃z(λmn,m, t) =





˜̃f(λ0n, 0) cos cλ0nt+
2πAacR′

0n(a)
λ0n(ω2 − c2λ2

0n)
(cλ0n sinωt− ω sin cλ0nt), m = 0

˜̃f(λmn,m) cos cλmnt, m 6= 0.

(9.70)

Inverse transforms now give

z(r, θ, t) =
1
2π

∞∑

m=−∞

∞∑

n=1

˜̃z(λmn,m, t)Rmn(r)eimθ

=
1
2π

∞∑

n=1

[
˜̃
f(λ0n, 0) cos cλ0nt+

2πAacR′
0n(a)

λ0n(ω2 − c2λ2
0n)

(cλ0n sinωt− ω sin cλ0nt)
]
R0n(r)

+
1
2π

∞∑

m=−∞
m 6=0

∞∑

n=1

˜̃
f(λmn,m) cos cλmntRmn(r)eimθ. (9.71)

We reduce the second double summation by noting that λ−mn = λmn, R−mn(r) =

Rmn(r), and ˜̃
f(λ−mn,−m) = ˜̃

f(λmn,m), (the complex conjugate of ˜̃
f(λmn,m)).

Then

z(r, θ, t) =
1
2π

∞∑

n=1

[
˜̃f(λ0n, 0) cos cλ0nt+

2πAacR′
0n(a)

λ0n(ω2 − c2λ2
0n)

(cλ0n sinωt− ω sin cλ0nt)
]
R0n(r)

+
1
2π

∞∑

m=1

∞∑

n=1

[
˜̃
f(λmn,m)eimθ + ˜̃

f(λmn,m)e−imθ

]
cos cλmntRmn(r)

or,

z(r, θ, t) =
1
2π

∞∑

n=1

[
˜̃
f(λ0n, 0) cos cλ0nt+

2πAacR′
0n(a)

λ0n(ω2 − c2λ2
0n)

(cλ0n sinωt− ω sin cλ0nt)
]
R0n(r)

+
1
π

∞∑

m=1

∞∑

n=1

Re[˜̃f(λmn,m)eimθ] cos cλmntRmn(r).• (9.72)

Our final example is a potential problem.

Example 9.7 Find the potential inside a sphere if the potential on the sphere is only a function
g(φ) of angle φ and the region contains a constant charge with density σ.

Solution The boundary value problem is
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∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂V

∂φ

)
= −σ

ε
, 0 < r < a, 0 < φ < π, (9.73a)

V (a, φ) = g(φ), 0 < φ < π. (9.73b)

To remove φ from the problem, we use the Legendre transform

f̃(n) =
∫ π

0

sinφf(φ)Φn(φ) dφ (9.74)

where Φn(φ) =
√

(2n+ 1)/2Pn(cosφ) are orthonormal eigenfunctions of the Sturm-
Liouville system

(sinφΦ′)′ + n(n+ 1) sinφΦ = 0, 0 < φ < π, (9.75)

(the system that would result were separation of variables applied to the homoge-
neous version of 9.73a). Application of this transform to the PDE and integration
by parts give

d2Ṽ

dr2
+

2
r

dṼ

dr
+
σ

ε
1̃n =

−1
r2

∫ π

0

∂

∂φ

(
sinφ

∂V

∂φ

)
Φn(φ) dφ

=
−1
r2

[{
sinφ

∂V

∂φ
Φn

}π

0

−
∫ π

0

sinφ
∂V

∂φ
Φ′

n dφ

]

=
1
r2

[{
sinφV Φ′

n

}π

0
−
∫ π

0

V (sinφΦ′
n)′ dφ

]

=
−1
r2

∫ π

0

V [−n(n+ 1) sinφΦn] dφ (by 9.75)

=
n(n+ 1)

r2
Ṽ .

Thus, Ṽ (r, n) must satisfy the ODE

d2Ṽ

dr2
+

2
r

dṼ

dr
− n(n+ 1)

r2
Ṽ = −σ

ε
1̃n, (9.76a)

where

1̃n =
∫ π

0

sinφΦn(φ) dφ =
{√

2, n = 0
0, n > 0

(9.76b)

subject to

Ṽ (a, n) = g̃(n). (9.76c)

A general solution of the ODE is

Ṽ (r, n) =




A0 +

B0

r
−

√
2σr2

6ε
, n = 0

Anr
n +

Bn

rn+1
, n > 0.

(9.77)

The only bounded solution satisfying 9.76c is
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Ṽ (r, n) =




g̃(0) +

√
2σ
6ε

(a2 − r2), n = 0

g̃(n)
an

rn, n > 0,
(9.78)

and therefore

V (r, φ) =
∞∑

n=0

Ṽ (r, n)Φn(φ)

=
g̃(0)√

2
+
σ

6ε
(a2 − r2) +

∞∑

n=1

( r
a

)n

g̃(n)Φn(φ)

=
σ

6ε
(a2 − r2) +

∞∑

n=0

( r
a

)n

g̃(n)Φn(φ). (9.79)

In retrospect, notice that σ(a2 − r2)/(6ε) satisfies 9.73a and a homogeneous 9.73b,
while the series satisfies 9.73b with a homogeneous 9.73a.•

EXERCISES 9.2

Part A Heat Conduction

1. Solve Example 9.5 if the temperature of the edge r = a is a function f(t) of time.

2. (a) Solve Example 9.5 if heat is transferred to the plate along its edge r = a at a rate f1(t)
W/m2 equally all around.

(b) Simplify the solution when f1(t) = Q, a constant. Hint: You will want to consider the finite
Hankel transform of the function h(r) = 2r2 − a2.

(c) Can you solve part (b) by splitting off a steady-state solution?

3. (a) A very long cylinder of radius a is initially at temperature f(r). For time t > 0, its edge
r = a is held at 0◦C. If heat generation within the cylinder is g(r, t), find the temperature
for 0 ≤ r < a and t > 0.

(b) Simplify the solution in part (a) when f(r) ≡ 0 and g(r, t) is constant.
(c) Solve the problem in part (b) by splitting off the steady-state solution.

4. Repeat parts (a) and (b) of Exercise 3 if the boundary r = a is insulated.

5. Repeat Exercise 3 if heat is transferred at r = a to a medium at constant temperature Um

according to Newton’s law of cooling.

6. (a) A sphere of radius a is initially at temperature f(r). For t > 0, its surface is held at
temperature f1(t), and heat is generated at a rate g(r, t). Find the temperature in the
sphere. (See Exercise 8 in Section 8.4 for the appropriate finite Fourier transform.)

(b) Simplify the solution when f(r) ≡ 0, f1(t) ≡ 0, and g(r, t) is constant.
(c) Solve the problem in part (b) by splitting off the steady-state solution.
(d) Simplify the solution in part (a) when f(r) ≡ 0, g(r, t) ≡ 0, and f1(t) is constant.
(e) Solve the problem in part (d) by splitting off the steady-state solution.

7. (a) A sphere of radius a is initially at temperature f(r). For t > 0, heat is added to its surface
at a rate f1(t) W/m2, and heat is generated at a rate g(r, t) W/m3. Find the temperature
in the sphere. (See Exercise 8 in Section 8.4 for the appropriate finite Fourier transform.)
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(b) Simplify the solution when f(r) ≡ 0, g(r, t) ≡ 0, and f1(t) is constant.
(c) Can you solve part (b) by splitting off a steady-state solution?

8. A cylinder of length L and radius a is initially at temperature f(r, z), 0 ≤ r ≤ a, 0 ≤ z ≤ L.
For time t > 0, the face z = 0 is insulated, face z = L has a time-dependent temperature f1(t),
and the curved surface r = a has temperature f2(t). Find the temperature of the cylinder for
t > 0.

9. A hemisphere x2 + y2 + z2 ≤ a2, z ≥ 0, is initially at temperature zero throughout. For time
t > 0, its base z = 0 continues to be held at temperature zero, but the surface of the hemisphere
has a time-dependent temperature f1(t). Find a series representation for temperature inside the
hemisphere. (Hint: You will need the eigenfunctions of Exercise 5 in Section 8.6 and Exercise
9 in Section 8.4.)

10. Solve Example 9.5 if the constant temperature on r = a is replaced by f(θ) = sin θ.

11. (a) Solve Example 9.5 when the initial temperature of the plate is f(r, θ).
(b) Does the solution reduce to that of Example 9.5 when f(r, θ) = 0?

12. Solve parts (a) and (b) of Exercise 2 when the initial temperature of the plate is f(r, θ).

13. Solve Example 9.5 if heat is exchanged with a constant-temperature environment along the edge
r = a according to Newton’s law of cooling and the initial temperature of the plate is f(r, θ).

14. A very long cylinder of radius r1 is at uniform temperature Ui. At time t = 0, a long hollow
cylinder with inner radius r1 and outer radius r2 is fitted tightly over the smaller cylinder. The
temperature of the hollow cylinder is uniformly Uo and both cylinders are of the same material.
The outer surface of the hollow cylinder is kept at temperature Uo. Find temperatures in the
cylinders for t > 0.

15. (a) A hollow sphere has inner radius r1 and outer radius r2. Its initial temperature is f(r). For
time t > 0, its inner surface has temperature f1(t) and its outer surface has temperature
f2(t). Find the temperature of the hollow sphere when t > 0 if heat generation g(r, t) is
only a function of r and t. (See Exercise 10 in Section 8.4 for the appropriate finite Fourier
transform.)

(b) Simplify the solution when f(r) = f1(t) = f2(t) = 0 and g(r, t) is a constant g.
(c) Solve the problem in part (b) by splitting off the steady-state solution.
(d) Simplify the solution in part (a) when f(r) = g(r, t) = 0, f1(t) = f1, and f2(t) = f2, where

f1 and f2 are constants.
(e) Solve the problem in part (d) by splitting off the steady-state solution.

16. (a) A hollow sphere has inner radius r1 and outer radius r2. Its initial temperature is f(r). For
time t > 0, its outer surface has temperature f2(t) and heat is added to its inner surface at
rate Q(t). Find the temperature of the hollow sphere when t > 0 if heat generation g(r, t) is
only a function of r and t. (See Exercise 10 in Section 8.4 for the appropriate finite Fourier
transform.)

(b) Simplify the solution when g(r, t) = f(r) = f2(t) = 0 and Q(t) is a constant Q.
(c) Solve the problem in part (b) by splitting off the steady-state solution.

Part B Vibrations

17. A circular membrane of radius a is initially at rest with displacement f(r). The boundary of
the membrane is fixed on the xy-plane. If a constant vertical force per unit area F acts at all
points on the membrane, find subsequent displacements of points on the membrane.
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18. Repeat Exercise 17 if the force per unit area F is proportional to the square of the distance
from the centre of the membrane.

19. Repeat Exercise 24 in Section 9.1 if at the instant the membrane strikes the xy-plane, it is
hanging in its equilibrium position were gravity and tension the only forces acting on the
membrane. Take gravity into account in the vibrations.

20. (a) Find the displacement of a circular membrane of radius a that is initially (t = 0) at rest, but
is displaced according to f(r, θ), the boundary of which is displaced permanently according
to f1(θ).

(b) Simplify the solution when f(r, θ) and f1(θ) are independent of θ.
(c) Solve the problem in part (b) by splitting off the static deflection solution.

21. Solve the following nonhomogeneous version of Exercise 26 in Section 9.1:

∂2y

∂t2
= g

∂

∂x

(
x
∂y

∂x

)
+
F (x, t)
ρ

, 0 < x < L, t > 0,

y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = h(x), 0 < x < L.

22. A circular membrane of radius a is initially at rest on the xy-plane. For time t > 0, its edge is
forced to undergo periodic oscillations described by A sinωt, A a constant. Use a finite Hankel
transform to find its displacement as a function of r and t. Include a discussion of resonance.

23. A circular membrane of radius a is initially at rest on the xy-plane. For time t > 0, a periodic
vertical force per unit area F0 sinωt, F0 a constant, acts at every point on the membrane.
(a) If the edge r = a of the plate is fixed on the xy-plane, find a series representiation for

displacements of the membrane in the non-resonant case.
(b) Discuss the resonant case.

24. Discuss the solution of Example 9.6 when ω = cλ0k for some k.

25. Do the solutions of Example 9.6 and Exercise 24 reduce to those of Exercise 22 when f(r, θ) ≡ 0?

Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

26. A infinitely long solid cylinder is bounded by the planes θ = 0 and θ = β and the curved
surface r = a (0 ≤ θ ≤ β). A constant charge density σ exists inside the cylinder. If the
three bounding surfaces are all held at potential zero, find the potential interior to the cylinder.
Special consideration is required for the cases (a) β = π/2, (b) π, and (c) 3π/2.

27. An infinite cylinder of radius a has charge density krn, k > 0 and n > 0 constants. If the
surface of the cylinder has potential f(θ), what is the interior potential?

28. A hemisphere x2 + y2 + z2 ≤ a2, z ≥ 0, has a constant charge density σ throughout. If
potentials on the rounded and flat surfaces are both specified constants, but different ones, find
the potential inside. (You will need the results of Exercise 5 in Section 8.6 and Exercise 8 in
Section 8.5.)

29. A thin plate is in the shape of a sector of a circle bounded by the lines θ = 0 and θ = β < π
and the arc r = a, 0 ≤ θ ≤ β. Edge θ = β is insulated, as are the top and bottom of the plate.
Heat is removed from the plate along the edge θ = 0 at a constant rate q > 0 W/m2. Along the
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curved edge r = a, heat is removed at a constant rate Q > 0 W/m2. Heat is being generated
at each point in the plate at a uniform rate of g W/m3.
(a) Formulate the boundary value problem for steady-state temperature in the plate. (See

Exercises 16 and 17 in Section 2.2 for the boundary conditions along θ = 0 and r = a.)
What condition must q, Q, and g satisfy?

(b) Solve the problem in part (a). To simplify the solution, you will need the finite Fourier

transform of the function h(θ) =
1
β
− cos (β − θ)

sin β
.

30. (a) Repeat Exercise 48 in Section 9.1 if there is a heat source g(z).
(b) Simplify the solution when f(z) = U0, a constant, and g(z) = G, also a constant.
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CHAPTER 10 LAPLACE TRANSFORMS

§10.1 Introduction

The Laplace transform is a mathematical operation that replaces differentiation
problems with algebraic ones, an essential simplification for ordinary and partial
differential equations. For partial differential equations, Fourier transforms are as-
sociated with space variables; the Laplace transform is associated with time. In this
section we give a brief review of the transform and some of its simple properties;
the complex inversion integral is developed in Section 10.3, and the transform is
applied to initial boundary values problems in Sections 10.2, 10.4, and 10.5.

The Laplace transform of a function f(t) is a function denoted by f̃(s) or
L{f(t)}(s) with values given by

f̃(s) = L{f(t)}(s) =
∫ ∞

0

e−stf(t) dt, (10.1)

provided the improper integral converges. When f(t) is piecewise continuous on
every finite interval 0 ≤ t ≤ T , and f(t) is of exponential order* α, its Laplace
transform exists for s > α (see Exercise 34 for verification).

The Laplace transforms contained in Table 10.1 are fundamental to applications
of the transform to ordinary and partial differential equations; more extensive tables
are contained in many mathematical references. All entries are straightforward
applications of definition 10.1.

f(t) f̃(s) f(t) f̃(s)

tn
n!
sn+1

eat 1
s− a

sin at
a

s2 + a2
cosat

s

s2 + a2

t sin at
2as

(s2 + a2)2
t cosat

s2 − a2

(s2 + a2)2

sinh at
a

s2 − a2
cosh at

s

s2 − a2

t sinh at
2as

(s2 − a2)2
t cosh at

s2 + a2

(s2 − a2)2

Table 10.1

* A function f(t) is said to be of exponential order α, written O(eαt), if there exist
constants T and M such that |f(t)| < Meαt for all t > T . For example, e2t is
O(e2t), sin t is O(e0t), and tn, n a nonnegative integer, is O(eεt) for arbitrarily small
ε > 0.
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When f̃(s) is the Laplace transform of f(t), we call f(t) the inverse Laplace
transform of f̃(s) and write

f(t) = L−1{f̃(s)}(t). (10.2)

Because the Laplace transform is an integral transform, f̃(s) is unique for
given f(t), but there exist many functions f(t) having the same transform f̃(s).
For example, the functions

f(t) = t2 and g(t) =

{ 0, t = 1
t2, t 6= 1, 2
0, t = 2

which are identical except for their values at t = 1 and t = 2, both have the same
transform 2/s3. What we are saying is that because the Laplace transform is not a
one-to-one operation, the inverse transform L−1{f̃(s)} in equation 10.2 cannot be a
true inverse. In Section 10.3 we derive a formula for calculating inverse transforms,
and this formula always yields a continuous function f(t), if this is possible. In
the event that this is not possible, the formula gives a piecewise continuous func-
tion whose value is the average of right- and left-limits at discontinuities, namely,
[f(t+) + f(t−)]/2. This is reminiscent of equation 5.13 in Section 5.2 for gen-
eralized Fourier series. The importance, then, of this formula is that it defines
f(t) = L−1{f̃(s)} in a unique way. Other functions that have the same transform
f̃(s) differ from f(t) only in their values at isolated points; they cannot differ from
f(t) over an entire interval a ≤ t ≤ b. In compliance with this anticipated formula,
we adopt the procedure of always choosing a continuous function L−1{f̃(s)}(t) for
given f̃(s) or, when this is not possible, a piecewise continuous function.

The Laplace transform and its inverse are linear operators. Some of their simple
properties are summarized below.

One of two shifting properties is

L{eatf(t)}(s) = f̃(s− a), (10.3a)
L−1{f̃(s− a)}(t) = eatf(t). (10.3b)

(See Exercise 1 for proof of this result.) It states that multiplication by an exponen-
tial function eat in the time domain is equivalent to a translation in the s domain.
For example, since L{cos 2t} = s/(s2 + 4), property 10.3a implies that

L{e3t cos 2t} =
s− 3

(s− 3)2 + 4
.

The other shifting property is

L{f(t)h(t− a)}(s) = e−asL{f(t+ a)}(s), (10.4a)
L−1{e−asf̃(s)}(t) = f(t− a)h(t− a), (10.4b)

where h(t− a) is the Heaviside unit step function. It has value 0 when t < a and
value 1 when t > a. (See Exercise 2 for proof of these properties.) The second of
these implies that multiplication by an exponential function e−as in the s domain is
equivalent to a translation in the time domain. Graphs of f(t) and f(t− a)h(t− a)
are shown in Figure 10.1.
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t

y

y f t= ( )

t

y

y f t= ( )

a

a h- t( )a-

Figure 10.1a Figure 10.1b

Example 10.1 Find the Laplace transform for the ramp
function in Figure 10.2.

Solution The function is continuous,
but because it is defined differently on
the intervals 0 ≤ t ≤ 1, 1 < t ≤ 2, and
t > 2, it can be represented efficiently
in terms of Heaviside functions (except t

3

1 2

for its values at t = 1 and t = 2), Figure 10.2

f(t) = 3(t− 1)[h(t− 1) − h(t− 2)] + 3h(t− 2)
= 3(t− 1)h(t− 1) + (6 − 3t)h(t− 2).

We can now use property 10.4a to find its Laplace transform,

F (s) = e−sL{3t}+ e−2sL{6 − 3(t+ 2)} =
3e−s

s2
− e−2s

(
3
s2

)
.•

Example 10.2 Find the inverse transform for F (s) =
e−s

s2 − s
.

Solution Partial fractions give
1

s(s− 1)
=

1
s− 1

− 1
s
, and therefore

L−1

{
1

s(s− 1)

}
= et − 1.

Property 10.4b now gives L−1{F (s)} = (et−1 − 1)h(t− 1).•

Multiplication by tn

The following theorem indicates that multiplying a function f(t) by tn results in its
transform being differentiated n times.

Theorem 10.1 If f(t) is piecewise continuous on every finite interval and of exponential order α,
and n is a positive integer, then

L{tnf(t)}(s) = (−1)n dn

dsn
[L{f(t)}(s)], (10.5a)

L−1{f̃ (n)(s)}(t) = (−1)ntnL−1{f̃(s)}(t). (10.5b)

(See Exercise 3 for a proof.)
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Example 10.3 Confirm the Laplace transform for t sin at in Table 10.1.

Solution According to equation 10.5a,

L{t sin at} = − d

ds
[L{sin at}] = − d

ds

(
a

s2 + a2

)
=

2as
(s2 + a2)2

.•

Example 10.4 Find the inverse Laplace transform for f̃(s) =
s+ 1

(s2 + 2 + 5)2
.

Solution We note that
d

ds

(
1

s2 + 2s+ 5

)
=

−(2s+ 2)
(s2 + 2s+ 5)2

.

Consequently, using property 10.5b,

L−1

{
s+ 1

(s2 + 2s+ 5)2

}
= L−1

{
−1

2
d

ds

(
1

s2 + 2s+ 5

)}
= −1

2
(−t)L−1

{
1

s2 + 2s+ 5

}

=
t

2
L−1

{
1

(s+ 1)2 + 4

}
=
t

2
e−tL−1

{
1

s2 + 4

}
=
t

4
e−t sin 2t.•

Periodic Functions

When a function is periodic with period p, the improper integral in equation
10.1 may be replaced by an integral over 0 ≤ t ≤ p:

L{f(t)}(s) =
1

1− e−ps

∫ p

0

e−stf(t) dt. (10.6)

(See Exercise 4 for proof.)

Example 10.5 Find the Laplace transform of the function in Figure 10.3 with period 2.

Solution Using property 10.6,

F (s) =
1

1 − e−2s

∫ 2

0

(1− t)e−st dt.

Integration by parts gives

F (s) =
1

1 − e−2s

{
(t− 1)
s

e−st +
1
s2
e−st

}2

0

=
1 + e−2s

s(1− e−2s)
− 1
s2
.

We can avoid integration by parts by interpreting the integral over the interval
0 ≤ t ≤ 2 as the Laplace transform of the function in Figure 10.4. Its Laplace
transform is

L{(1− t)[h(t)− h(t− 2)]} = L{(1− t)h(t)}+ L{(t− 1)h(t− 2)}

=
1
s
− 1
s2

+ e−2sL{t+ 1}

=
1
s
− 1
s2

+ e−2s

(
1
s2

+
1
s

)
.

Hence,
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F (s) =
1

1 − e−2s

[
1
s
− 1
s2

+ e−2s

(
1
s2

+
1
s

)]
=

1 + e−2s

s(1− e−2s)
− 1
s2
.•

t

1

1 2 3

-1

t

1

1 2

-1

Figure 10.3 Figure 10.4

The following theorem and its corollary eliminate much of the work when
Laplace transforms are applied to initial boundary value problems.

Theorem 10.2 Suppose f(t) is continuous with a piecewise continuous first derivative on every
finite interval 0 ≤ t ≤ T . If f(t) is O(eαt), then L{f ′(t)} exists for s > α and

L{f ′(t)}(s) = sf̃(s)− f(0). (10.7a)

Proof If tj , j = 1, . . . , n denote the discontinuities of f(t) in 0 ≤ t ≤ T , then
∫ T

0

e−stf ′(t) dt =
n∑

j=0

∫ tj+1

tj

e−stf ′(t) dt,

where t0 = 0 and tn+1 = T . Since f ′(t) is continuous on each subinterval, we may
integrate by parts on each subinterval:

∫ T

0

e−stf ′(t) dt =
n∑

j=0

[{
e−stf(t)

}tj+1

tj

+ s

∫ tj+1

tj

e−stf(t) dt

]
.

Because f(t) is continuous, f(tj+) = f(tj−), j = 1, . . . , n, and therefore
∫ T

0

e−stf ′(t) dt = −f(0) + e−sT f(T ) + s

∫ T

0

e−stf(t) dt.

Thus,

L{f ′(t)}(s) =
∫ ∞

0

e−stf ′(t) dt = lim
T→∞

∫ T

0

e−stf ′(t) dt

= lim
T→∞

[
−f(0) + e−sT f(T ) + s

∫ T

0

e−stf(t) dt

]

= sf̃(s)− f(0) + lim
T→∞

e−sT f(T ),

provided the limit on the right exists. Since f(t) is O(eαt), there exist M and T
such that for t > T , |f(t)| < Meαt. Thus, for T > T ,

e−sT |f(T )| < e−sTMeαT = Me(α−s)T ,

which approaches zero as T approaches infinity (provided s > α). Consequently,
L{f ′(t)}(s) = sf̃(s)− f(0).
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This result is easily extended to second-order derivatives. The extension is
stated in the following corollary and is verifed in Exercise 5. For extensions when
f(t) is only piecewise continuous, see Exercise 36.

Corollary Suppose f(t) and f ′(t) are continuous and f ′′(t) is piecewise continuous on every
finite interval 0 ≤ t ≤ T . If f(t) and f ′(t) are O(eαt), then L{f ′′(t)} exists for
s > α, and

L{f ′′(t)}(s) = s2f̃(s)− sf(0)− f ′(0). (10.7b)

The following examples use these properties and at the same time indicate how
Laplace transforms reduce ordinary differential equations to algebraic problems.

Example 10.6 Solve the initial value problem

y′′ − 2y′ + y = 2tet, y(0) = y′(0) = 0.

Solution When we take Laplace transforms of both sides of the differential equa-
tion and use linearity of the operator,

L{y′′} − 2L{y′} + L{y} = 2L{tet}.

Properties 10.7a,b and 10.3a yield

[s2ỹ(s)− sy(0)− y′(0)]− 2[sỹ(s) − y(0)] + ỹ(s) =
2

(s− 1)2
.

We now use the initial conditions y(0) = y′(0) = 0,

s2ỹ − 2sỹ + ỹ =
2

(s− 1)2
,

and solve this equation for ỹ(s),

ỹ(s) =
2

(s− 1)4
.

The required function y(t) can now be obtained by taking the inverse Laplace trans-
form of ỹ(s),

y(t) = L−1

{
2

(s− 1)4

}
= 2L−1

{
1

(s− 1)4

}
(by linearity)

= 2etL−1

{
1
s4

}
(by 10.3b)

= 2et

(
t3

3!

)
(from Table 10.1)

=
1
3
t3et.•

Example 10.7 Solve the initial value problem

y′′ + 4y = 3 cos 2t h(t− π), y(0) = 1, y′(0) = 0.

Solution When we take the Laplace transform of both sides of the differential
equation and use the initial conditions,

[s2ỹ − s(1)− 0] + 4ỹ = 3L{cos 2t h(t− π)}.
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We now use property 10.4a,

(s2 + 4)ỹ = s+ 3e−πsL{cos 2(t+ π)} = s+ 3e−πsL{cos 2t} = s+
3e−πs

s2 + 4
.

When we divide by s2 + 4,

ỹ(s) =
3se−πs

(s2 + 4)2
+

s

s2 + 4
.

Since

L−1

{
s

(s2 + 4)2

}
=
t

4
sin 2t and L−1

{
s

s2 + 4

}
= cos 2t,

property 10.4b gives

y(t) =
3
4
(t− π) sin 2(t− π)h(t− π) + cos 2t =

3
4
(t− π) sin 2t h(t− π) + cos 2t.•

When solving ordinary differential equations by means of Laplace transforms,
considerable emphasis is placed on partial fraction decompositions of transform func-
tions ỹ(s), and rightly so, because for ODEs, transform functions are often rational
functions of s. Once the transform is decomposed into constituent fractions, and
provided the decomposition is not too complicated, inverse transforms of individual
terms can be located in tables. Unfortunately, transforms arising from PDEs are
seldom rational functions, and there is little point in our giving a detailed discussion
of partial fractions.

It is often necessary in applications to find the inverse transform of the product
of two functions f̃(s)g̃(s) when inverse transforms of f̃(s) and g̃(s) are known.
Convolutions are defined for this purpose. The convolution of two functions f(t)
and g(t) is defined as

f(t) ∗ g(t) = (f ∗ g)(t) =
∫ t

0

f(u)g(t− u) du. (10.8)

Some of the properties of convolutions are developed in Exercise 6. The importance
of convolutions lies in the following theorem.

Theorem 10.3 If f(t) and g(t) are O(eαt) and piecewise continuous on every finite interval 0 ≤ t ≤
T , then

L{f ∗ g} = L{f(t)}L{g(t)}, s > α. (10.9a)

Proof If f̃(s) = L{f(t)} and g̃(s) = L{g(t)}, then

f̃(s)g̃(s) =
∫ ∞

0

e−suf(u) du
∫ ∞

0

e−sτg(τ) dτ =
∫ ∞

0

∫ ∞

0

e−s(u+τ)f(u)g(τ) dτ du.

Suppose we change variables of integration in the inner integral with respect to τ
by setting t = u+ τ . Then

f̃(s)g̃(s) =
∫ ∞

0

∫ ∞

u

e−stf(u)g(t− u) dt du.

Now g(t) is defined only for t ≥ 0. If we set g(t) ≡ 0 for t < 0, we may write
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f̃(s)g̃(s) = lim
T→∞

∫ T

0

∫ ∞

0

e−stf(u)g(t− u) dt du.

We would like to interchange orders of integration, but to do so requires that the
inner integral converge uniformly with respect to u. To verify that this is indeed
the case, we note that since f(t) and g(t) are O(eαt) and piecewise continuous
on every finite interval 0 ≤ t ≤ T , there exists a constant M such that for all
t ≥ 0, |f(t)| ≤ Meαt and |g(t)| ≤ Meαt. For each u ≥ 0, we therefore have
|e−stf(u)g(t− u)| < M2e−steαueα(t−u) = M2e−t(s−α). Thus,
∣∣∣∣
∫ ∞

0

e−stf(u)g(t− u) dt
∣∣∣∣ < M2

∫ ∞

0

e−t(s−α)dt = M2

{
e−t(s−α)

α− s

}∞

0

=
M2

s− α
,

provided s > α, and the improper integral is uniformly convergent with respect
to u. The order of integration in the expression for f̃(s)g̃(s) may therefore be
interchanged, and we obtain

f̃(s)g̃(s) = lim
T→∞

∫ ∞

0

e−st

∫ T

0

f(u)g(t− u) du dt

= lim
T→∞

[∫ T

0

e−st

∫ T

0

f(u)g(t− u) du dt+
∫ ∞

T

e−st

∫ T

0

f(u)g(t− u) du dt

]
.

Since
∣∣∣∣∣

∫ ∞

T

e−st

∫ T

0

f(u)g(t− u) du dt

∣∣∣∣∣ <
∫ ∞

T

∫ T

0

M2e−t(s−α)du dt

= M2T

{
e−t(s−α)

α− s

}∞

T

] =
M2Te−T (s−α)

s− α
,

provided s > α, it follows that

lim
T→∞

∫ ∞

T

e−st

∫ T

0

f(u)g(t− u) du dt = 0.

Further, due to the fact that g(t− u) = 0 for u > t, we may write, for T > t,
∫ T

0

e−st

∫ T

0

f(u)g(t− u) du dt =
∫ T

0

e−st

∫ t

0

f(u)g(t− u) du dt =
∫ T

0

e−stf ∗ g dt.

Thus,

f̃(s)g̃(s) = lim
T→∞

∫ T

0

e−stf ∗ g dt = L{f ∗ g}.

More important in practice is the inverse of equation 10.9a.

Corollary If L−1f̃(s)}(t) = f(t) and L−1{g̃(s)}(t) = g(t), where f(t) and g(t) are O(eαt) and
piecewise continuous on every finite interval, then

L−1{f̃(s)g̃(s)}(t) =
∫ t

0

f(u)g(t− u) du. (10.9b)
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As an example to illustrate this corollary, consider finding L−1{2/[s2(s2 +4)]}.
Since L−1{2/(s2 + 4)} = sin 2t and L−1{1/s2} = t, we can state that the inverse
transform of 2/[s2(s2 + 4)] is

L−1

{
2

s2(s2 + 4)

}
=
∫ t

0

u sin 2(t− u) du =
{
u

2
cos 2(t− u) +

1
4

sin 2(t− u)
}t

0

=
t

2
− 1

4
sin 2t.

Convolutions are particularly important in solving ODEs that contain unspec-
ified nonhomogeneities.

Example 10.8 Find the solution of the initial value problem

y′′ + 2y′ − y = f(t), y(0) = A, y′(0) = B

for arbitrary constants A and B and an arbitrary function f(t).

Solution When we take Laplace transforms,

[s2ỹ −As−B] + 2[sỹ −A] − ỹ = f̃(s),

and solve for ỹ(s),

ỹ(s) =
f̃(s)

s2 + 2s− 1
+
As+B + 2A
s2 + 2s− 1

.

To find the inverse transform of this function, we first note that

L−1

{
1

s2 + 2s− 1

}
= L−1

{
1

(s+ 1)2 − 2

}
= e−tL−1

{
1

s2 − 2

}
=

1√
2
e−t sinh

√
2t.

Convolution property 10.9b on the first term of ỹ(s) now yields

y(t) =
∫ t

0

f(u)
1√
2
e−(t−u) sinh

√
2(t− u) du+ L−1

{
A(s+ 1) + (B + A)

(s+ 1)2 − 2

}

=
1√
2

∫ t

0

f(u)e−(t−u) sinh
√

2(t− u) du+ e−tL−1

{
As+ (B +A)

s2 − 2

}

=
1√
2

∫ t

0

f(u)e−(t−u) sinh
√

2(t− u) du+ e−t

(
A cosh

√
2t+

B +A√
2

sinh
√

2t
)
.•

EXERCISES 10.1

1. (a) Verify shifting property 10.3.
(b) Use 10.3a and Table 10.1 to calculate Laplace transforms for the following:

(i) f(t) = t3e−5t (ii) f(t) = e−t cos 2t+ e3t sin 2t (iii) f(t) = eat cosh 4t− e−at sinh 4t

(c) Use 10.3b and Table 10.1 to calculate inverse Laplace transforms for the following:

(i) f̃(s) =
1

s2 − 2s+ 5
(ii) f̃(s) =

1√
s+ 3

(iii) f̃(s) =
s

s2 + 4s+ 1
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2. (a) Verify shifting property 10.4.
(b) Use 10.4a and Table 10.1 to calculate Laplace transforms for the following:

(i) f(t) =
{

0, 0 < t < 3
t− 2, t > 3 (ii) f(t) =

{
0, 0 < t < a
1, t > a

(iii) f(t) =
{

1, 0 < t < a
0, t > a

(iv) f(t) =

{ 0, 0 < t < a
1, a < t < b
0, t > b

(c) Use 10.4b and Table 10.1 to calculate inverse Laplace transforms for the following:

(i) f̃(s) =
e−2s

s2
(ii) f̃(s) =

e−3s

s2 + 1
(iii) f̃(s) =

se−5s

s2 − 2

3. Verify property 10.5.

4. (a) Verify equation 10.6.
(b) Find Laplace transforms for the following functions:

(i) f(t) = t, 0 < t < a, f(t+ a) = f(t)

(ii) f(t) =
{

1, 0 < t < a
−1, a < t < 2a , f(t+ 2a) = f(t)

(iii) f(t) = | sin at|

5. Verify equation 10.7b.

6. Verify the following properties for convolutions:

f ∗ g = g ∗ f (10.10a)
f ∗ (kg) = (kf) ∗ g = k(f ∗ g), k = constant, (10.10b)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (10.10c)
f ∗ (g + h) = f ∗ g + f ∗ h (10.10d)

In Exercises 7–10 use convolutions to find the inverse transform for the function.

7. f̃(s) =
1

s(s+ 1)
8. f̃(s) =

1
(s2 + 1)(s2 + 4)

9. f̃(s) =
s

(s+ 4)(s2 − 2)
10. f̃(s) =

s

(s2 − 4)(s2 − 9)
In Exercises 11–16 find the Laplace transform of the function.

11. f(t) =
{

2t, 0 ≤ t ≤ 1
t, t > 1

12. f(t) =
{
t2, 0 ≤ t ≤ 1
2t, t > 1

13. f(t) =
{
t, 0 < t < a
2a− t, a < t < 2a , f(t+ 2a) = f(t)

14. f(t) =
{

1, 0 < t < a
0, a < t < 2a , f(t+ 2a) = f(t)

15. f(t) =
{

0, 0 < t < a
1, t > a

16. f(t) =

{ 0, 0 < t < a
1, a < t < a+ 1
0, t > a+ 1
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In Exercises 17–26 find the inverse Laplace transform for the function.

17. f̃(s) =
s

s2 − 3s+ 2
18. f̃(s) =

4s+ 1
(s2 + s)(4s2 − 1)

19. f̃(s) =
e−3s

s+ 5
20. f̃(s) =

e−2s

s2 + 3s+ 2

21. f̃(s) =
1

s3 + 1
22. f̃(s) =

5s− 2
3s2 + 4s+ 8

23. f̃(s) =
e−s(1− e−s)
s(s2 + 1)

24. f̃(s) =
s

(s+ 1)5

25. f̃(s) =
s2 + 2s+ 3

(s2 + 2s+ 2)(s2 + 2s+ 5)
26. f̃(s) =

s2

(s2 − 4)2

In Exercises 27–33 solve the differential equation.

27. y′′ + 2y′ − y = et, y(0) = 1, y′(0) = 2

28. y′′ + y = 2e−t, y(0) = y′(0) = 0

29. y′′ + 2y′ + y = t, y(0) = 0, y′(0) = 1

30. y′′′ − 3y′′ + 3y′ − y = t2et, y(0) = 1, y′(0) = 0, y′′(0) = −2

31. y′′ + 9y = cos 2t, y(0) = 1, y(π/2) = −1

32. y′′′ − 3y′′ + 3y′ − y = t2et

33. y′′ − a2y = f(t)

34. Verify that the Laplace transform of a function f(t) that is piecewise continuous on every finite
interval 0 ≤ t ≤ T and is O(eαt) exists for s > α.

35. (a) Prove that when n is a nonnegative integer, tn is O(eεt) for every ε > 0.
(b) Prove that when f(t) is O(eαt), tnf(t) is O(e(α+ε)t) for every ε > 0.

36. (a) Let f(t) be O(eαt) and be continuous for t ≥ 0 except for a finite discontinuity at t = t0 > 0;
and let f ′(t) be piecewise continuous on every finite interval 0 ≤ t ≤ T . Show that

L{f ′(t)} = sf̃(s)− f(0)− e−st0 [f(t0+) − f(t0−)].

(b) What is the result in part (a) if t0 = 0?

37. Let f(t) and f ′(t) be O(eαt), let f ′(t) be piecewise continuous on every finite interval 0 ≤ t ≤ T ,
and let f(t) have only a finite number of finite discontinuities for t ≥ 0. Verify the initial value
theorem,

lim
s→∞

sf̃(s) = lim
t→0+

f(t).

Assume the result that lim
s→∞

f̃(s) = 0 for functions that are piecewise continuous and of expo-
nential order.
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§10.2 Laplace Transform Solutions for Problems on Unbounded Domains

In this section we apply Laplace transforms to initial boundary value problems on
unbounded domains. Such problems do not require the complex inversion formula of
Section 10.3. We begin with a heat conduction problem on a semi-infinite interval.

Example 10.9 Solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0, (10.11a)

U(0, t) = U, t > 0, (10.11b)
U(x, 0) = 0, x > 0, (10.11c)

for temperature in a semi-infinite rod that is initially at temperature 0◦C. For time
t > 0, its end x = 0 is held at constant temperature U .

Solution When we take Laplace transforms of the PDE and use initial condition
10.11c, we obtain

sŨ = kL
{
∂2U

∂x2

}
.

Since the integration with respect to t in the Laplace transform and the differenti-
ation with respect to x are independent, we interchange the order of operations on
the right,

sŨ = k
∂2Ũ

∂x2
.

Because only derivatives with respect to x remain, we replace the partial derivative
with an ordinary derivative,

d2Ũ

dx2
− s

k
Ũ = 0, x > 0. (10.12a)

This ordinary differential equation is subject to the transform of condition 10.11b,

Ũ(0, s) =
U

s
. (10.12b)

For problems on finite domains, we have found it convenient to express general
solutions of equations like 10.12a in terms of hyperbolic functions. On infinite and
semi-infinite intervals, it is advantageous to use exponential functions,

Ũ(x, s) = Ae
√

s/kx +Be−
√

s/kx. (10.13)

Because U(x, t) must remain bounded as x becomes infinite, so also must Ũ (x, s).
We therefore set A = 0, in which case condition 10.12b requires B = U/s. Thus,

Ũ(x, s) =
U

s
e−

√
s/kx. (10.14)

The inverse Laplace transform of this function is found in tables

U(x, t) = UL−1

{
e−

√
s/kx

s

}
= U erfc

(
x

2
√
kt

)
, (10.15)
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where erfc(x) is the complementary error function

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−u2
du. (10.16)

Notice that for any x > 0 and any t > 0, temperature U(x, t) is positive. This indi-
cates that the abrupt change in temperature at the end x = 0 from 0◦C to U is felt
instantaneously at every point in the rod. In other words, energy is “transmitted”
infinitely fast along the rod, a property of the heat equation that we mentioned in
Section 6.6.•

When U(0, t) is a function of time in this example, say U(0, t) = f1(t), transform
10.14 is replaced by

Ũ (x, s) = f̃1(s)e−
√

s/kx. (10.17)

Because L−1{e−a
√

s} = [a/(2
√
πt3)]e−a2/(4t), it follows by convolution property

10.9b that

U(x, t) =
∫ t

0

f1(t− u)
x

2
√
kπu3

e−x2/(4ku)du

=
x

2
√
kπ

∫ t

0

u−3/2f1(t− u)e−x2/(4ku)du (10.18a)

or, alternatively, that

U(x, t) =
x

2
√
kπ

∫ t

0

(t− u)−3/2f1(u)e−x2/[4k(t−u)]du. (10.18b)

In the next example we illustrate how a semi-infinite string falling under gravity
reacts to one end being fixed.

Example 10.10 A semi-infinite string is supported from below so that it lies motionless on the x-
axis. At time t = 0, the support is removed and gravity is permitted to act on the
string. If the end x = 0 is fixed at the origin, find the displacement of the string.

Solution The initial boundary value problem is

∂2y

∂x2
= c2

∂2y

∂t2
− g, x > 0, t > 0, (10.19a)

y(0, t) = 0, t > 0, (10.19b)
y(x, 0) = 0, x > 0, (10.19c)
yt(0, t) = 0, x > 0, (10.19d)

where g = 9.81. When we apply the Laplace transform to the PDE and use the
initial conditions,

s2ỹ = c2
d2ỹ

dx2
− g

s
.

Thus, ỹ(x, s) must satisfy the ODE

d2ỹ

dx2
− s2

c2
ỹ =

g

c2s
, x > 0, (10.20a)
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subject to the transform of condition 10.19b,

ỹ(0, s) = 0. (10.20b)

A general solution of ODE 10.20a is

ỹ(x, s) = Aesx/c +Be−sx/c − g

s3
.

For this function to remain bounded as x → ∞, we must set A = 0, in which case
boundary condition 10.20b requires B = g/s3. Hence,

ỹ(x, s) = − g

s3
(1− e−sx/c). (10.21)

The inverse transform of this function is

y(x, t) = −gt
2

2
+
g

2

(
t− x

c

)2

h
(
t− x

c

)
, (10.22)

where h(t− x/c) is the Heaviside unit step function. What this says is that a point
x in the string falls freely under gravity for 0 < t < x/c, after which it falls with
constant velocity −gx/c [since for t > x/c, y(x, t) = (g/2)(−2xt/c + x2/c2)]. A
picture of the string at any given time t0 is shown in Figure 10.5. It is parabolic
for 0 < x < ct0 and horizontal for x > ct0. As t0 increases, the parabolic portion
lengthens and the horizontal section drops.•

y

xct

gt
y gx

c x ct

y0

1
2 0

2

= 2 2 )( -2 0

= gt1
2 0

2

-
-

Figure 10.5

EXERCISES 10.2
Part A Heat Conduction

1. (a) Solve the following heat conduction problem when heat flow across the end x = 0 of the
rod is specified,

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

Ux(0, t) = −κ−1Q0 = constant, t > 0,
U(x, 0) = 0, x > 0.

(b) Plot the solution on the interval 0 ≤ x ≤ 5 with k = 10−6, κ = 10, and Q0 = 1000 for
t = 105 and t = 106.

(c) Describe the temperature of the left end of the rod.

2. Show that every solution U(x, t) of the one-dimensional heat conduction equation

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t),



398 SECTION 10.2

which at time t = 0 has value U(x, 0) = f(x), must have a Laplace transform of the form

Ũ(x, s) = Ae
√

s/kx +Be−
√

s/kx −
√
k

s

∫ x

0

[
f(u)
k

+
g̃(u, s)
κ

]
sinh

√
s

k
(x− u) du,

where A and B are independent of x. In Exercises 3–6 we use this result to solve various heat
conduction problems on infinite and semi-infinite intervals.

3. (a) Use the result of Exercise 2 to solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

U(0, t) = f1(t), t > 0,
U(x, 0) = U0 = constant, x > 0.

(b) Simplify the solution when f1(t) = U = constant.

4. (a) Use the result of Exercise 2 to solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

∂U(0, t)
∂x

= −f1(t)
κ

, t > 0,

U(x, 0) = U0 = constant, x > 0.

(b) Simplify the solution when f1(t) = Q0 = constant.

5. (a) Use the result of Exercise 2 to solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

−κ∂U(0, t)
∂x

+ µU(0, t) = µf1(t), t > 0,

U(x, 0) = 0, x > 0.

(b) Simplify the solution when f1(t) = Um = constant.

6. (a) Use the result of Exercise 2, and the fact that the transform must remain bounded as
x→ ±∞, to show that the transform of the function satisfying the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, −∞ < x <∞, t > 0,

U(x, 0) = U0h(x), −∞ < x <∞,

must be of the form

Ũ(x, s) =




Ae

√
s/kx, x < 0

Be−
√

s/kx +
U0

2s
(2 − e−

√
s/kx), x > 0

.

(b) By demanding that the expression for Ũ(x, s) and its first derivative with respect to x agree
at x = 0, show that

Ũ(x, s) =
U0

2s

{
e
√

s/kx, x < 0
2 − e−

√
s/kx, x ≥ 0

.
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(c) Find the inverse transform U(x, t).

Part B Vibrations

7. Show that every solution y(x, t) of the one-dimensional wave equation

∂2y

∂t2
= c2

∂2y

∂x2
+
F (x, t)
ρ

that also satisfies the initial conditions
y(x, 0) = f(x), yt(x, 0) = g(x)

must have a Laplace transform of the form

ỹ(x, s) = Aesx/c + Be−sx/c − 1
cs

∫ x

0

[
sf(u) + g(u) +

F̃ (u, s)
ρ

]
sinh

s

c
(x− u) du,

where A and B are independent of x. In Exercises 8–9 we use this result to solve vibration
problems on semi-infinite intervals.

8. At time t = 0 a semi-infinite taut string lies motionless along the positive x-axis. If its left end
is subjected to vertical motion described by f1(t) for t > 0, find its subsequent displacements.

9. Solve Exercise 8 if f1(t) represents a force on the end x = 0 of the string; that is, replace the
Dirichlet condition with the Neumann condition ∂y(0, t)/∂x = −τ−1f1(t).
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§10.3 The Complex Inversion Integral

Finding the inverse Laplace transform in Section 10.1 was a matter of organization
and tables; we used properties 10.3b and 10.4b (and partial fractions) to organize
a given transform f̃(s) into a form for which the inverse transform could be found
in tables. In Section 10.2, for PDEs on infinite and semi-infinite intervals, tables
and convolutions were once again prominent. For PDEs on finite domains, however,
transform functions are so complicated that their inverses can seldom be found in
tables. What we need, then, is a direct method for inverting the Laplace transform.
In this section we use the theory of functions of a complex variable to derive such
a formula. Appendix D gives a review of those aspects of the theory of complex
functions necessary for the remainder of this chapter and the next one. The reader
could either take the opportunity to review this material now, or, to refer to it when
needed.

We first note that the results in equations 10.3–10.9 remain valid when s is com-
plex; the complex derivation may be somewhat different from its real counterpart,
but each result is valid when s is complex.

The following theorem shows that Laplace transforms are analytic functions of
the complex variable s.

Theorem 10.4 If f(t) is O(eαt) and piecewise continuous on every finite interval 0 ≤ t ≤ T , the
Laplace transform f̃(s) = f̃(x+ yi) of f(t) is an analytic function of s in the half-
plane x > α.

Proof If the real and imaginary parts of f̃(s) are denoted by u(x, y) and v(x, y),

f̃(s) = u+ vi =
∫ ∞

0

e−(x+yi)tf(t) dt,

then

u(x, y) =
∫ ∞

0

e−xt cos ytf(t) dt, v(x, y) =
∫ ∞

0

−e−xt sin ytf(t) dt.

To verify the analyticity of f̃(s), we show that u(x, y) and v(x, y) have continuous
first partial derivatives that satisfy the Cauchy-Riemann equations when x > α (see
equations D.2). Now,

{
|e−xt cos ytf(t)|
|e−xt sin ytf(t)|

}
≤ e−xt|f(t)|,

and since f(t) is O(eαt), there exist constants M and T such that for all t > T ,
|f(t)| < Meαt. Consequently, whenever x ≥ α′ > α and t > T ,

{
|e−xt cos ytf(t)|
|e−xt sin ytf(t)|

}
< e−xtMeαt ≤Me(α−α′)t,

and
{
|u(x, y)|
|v(x, y)|

}
<

∫ T

0

e−xt|f(t)| dt+
∫ ∞

T

Me(α−α′)tdt

≤
∫ T

0

e−α′t|f(t)| dt+M

{
e(α−α′)t

α− α′

}∞

0
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=
∫ T

0

e−α′t|f(t)| dt+ M

α− α′ .

Thus, the integrals representing u and v converge absolutely and uniformly with
respect to x and y in the half-plane x ≥ α′ > α. Since f(t) is piecewise continuous,
u and v are continuous functions for x ≥ α′. Now,

∫ ∞

0

∂

∂x
[e−xt cos ytf(t)] dt =

∫ ∞

0

−te−xt cos yt f(t) dt

and
∫ ∞

0

∂

∂y
[−e−xt sin ytf(t)] dt =

∫ ∞

0

−te−xt cos yt f(t) dt.

Since tf(t) is O(e(α+ε)t) for any ε > 0 and is piecewise continuous on every finite
interval 0 ≤ t ≤ T , a similar argument to that above shows that this integral
is absolutely and uniformly convergent with respect to x and y for x ≥ α′ > α.
Because α′ > α is arbitrary, it follows that this integral converges to a continuous
function that is equal to both ∂u/∂x and ∂v/∂y for x > α. We have shown then,
that the first of the Cauchy-Riemann equations ∂u/∂x = ∂v/∂y is satisfied for
x > α. In a similar way, we can show that ∂u/∂y = −∂v/∂x, and therefore f̃(s) is
analytic for x > α.

To obtain the complex inversion integral for L−1{f̃(s)}(t), we use the extension
of Cauchy’s integral formula (see equation D.14) contained in the following theorem.

Theorem 10.5 Let f(z) be a complex function analytic in
a domain containing the half-plane x ≥ γ
(Figure 10.6), and let f(z) be O(z−k),
(k > 0) as |z| → ∞ in that half plane*.
Then, if z0 is any complex number with real
part greater than γ,

f(z0) = − 1
2πi

lim
β→∞

∫ γ+βi

γ−βi

f(z)
z − z0

dz. (10.23)

z
Im

Reg

0

Figure 10.6

When a function f(t) is O(eαt), we know that its transform f̃(s) is analytic for
x > α (see Theorem 10.4). It follows from equation 10.23 that when f̃(s) is O(s−k)
in a half-plane x ≥ γ > α, we can write f̃(s) in the form

f̃(s) = − 1
2πi

lim
β→∞

∫ γ+βi

γ−βi

f̃(z)
z − s

dz

for x > γ. If we formally take inverse transforms of both sides of this equation and
interchange the order of integation and L−1, we obtain

f(t) = − 1
2πi

lim
β→∞

∫ γ+βi

γ−βi

−f̃(z)L−1

{
1

s− z

}
dz =

1
2πi

lim
β→∞

∫ γ+βi

γ−βi

eztf̃(z) dz.

This expression,

* A function f(z) is said to be O(z−k) as |z| → ∞ if there exist constants M and r
such that |f(z)zk| < M for |z| > r.
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f(t) =
1

2πi
lim

β→∞

∫ γ+βi

γ−βi

estf̃(s) ds, (10.24)

is called the complex inversion integral for the Laplace transform. We could
express the contour integral as a complex combination of real improper integrals,
but even for the simplest of functions, the integrations involved in the real form are
impossible to evaluate (see Exercise 17). Fortunately, in Theorem 10.6 we prove
that residues of estf̃(s) may be used to evaluate the integral.

Theorem 10.6 Let f̃(s) be a function for which the inversion integral along a line x = γ represents
the inverse function f(t), and let f̃(s) be analytic except for isolated singularities
sn (n = 1, 2, . . .) in the half-plane x < γ. Then the series of residues of estf̃(s) at
s = sn converges to f(t) for each positive t,

f(t) = sum of residues of estf̃(s) at its singularities,

provided a sequence Cn of contours can be found that satisfies the following prop-
erties:
(1) Cn consists of the straight line x = γ from γ − βni to γ + βni and some curve

Γn beginning at γ + βni, ending at γ − βni, and lying in x ≤ γ,
(2) Cn encloses s1, s2, . . . , sn,
(3) lim

n→∞
βn = ∞,

(4) lim
n→∞

∫

Γn

estf̃(s) ds = 0 (Figure 10.7).

n

n

i

s
s

s

s
i

+

-

Im

Re

1
2

3

C

n

G

g b

g b

g

n

n

Figure 10.7

Proof Since estf̃(s) is analytic in Cn except at s1, s2, . . . , sn, Cauchy’s residue
theorem states that

(
Sum of residues of

estf̃(s) at s1, s2, . . . , sn

)
=

1
2πi

∫
©∨

Cn

estf̃(s) ds

=
1

2πi

∫ γ+βni

γ−βni

estf̃(s) ds+
1

2πi

∫

Γn

estf̃(s) ds.

When we take limits on n (and use conditions (3) and (4) in the theorem),
(

Sum of residues of
estf̃(s) at s1, s2, . . .

)
=

1
2πi

lim
n→∞

∫ γ+βni

γ−βni

estf̃(s) ds = f(t).
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It is not essential, as condition (2) requires, that Cn contain precisely n of the
singularities of f̃(s). In fact, this could be very difficult to accomplish, depending
on how the singularities are enumerated. What is essential is that as n increases,
the Cn expand to eventually enclose all singularities of f̃(s).

As a result of this theorem, finding the inverse transform of a function f̃(s)
is now a matter of calculating residues of the function estf̃(s) at its singularities.
When s0 is a singularity of estf̃(s), the residue at s0 is defined as the coefficient of
(s − s0)−1 in the Laurent expansion of estf̃(s) about s0. It can be found in two
ways:
(1) Find the Laurent expansion of estf̃(s) about s0, or at least enough of it to

identify the coefficient of (s− s0)−1.
(2) When it is known that s0 is a pole of order m, the following formula yields the

residue of estf̃(s) at s0:

Res[estf̃(s), s0] = lim
s→s0

{
1

(m− 1)!
dm−1

dsm−1
[(s− s0)mestf̃(s)]

}
. (10.25)

Example 10.11 Use Theorem 10.6 to find inverse Laplace transforms when f̃(s) is equal to (a)1/sm,
m ≥ 2 an integer, (b) 1/(s2 + 9), (c) s2/(s2 + 1)2. Assume that contours can be
found to satisfy Theorem 10.6.

Solution (a) The function f̃(s) = 1/sm has a pole of orderm at s = 0. According
to equation 10.25, the residue of estf̃(s) there is

Res
[
est

sm
, 0
]

= lim
s→0

{
1

(m− 1)!
dm−1

dsm−1

[
smest

sm

]}
=

1
(m− 1)!

lim
s→0

[
dm−1

dsm−1
(est)

]

=
tm−1

(m− 1)!
.

By Theorem 10.6,

L−1

{
1
sm

}
=

tm−1

(m− 1)!
.

(b) The function f̃(s) = 1/(s2 + 9) has poles of order 1 at s = ±3i. The residue of
estf̃(s) at 3i is

Res
[

est

s2 + 9
, 3i
]

= lim
s→3i

(s− 3i)est

(s+ 3i)(s− 3i)
=
e3it

6i
= − i

6
e3it.

Similarly, Res
[

est

s2 + 9
,−3i

]
= (i/6)e−3it. By Theorem 10.6, then,

L−1

{
1

s2 + 9

}
= − i

6
e3it +

i

6
e−3it =

1
3

sin 3t.

(c) The function f̃(s) = s2/(s2 + 1)2 has poles of order 2 at s = ±i. The residue of
estf̃(s) at i is

Res
[

s2est

(s2 + 1)2
, i

]
= lim

s→i

d

ds

[
(s− i)2ests2

(s+ i)2(s− i)2

]

= lim
s→i

[
(s+ i)2(2sest + ts2est)− s2est(2)(s+ i)

(s+ i)4

]
=

1
4
eit(t− i).
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Similarly, Res
[

s2est

(s2 + 1)2
,−i
]

= (1/4)e−it(t+ i). By Theorem 10.6, then,

L−1

{
s2

(s2 + 1)2

}
=

1
4
eit(t− i) +

1
4
e−it(t+ i) =

t

2
cos t+

1
2

sin t.•

More complicated illustrations of Theorem 10.6 are contained in the next ex-
ample. This example is more typical of problems encountered in Section 10.4, when
Laplace transforms are used to solve initial boundary value problems on bounded
domains.

Example 10.12 Find inverse transforms for the following functions

(a) f̃(x, s) =
sinh

√
sx

s sinh
√
s

(b) f̃(x, s) =
1
s3

(1− cosh sx) +
sinh s sinh sx
s3 cosh s

Assume once again that contours can be found to satisfy Theorem 10.6.

Solution (a) The function f̃(x, s) has isolated singularities at the zeros of sinh
√
s;

that is, when
√
s = nπi or s = −n2π2, n ≥ 0 an integer. To determine the nature

of the singularity at s = 0, we find the Laurent expansion of f̃(x, s) about s = 0.
We do this with expansions of the hyperbolic functions,

f̃(x, s) =
1
s




√
sx+

1
3!

(
√
sx)3 + · · ·

√
s+

1
3!

(
√
s)3 + · · ·


 =

1
s

[
x+

s

6
(x3 − x) + · · ·

]
.

Consequently, f̃(x, s) has a pole of order 1 at s = 0. The following expansion shows
that the residue of estf̃(x, s) at this pole is x:

estf̃(x, s) =
[
1 + st+

(st)2

2!
+ · · ·

](
1
s

)[
x+

s

6
(x3 − x) + · · ·

]

=
1
s

[
x+

s

6
(6xt+ x3 − x) + · · ·

]
.

Because the derivative of sinh
√
s does not vanish at the remaining singularities

s = −n2π2 (n > 0), these are also poles of order 1, and residues of estf̃(x, s) at
these poles are given by limit 10.25,

Res
[
est sinh

√
sx

sinh
√
s

,−n2π2

]
= lim

s→−n2π2
(s+ n2π2)est sinh

√
sx

s sinh
√
s

= e−n2π2t sinhnπxi
−n2π2

lim
s→−n2π2

s+ n2π2

sinh
√
s
.

L’Hôpital’s rule can be used to evaluate this limit, which, combined with the facts
that sinh iθ = i sin θ and cosh iθ = cos θ, gives

− i

n2π2
e−n2π2t sinnπx lim

s→−n2π2

1
1

2
√
s

cosh
√
s

= − 2i
n2π2

e−n2π2t sinnπx
nπi

coshnπi

=
2
nπ

e−n2π2t sinnπx
1

cosnπ
=

2(−1)n

nπ
e−n2π2t sinnπx.
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Thus, the sum of the residues of estf̃(x, s) at its singularities is

f(x, t) = x+
2
π

∞∑

n=1

(−1)n

n
e−n2π2t sinnπx.

Transforms of this type arise in heat conduction problems.
(b) This transform has singularities at s = 0 and s = (2n − 1)πi/2, n an integer
(the zeros of cosh s). The Laurent expansion of f̃(x, s) about s = 0 can be found
by expanding the hyperbolic functions in Maclaurin series,

f̃(x, s) =
1
s3

(
1 − 1 − s2x2

2!
− s4x4

4!
− · · ·

)
+

1
s3



s+

s3

3!
+
s5

5!
+ · · ·

1 +
s2

2!
+
s4

4!
+ · · ·



(
sx+

s3x3

3!
+ · · ·

)

=
(
−x

2

2s
− x4s

24
− · · ·

)
+
(
s− s3

3
+ · · ·

)(
x

s2
+
x3

6
+ · · ·

)

=
x

2s
(2 − x) +

xs

24
(−x3 + 4x2 − 8) + · · · .

Consequently, f̃(x, s) has a pole of order 1 at s = 0. Multiplication of this series by
the Maclaurin series for est gives

estf̃(x, s) =
[
1 + st+

(st)2

2!
+ · · ·

] [ x
2s

(2 − x) +
xs

24
(−x3 + 4x2 − 8) + · · ·

]

=
x

2s
(2− x) +

xt

2
(2 − x) + · · · ,

and therefore the residue of estf̃(x, s) at s = 0 is x(2−x)/2. Because the derivative
of cosh s does not vanish at s = (2n − 1)πi/2, these singularities are also poles of
order 1, and residues of estf̃(x, s) at these poles are given by the limits

lim
s→(2n−1)πi/2

[
s− (2n− 1)πi

2

]
est

[
1
s3

(1 − cosh sx) +
sinh s sinh sx
s3 cosh s

]

=
e(2n−1)πti/2

−(2n− 1)3π3i/8
sinh

(2n− 1)πi
2

sinh
(2n− 1)πxi

2
lim

s→(2n−1)πi/2

s− (2n− 1)πi/2
cosh s

=
8e(2n−1)πti/2

(2n− 1)3π3i
sin

(2n− 1)π
2

sin
(2n− 1)πx

2
lim

s→(2n−1)πi/2

1
sinh s

=
8(−1)n+1e(2n−1)πti/2

(2n− 1)3π3i
sin

(2n− 1)πx
2

1

sinh
(2n− 1)πi

2

= −8e(2n−1)πti/2

(2n− 1)3π3
sin

(2n− 1)πx
2

.

The sum of the residues of estf̃(x, s) at its singularities is therefore

f(x, t) =
x

2
(2− x) − 8

π3

∞∑

n=−∞

e(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

.

To simplify this expression, we separate it into two summations, one over positive
n and the other over nonpositive n, and in the latter we set m = 1 − n,
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f(x, t) =
x

2
(2− x) − 8

π3

∞∑

n=1

e(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

− 8
π3

0∑

n=−∞

e(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

=
x

2
(2− x) − 8

π3

∞∑

n=1

e(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

− 8
π3

∞∑

m=1

e[2(1−m)−1]πti/2

[2(1 −m) − 1]3
sin

[2(1 −m) − 1]πx
2

.

If we now replace m by n in the second summation and combine it with the first,

f(x, t) =
x

2
(2 − x) − 8

π3

∞∑

n=1

e(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

− 8
π3

∞∑

n=1

e−(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

=
x

2
(2 − x) − 8

π3

∞∑

n=1

e(2n−1)πti/2 + e−(2n−1)πti/2

(2n− 1)3
sin

(2n− 1)πx
2

=
x

2
(2 − x) − 16

π3

∞∑

n=1

1
(2n− 1)3

cos
(2n− 1)πt

2
sin

(2n− 1)πx
2

.

Transforms of this type occur in vibration problems.•

EXERCISES 10.3
In Exercises 1–16 use residues to find the inverse Laplace transform of the given
function. Do not verify the existence of contours satisfying the requirements of
Theorem 10.6.

1. f̃(s) =
s

(s− 1)3
2. f̃(s) =

s

(s2 + 4)2

3. f̃(s) =
1

s2(s+ 3)
4. f̃(s) =

s2 + 2
(s+ 1)2(s− 3)3

5. f̃(s) =
s2

(s2 + 1)(s2 + 4)
6. f̃(s) =

s

s2 − 1

7. f̃(s) =
s3

(s2 − 4)3
8. f̃(s) =

1
(s2 − 2s+ 2)2

9. f̃(s) =
s− 1

(s2 − 2s+ 2)2
10. f̃(s) =

s2

(s2 − 2s+ 2)2

11. f̃(x, s) =
1
s

(
x− sinh

√
sx

sinh
√
s

)
12. f̃(x, u, s) =

sinh sx sinh s(1− u)
s sinh s

13. f̃(x, s) =
2 sinh sx
s3 sinh s

(1− cosh s) +
2
s3

(cosh sx− 1) +
x

s
(1− x)
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14. f̃(x, s) =
1
s3

+
cosh sx
s2 sinh s

15. f̃(x, s) =
sinh sx

(4s2 + π2) sinh s

16. f̃(x, s) =
sinh sx

(s2 + π2) sinh s

17. We have claimed that to use inversion integral 10.24 directly is usually impossible. Set up the
complex combination of real improper integrals for 10.24 when f̃(s) = 1/s2; that is, express
10.24 in the form

L−1

{
1
s2

}
= I1 + I2i,

where I1 and I2 are real, improper integrals. Use the line γ = 1.



408 SECTION 10.4

§10.4 Applications to Partial Differential Equations on Bounded Domains

Laplace transforms can be used to eliminate the time variable from initial boundary
value problems. This reduces the PDE to an ODE or a PDE with one fewer variable.
We illustrate with the following examples.

Example 10.13 Solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (10.26a)

U(0, t) = 0, t > 0, (10.26b)
U(L, t) = 0, t > 0, (10.26c)
U(x, 0) = x, 0 < x < L. (10.26d)

Solution When we take Laplace transforms with respect to t on both sides of
the PDE and use property 10.7a,

sŨ(x, s) − x = k
∂2Ũ

∂x2
.

Thus, Ũ(x, s) must satisfy the ODE

d2Ũ

dx2
− s

k
Ũ = −x

k
(10.27a)

subject to the transforms of boundary conditions 10.26b,c,

Ũ(0, s) = 0, (10.27b)
Ũ(L, s) = 0. (10.27c)

A general solution of the ODE is

Ũ(x, s) = C1 cosh
√
s

k
x+ C2 sinh

√
s

k
x+

x

s
,

and the boundary conditions require

0 = C1, 0 = C1 cosh
√
s

k
L+ C2 sinh

√
s

k
L+

L

s
.

From these,

Ũ(x, s) =
1
s

(
x−

L sinh
√
s/kx

sinh
√
s/kL

)
. (10.28)

It remains now to find the inverse transform of Ũ (x, s). We do this by calculating
residues of estŨ(x, s) at the singularities of Ũ(x, s). To discover the nature of the
singularity at s = 0, we expand Ũ(x, s) in a Laurent series around s = 0,

Ũ(x, s) =
1
s

{
x−

L[
√
s/kx+ (

√
s/kx)3/3! + · · ·]√

s/kL+ (
√
s/kL)3/3! + · · ·

}

=
1
s

[
x− x+ sx3/(6k) + · · ·

1 + sL2/(6k) + · · ·

]

=
1
s

[
sx(L2 − x2)

6k
+ · · ·

]
=
x(L2 − x2)

6k
+ terms in s, s2, . . . .
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It follows that Ũ(x, s) has a removable singularity at s = 0.
The remaining singularities of Ũ(x, s) occur at the zeros of sinh

√
s/kL; that is,

when
√
s/kL = nπi or s = −n2π2k/L2, n a positive integer. Because the derivative

of sinh
√
s/kL does not vanish at s = −n2π2k/L2, this function has zeros of order 1

at s = −n2π2k/L2. It follows that Ũ (x, s) has poles of order 1 at these singularities,
and, according to formula 10.25, the residue of estŨ(x, s) at s = −n2π2k/L2 is

Res
[
estŨ(x, s),−n

2π2k

L2

]
= lim

s→−n2π2k/L2

(
s+

n2π2k

L2

)
est

s

(
x−

L sinh
√
s/kx

sinh
√
s/kL

)

= − e
−n2π2kt/L2

−n2π2k/L2
L sinh

nπxi

L
lim

s→−n2π2k/L2

(
s+ n2π2k/L2

sinh
√
s/kL

)
.

L’Hôpital’s rule yields

Res
[
estŨ(x, s),−n

2π2k

L2

]
=

iL3

n2π2k
e−n2π2kt/L2

sin
nπx

L
lim

s→−n2π2k/L2

1
L

2
√
ks

cosh
√
s/kL

=
2iL2

n2π2k
e−n2π2kt/L2

sin
nπx

L

1
L

nπki
coshnπi

=
2L
nπ

(−1)n+1e−n2π2kt/L2
sin

nπx

L
.

We sum these residues to find the inverse Laplace transform of Ũ(x, s),

U(x, t) =
2L
π

∞∑

n=1

(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L
.• (10.29)

Before proceeding to further problems, some general comments are appropriate:
1. In the above example, the Laplace transform was applied to the time variable to

eliminate the time derivative from the PDE and obtain an ODE in Ũ(x, s). The
Laplace transform cannot be applied to the space variable x, because the range of
x is only 0 ≤ x ≤ L. It is the power of finite Fourier transforms to eliminate the
space variable, not the Laplace transform.

2. The Laplace transform immediately incorporates the initial condition into the solu-
tion, and boundary conditions on U(x, t) become boundary conditions for Ũ (x, s).
Contrast this with finite Fourier transforms, which immediately incorporate bound-
ary conditions and use the initial condition on U(x, t) as an initial condition for
Ũ (λn, t).

3. Mathematically, the solution is not complete because the existence of a sequence of
contours satisfying the properties of Theorem 10.6 has not been established, but we
omit this part of the problem. We could circumvent this difficulty by now verifying
that function 10.29 does indeed satisfy initial boundary value problem 10.26.

Problems with arbitrary initial conditions are more difficult to handle. This is
illustrated in the next example.
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Example 10.14 Solve the vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (10.30a)

y(0, t) = 0, t > 0, (10.30b)
y(L, t) = 0, t > 0, (10.30c)
y(x, 0) = f(x), 0 < x < L, (10.30d)
yt(x, 0) = 0, 0 < x < L, (10.30e)

(see Exercise 20 in Section 4.2, with g(x) ≡ 0).

Solution When we take Laplace transforms of the PDE with respect to t and
use initial conditions 10.30d,e in property 10.7b,

s2ỹ − sf(x) = c2
∂2ỹ

∂x2
.

Thus, ỹ(x, s) must satisfy the ODE

d2ỹ

dx2
− s2

c2
ỹ = − s

c2
f(x) (10.31a)

subject to transforms of boundary conditions 10.30b,c,

ỹ(0, s) = 0, ỹ(L, s) = 0. (10.31b)

Variation of parameters (see Section 4.3) leads to the following form for a general
solution of ODE 10.31a

ỹ(x, s) = C1 cosh
sx

c
+ C2 sinh

sx

c
− 1
c

∫ x

0

f(u) sinh
s

c
(x− u) du.

Boundary conditions 10.31b require

0 = C1, 0 = C1 cosh
sL

c
+ C2 sinh

sL

c
− 1
c

∫ L

0

f(u) sinh
s

c
(L− u) du,

from which

ỹ(x, s) =
sinh

sx

c

c sinh
sL

c

∫ L

0

f(u) sinh
s

c
(L− u) du− 1

c

∫ x

0

f(u) sinh
s

c
(x− u) du

=
∫ L

0

f(u)p̃(x, u, s) du− 1
c

∫ x

0

f(u) sinh
s

c
(x− u) du, (10.32a)

where

p̃(x, u, s) =
sinh

sx

c
sinh

s

c
(L− u)

c sinh
sL

c

. (10.32b)

To obtain y(x, t) by residues requires the singularities of ỹ(x, s). Provided f(x)
is piecewise continuous, integration with respect to u in 10.32a and any differenti-
ation with respect to s can be interchanged, and therefore the second integral in
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10.32a has no singularities. Singularities of the first integral are determined by those
of p̃(x, u, s). For the singularity at s = 0, we note that

p̃(x, u, s) =
1
c

sinh
s

c
(L− u)




sinh
sx

c

sinh
sL

c




=
1
c

[
s

c
(L− u) +

s3

3!c3
(L− u)3 + · · ·

]



sx

c
+

1
3!

(sx
c

)3

+ · · ·

sL

c
+

1
3!

(
sL

c

)3

+ · · ·




=
[
s

c2
(L− u) +

s3

6c4
(L− u)3 + · · ·

]


x+

x3s2

6c2
+ · · ·

L+
L3s2

6c2
+ · · ·




=
s

c2
(L− u)

x

L
+ terms in s2, s3, . . .,

and therefore p̃(x, u, s) has a removable singularity at s = 0. The remaining singu-
larities of p̃(x, u, s) are s = nπci/L, n a nonzero integer. Because the derivative of
sinh (sL/c) does not vanish at s = nπci/L, these singularities are poles of order 1.
According to formula 10.25, the residue of p̃(x, u, s) at s = nπci/L is

Res
[
p̃(x, u, s),

nπci

L

]
= lim

s→nπci/L

(
s− nπci

L

)
p̃(x, u, s)

= lim
s→nπci/L

(
s− nπci

L

) sinh
sx

c
sinh

s

c
(L− u)

c sinh
sL

c

= sinh
nπxi

L
sinh

nπi(L− u)
L

lim
s→nπci/L

s− nπci

L

c sinh
sL

c

= − sin
nπx

L
sin

nπ

L
(L− u) lim

s→nπci/L

1

L cosh
sL

c

(by l’Hôpital’s rule)

=
(−1)n

L
sin

nπx

L
sin

nπu

L

1
coshnπi

=
1
L

sin
nπx

L
sin

nπu

L
.

The residue of est times the first integral in 10.32a at s = nπci/L is now

lim
s→nπci/L

(
s− nπci

L

)
est

∫ L

0

f(u)p̃(x, u, s) du.

When we interchange the limit on s with the integration with respect to u, the
residue becomes∫ L

0

lim
s→nπci/L

[
est

(
s− nπci

L

)
f(u)p̃(x, u, s)

]
du =

∫ L

0

enπcti/Lf(u)
1
L

sin
nπx

L
sin

nπu

L
du

=
1
L
enπcti/L sin

nπx

L

∫ L

0

f(u) sin
nπu

L
du.
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The inverse transform of ỹ(x, s) is the sum of all such residues,

y(x, t) =
1
L

∞∑

n=−∞
n6=0

enπcti/L sin
nπx

L

∫ L

0

f(u) sin
nπu

L
du. (10.33)

To simplify this summation, we divide it into two parts,

y(x, t) =
1
L

∞∑

n=1

enπcti/L sin
nπx

L

∫ L

0

f(u) sin
nπu

L
du

+
1
L

−1∑

n=−∞
enπcti/L sin

nπx

L

∫ L

0

f(u) sin
nπu

L
du,

and replace n by −n in the second summation,

y(x, t) =
1
L

∞∑

n=1

enπcti/L sin
nπx

L

∫ L

0

f(u) sin
nπu

L
du

+
1
L

∞∑

n=1

e−nπcti/L sin
(
−nπx
L

)∫ L

0

f(u) sin
(
−nπu
L

)
du

=
1
L

∞∑

n=1

sin
nπx

L
(enπcti/L + e−nπcti/L)

∫ L

0

f(u) sin
nπu

L
du

=
∞∑

n=1

an cos
nπct

L
sin

nπx

L
where an =

2
L

∫ L

0

f(u) sin
nπu

L
du. (10.34)

This is identical to the solution obtained by separation of variables in Exercise 20
in Section 4.2 when g(x) is set equal to zero.•

Examples 10.13 and 10.14 were homogeneous problems. Convolutions can be
used to handle problems with unspecified nonhomogeneities.

Example 10.15 Solve Example 10.13 if the end x = 0 of the rod has a prescribed temperature f(t)
and the initial temperature is zero throughout. Compare the solution with that
obtained by variation of constants and by finite Fourier transforms.

Solution The initial boundary value problem is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (10.35a)

U(0, t) = f(t), t > 0, (10.35b)
U(L, t) = 0, t > 0, (10.35c)
U(x, 0) = 0, 0 < x < L. (10.35d)

When the Laplace transform is applied to the PDE and initial temperature 10.35d
is used, the transform Ũ(x, s) must satisfy the ODE

d2Ũ

dx2
− s

k
Ũ = 0, (10.36a)

Ũ (0, s) = f̃(s), (10.36b)
Ũ(L, s) = 0. (10.36c)
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The solution of this system is

Ũ(x, s) =
f̃(s) sinh

√
s/k(L− x)

sinh
√
s/kL

. (10.37)

To find the inverse transform of this function, first consider finding the inverse
of p̃(x, s) = sinh

√
s/k(L− x)/ sinh

√
s/kL. This function has singularities when√

s/kL = nπi or s = −n2π2k/L2, n a nonnegative integer. Expansion of p̃(x, s)
in a Laurent series around s = 0 immediately shows that s = 0 is a removable
singularity. The remaining singularities are poles of order 1, and the residue of
estp̃(x, s) at s = −n2π2k/L2 is

Res
[
estp̃(x, s),−n

2π2k

L2

]
= lim

s→−n2π2k/L2

(
s+

n2π2k

L2

)
est sinh

√
s/k(L− x)

sinh
√
s/kL

= e−n2π2kt/L2
sinh

nπi(L− x)
L

lim
s→−n2π2k/L2

(
s+ n2π2k/L2

sinh
√
s/kL

)

= ie−n2π2kt/L2
sin

nπ(L− x)
L

lim
s→−n2π2k/L2

1
L

2
√
ks

cosh
√
s/kL

= ie−n2π2kt/L2
(−1)n+1 sin

nπx

L

2nkπi
L2 coshnπi

=
2nkπ
L2

e−n2π2kt/L2
sin

nπx

L
.

Convolutions can now be used to invert Ũ(x, s),

U(x, t) = L−1{f̃(s)p̃(x, s)} =
∫ t

0

f(u)p(x, t− u) du

=
∫ t

0

f(u)

[
2kπ
L2

∞∑

n=1

ne−n2π2k(t−u)/L2
sin

nπx

L

]
du

=
2kπ
L2

∞∑

n=1

cn(t) sin
nπ‘x
L

, (10.38a)

where

cn(t) = n

∫ t

0

f(u)e−n2π2k(t−u)/L2
du. (10.38b)

With variation of constants (see Section 4.3), the dependent variable is changed
to V (x, t) = U(x, t) − f(t)(1 − x/L), resulting in a problem with homogeneous
boundary conditions for V (x, t),

∂V

∂t
= k

∂2V

∂x2
− f ′(t)

(
1 − x

L

)
, 0 < x < L, t > 0,

V (0, t) = 0, t > 0,
V (L, t) = 0, t > 0,

V (x, 0) = −f(0)
(
1 − x

L

)
= 0, 0 < x < L,
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provided we assume that f(0) = 0. (The f(0) 6= 0 situation is discussed in Exercise
12.) Variation of constants

V (x, t) =
∞∑

n=1

an(t) sin
nπx

L

leads to

an(t) =
−2
nπ

∫ t

0

f ′(u)e−n2π2k(t−u)/L2
du,

and therefore

U(x, t) = f(t)
(
1 − x

L

)
− 2
π

∞∑

n=1

[
1
n

∫ t

0

f ′(u)e−n2π2k(t−u)/L2
du

]
sin

nπx

L
. (10.39)

That this is identical to solution 10.38 is verified by integrating expression 10.38b
by parts,

cn(t) = n

{
L2

n2π2k
f(u)e−n2π2k(t−u)/L2

}t

0

− n

∫ t

0

L2

n2π2k
f ′(u)e−n2π2k(t−u)/L2

du

=
L2

nπ2k
f(t)− L2

nπ2k

∫ t

0

f ′(u)e−n2π2k(t−u)/L2
du,

and substituting into equation 10.38a,

U(x, t) =
2kπ
L2

∞∑

n=1

[
L2

nkπ2
f(t)− L2

nkπ2

∫ t

0

f ′(u)e−n2π2k(t−u)/L2
du

]
sin

nπx

L

= f(t)
∞∑

n=1

2
nπ

sin
nπx

L
− 2
π

∞∑

n=1

[
1
n

∫ t

0

f ′(u)e−n2π2k(t−u)/L2
du

]
sin

nπx

L
.

This is identical to solution 10.39 when we notice that the coefficients in the Fourier
sine series of 1 − x/L are 2/(nπ).

The finite Fourier transform

f̃(λn) =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx

applied to problem 10.35 gives the solution in form 10.38.•

When we write solution 10.38 for problem 10.35 in the form

U(x, t) =
2kπ
L2

∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
where bn = n

∫ t

0

f(u)en2π2ku/L2
du,(10.40)

we see that the exponentials in the series enhance convergence for large values of t.
For instance, if the temperature of the left end is maintained at 100◦C for t > 0,
the temperature function reduces to

U(x, t) =
200
π

∞∑

n=1

1
n

(1− e−n2π2kt/L2
) sin

nπx

L
, (10.41)
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which can also be expressed in the form

U(x, t) = 100
(
1 − x

L

)
− 200

π

∞∑

n=1

1
n
e−n2π2kt/L2

sin
nπx

L
. (10.42)

Suppose the rod is 1/5 m in length and is made from stainless steel with thermal
diffusivity k = 3.87×10−6 m2/s. Consider finding the temperature at the midpoint
x = 1/10 of the rod at the four times t = 2, 5, 30 and 100 minutes. Series 10.42
gives

U(0.1, 120) = 100
(

1 − 1
2

)
− 200

π

∞∑

n=1

1
n
e−0.1145861n2

sin
nπ

2
= 0.10◦C,

U(0.1, 300) = 100
(

1 − 1
2

)
− 200

π

∞∑

n=1

1
n
e−0.28646526n2

sin
nπ

2
= 3.80◦C,

U(0.1, 1800) = 100
(

1 − 1
2

)
− 200

π

∞∑

n=1

1
n
e−1.7187915n2

sin
nπ

2
= 38.6◦C,

U(0.1, 6000) = 100
(

1 − 1
2

)
− 200

π

∞∑

n=1

1
n
e−5.7293052n2

sin
nπ

2
= 49.8◦C.

To obtain these temperatures, we required only four nonzero terms from the first
series, three from the second, one each from the third and fourth. This substantiates
our claim that as t increases, fewer and fewer terms in series 10.42 are required for
accurate calculations of temperature.

Laplace transforms can be used to give a completely different representation for
the temperature in the rod when f(t) = 100. To find this representation, we return
to expression 10.37 for the Laplace transform Ũ (x, s) of U(x, t) and set f̃(s) = 100/s,
the transform of f(t) = 100,

Ũ(x, s) =
100 sinh

√
s/k(L− x)

s sinh
√
s/kL

=
100
s

e
√

s/k(L−x) − e−
√

s/k(L−x)

e
√

s/kL − e−
√

s/kL

=
100
s

e−
√

s/kL[e
√

s/k(L−x) − e−
√

s/k(L−x)]

1 − e−2
√

s/kL
.

If we regard 1/(1−e−2
√

s/kL) as the sum of an infinite geometric series with common
ratio e−2

√
s/kL, we may write

Ũ (x, s) =
100
s

[e−
√

s/kx − e−
√

s/k(2L−x)]
∞∑

n=0

e−2n
√

s/kL

= 100
∞∑

n=0

[
e−

√
s/k(2nL+x)

s
− e−

√
s/k[2(n+1)L−x]

s

]
. (10.43)

Tables of Laplace transforms indicate that

L−1

{
e−a

√
s

s

}
= erfc

(
a

2
√
t

)
,
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where erfc(x) is the complementary error function in equation 10.16. Hence, U(x, t)
may be expressed as a series of complementary error functions,

U(x, t) = 100
∞∑

n=0

[
erfc

(
2nL+ x

2
√
kt

)
− erfc

(
2(n+ 1)L− x

2
√
kt

)]

= 100
∞∑

n=0

[
erf
(

2(n+ 1)L− x

2
√
kt

)
− erf

(
2nL+ x

2
√
kt

)]
, (10.44)

where we have used the fact that erfc(x) = 1 − erf(x). The error function erf(x) is
defined as

erf(x) =
2√
π

∫ x

0

e−u2
du. (10.45)

This representation of U(x, t) is valuable for small values of t (as opposed to 10.42,
which converges rapidly for large t). To see this, consider temperature at the mid-
point of the above stainless steel rod at t = 300 s,

U(0.1, 300) = 100
∞∑

n=0

[
erf

(
2(n+ 1)/5− 0.1

2
√

3.87 × 10−6(300)

)
− erf

(
2n/5 + 0.1

2
√

3.87 × 10−6(300)

)]
.

For n > 0, all terms in this series essentially vanish, and

U(0.1, 300) = 100[erf(4.40)− erf(1.467)] = 3.80◦C.

For t = 1800,

U(0.1, 1800) = 100
∞∑

n=0

[
erf

(
2(n+ 1)/5− 0.1

2
√

3.87 × 10−6(1800)

)
− erf

(
2n/5 + 0.1

2
√

3.87 × 10−6(1800)

)]
.

Once again, only the n = 0 term is required; it yields U(0.1, 1800) = 38.6◦C. Finally,
for t = 6000,

U(0.1, 6000) = 100
∞∑

n=0

[
erf

(
2(n+ 1)/5− 0.1

2
√

3.87 × 10−6(6000)

)
− erf

(
2n/5 + 0.1

2
√

3.87 × 10−6(6000)

)]
.

In this case, the n = 0 and n = 1 terms give U(0.1, 6000) = 49.9◦C. For larger
values of t, more and more terms are required.

The error function representiation in equation 10.44 once again substantiates
our claim in Section 6.6 that heat propagates with infinite speed. Because the error
function is an increasing function of its argument, and the argument (2nL+ 2L−
x)/(2

√
kt) of the first error function in 10.44 is greater than the second argument,

(2nL + x)/(2
√
kt), it follows that each term in 10.44 is positive, Since this is true

for every x in 0 < x < L and every t > 0, the temperature at every point in the rod
for every t > 0 is positive. This means that the effect of changing the temperature
of the end x = 0 of the rod from 0◦C to 100◦C at time t = 0 is instantaneously felt
at every point in the rod. The amount of heat transmitted to other parts of the rod
may be minute, but nonetheless, heat is transmitted instantaneously to all parts of
the rod.

EXERCISES 10.4
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Use Laplace transforms to solve all problems in this set of exercises.
Part A Heat Conduction

1. A homogeneous, isotropic rod with insulated sides has temperature sinmπx/L (m an integer)
at time t = 0. For time t > 0, its ends (x = 0 and x = L) are held at temperature 0◦C. Find a
formula for temperature U(x, t) in the rod for 0 < x < L and t > 0.

2. Solve Example 4.2 in Section 4.2 when the initial temperature is U0 = constant.

3. Repeat Exercise 1 if the initial temperature is 10◦C throughout.

4. Solve Exercise 8 in Section 4.3.

5. Solve Exercise 2 in Section 4.2.

6. Solve Example 4.2 in Section 4.2 when the initial temperature is f(x) (in place of x).

7. A homogeneous, isotropic rod with insulated sides is initially (t = 0) at temperature 0◦C
throughout. For t > 0, its left end, x = 0, is kept at 0◦C and its right end, x = L, is kept at
constant temperature UL

◦C. Find two expressions for temperature in the rod, one in terms of
exponentials in time and the other in terms of error functions.

8. A homogeneous, isotropic rod with insulated sides is initially (t = 0) at constant temperature
U0

◦C throughout. For t > 0, its end x = 0 is insulated, and heat is added to the end x = L at
a constant rate Q W/m2. Find the temperature in the rod for 0 < x < L and t > 0.

9. (a) A homogeneous, isotropic rod with insulated sides has, for time t > 0, its ends at x = 0 and
x = L kept at temperature zero. Initially its temperature is Ax, where A is constant. Show
that temperature in the rod can be expressed in two ways:

U(x, t) =
2AL
π

∞∑

n=1

(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L
,

and U(x, t) = A

{
x− L

∞∑

n=0

[
erf
(

(2n+ 1)L+ x

2
√
kt

)
− erf

(
(2n+ 1)L− x

2
√
kt

)]}
.

(b) Which of the two solutions do you expect to converge more rapidly for small t? For large t?
(c) Verify your conjecture in part (b) by calculating the temperature at the midpoint of a

stainless steel rod (k = 3.87 × 10−6) of length 1/5 m when A = 500 and (i) t = 30 s (ii)
t = 5 min (iii) t = 100 min.

10. A homogeneous, isotropic rod with insulated sides is initially (t = 0) at temperature 0◦C
throughout. For t > 0, its left end, x = 0, is kept at 0◦C and heat is added to the end x = L at
a constant rate Q > 0 W/m2. Find two series representations for U(x, t), one in terms of error
functions and one in terms of time exponentials.

11. Solve Exercise 13 in Section 7.2.

12. Show that the Laplace transform solution and the eigenfunction expansion solution to the
problem in Example 10.15 are identical when f(0) 6= 0.

13. A homogeneous, isotropic rod with insulated sides has initial temperature distribution ULx/L,
0 ≤ x ≤ L (UL a constant). For time t > 0, its ends x = 0 and x = L are held at temperatures
0◦C and UL

◦C, respectively. Find the temperature distribution in the rod for t > 0.
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14. Repeat Exercise 13 if the initial temperature distribution is f(x) = ax, 0 ≤ x ≤ L, where a
is a constant. The ends x = 0 and x = L are held at constant temperatures U0

◦C and UL
◦C,

respectively, for t > 0.

15. Solve Exercise 5 in Section 4.3 in the case that k 6= L2/(n2π2) for any positive integer n. (See
also Exercise 8 in Section 7.2.)

16. Solve Exercise 16 in Section 4.3 with zero initial temperature.

Part B Vibrations

17. A taut string has its ends fixed at x = 0 and x = L on the x-axis. If it is given an initial
displacement (at time t = 0) of f(x) = kx(L− x), (k a constant), and zero initial velocity, find
its subsequent displacement.

18. Solve Exercise 19(a) in Section 4.2.

19. Repeat Exercise 17 for zero initial displacement and an unspecified initial velocity g(x).

20. Solve Exercise 37(a) in Section 7.2.

21. Solve Exercise 21 in Section 4.3.

22. Solve Exercise 21(a) in Section 4.2.
For Exercises 23–28 solve Exercises 30–35 in Section 7.2.

29. Repeat Example 10.14 if gravity is taken into account. See also Exercise 41 in Section 7.2.

30. Solve Exercise 28 in Section 7.2.

31. Show that Laplace transforms lead to the solution in part (c) for the problem in Exercise 20 of
Section 4.3.

32. (a) Find a series solution for displacements in the bar of Exercise 24 of Section 7.2 if the constant
force per unit area F is replaced by an impulse force F = F0δ(t). Use the fact that

∫ ∞

0

f(t)δ(t) dt = f(0+).

(b) Show that the displacement of the end x = L is cF0/(AE) times the square wave function

M2L/c(t) =
{

1, 0 < t < 2L/c
−1, 2L/c < t < 4L/c , M2L/c(t+ 4L/c) = M2L/c(t).

33. Solve Exercise 42 in Section 7.2.

34. A taut string of length L is initially at rest along the x-axis. For time t > 0, its ends are
subjected to prescribed displacements

y(0, t) = f1(t), y(L, t) = f2(t).

Find its displacement for 0 < x < L and t > 0.

35. (a) Show that the Laplace transform of the displacement function y(x, t) for the vibrations in
Exercise 45 of Section 7.2 is

ỹ(x, s) =
F0ωc sinh (sx/c)

s(s2 + ω2)[AE cosh (sL/c) +mcs sinh (sL/c)]
.

(b) Resonance occurs if either of the zeros s = ±iω of s2 + ω2 coincides with a zero of



SECTION 10.4 419

h(s) = AE cosh (sL/c) +mcs sinh (sL/c).

By expressing zeros of h(s) in the form s = c(µ+ λi), show that

tanh2µL =
−2AEmc2µ

A2E2 +m2c4(µ2 + λ2)

and that therefore µ = 0. Verify that resonance occurs if ω = cλ where λ is a root of the
equation

tanλL =
AE

mc2λ
.

36. Solve Example 4.4 in Section 4.2, but with an unspecified initial displacement f(x). (Hint:
Replace s by icq2 in the ODE for ỹ(x, s).)

37. (a) The top of the bar in Exercise 20 is attached to a spring with constant k. If x = 0 corresponds
to the top end of the bar when the spring is unstretched, show that the Laplace transform
of the displacement function for cross sections of the bar is

ỹ(x, s) =
g

s3
− kgc cosh [s(L− x)/c]
s3[AE sinh (sL/c) + kc cosh (sL/c)]

.

(b) Verify that ỹ(x, s) has a pole of order 1 at s = 0. What is the residue of estỹ(x, s) at s = 0?
(c) By setting s = c(µ+ λi) to obtain zeros of

h(s) = AEs sinh (sL/c) + kc cosh (sL/c),

show that µ must be zero and that λ must satisfy

tanλL =
k

AEλ
.

(d) Find y(x, t). (See also Exercise 38 in Section 7.2.)

38. (a) An unstrained elastic bar falls vertically
under gravity with its axis in the vertical
position (figure to the right). When its
velocity is v > 0, it strikes a solid object
and remains in contact with it thereafter.
Show that the Laplace transform of displace-
ments y(x, t) of cross sections of the bar is

ỹ(x, s) =
( v
s2

+
g

s3

)[
1 − cosh (sx/c)

cosh (sL/c)

]
.

(b) Use residues to find

v

x

x

x L

=0

=

y(x, t) =
g(L2 − x2)

2c2
+

8Lv
π2c

∞∑

n=1

(−1)n+1

(2n− 1)2
sin

(2n− 1)πct
2L

cos
(2n− 1)πx

2L

+
16L2g

π3c2

∞∑

n=1

(−1)n

(2n− 1)3
cos

(2n− 1)πct
2L

cos
(2n− 1)πx

2L
.

(c) Verify that the second series in part (b) may be expressed in the form
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− g

4c2
[K(x+ ct) +K(x− ct)],

where K(x) is the even, odd-harmonic extension of L2 − x2, 0 ≤ x ≤ L, to a function
of period 4L. (See Exercise 21 in Section 3.2 for the definition of an even, odd-harmonic
function.)

(d) Verify that the first series in part (b) may be expressed in the form
v

2c
[ML(x+ ct)−ML(x− ct)],

where ML(x) is the odd, odd-harmonic extension of x, 0 ≤ x ≤ L, to a function of period
4L. (See Exercise 20 in Section 3.2 for the definition of an odd, odd-harmonic function.)

(e) Find an expression for the force F (t) due to the bar on the cross section at x = L. Sketch
graphs of F (t) when v < 2Lg/c and v > 2gL/c.

39. A bar 1/4 m long is falling as in Exercise 38 when it stikes an object squarely. Use the result of
Exercise 38 to find a formula for the length of time of contact of the bar with the object. Use
this formula to find the contact time for a steel bar with ρ = 7.8×103 kg/m3 and E = 2.1×1011

kg/m2 when v = 2 m/s.
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§10.5 Applications to Problems in Polar, Cylindrical, and Spherical Coordinates

Laplace transforms can also be used to solve problems in polar, cylindrical, and
spherical coordinates, but calculations are sometimes more complex. We illustrate
with the following examples.

Example 10.16 Use Laplace transforms to solve Example 9.1 of Section 9.1.

Solution The initial boundary value problem for U(r, t) is

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < a, t > 0, (10.46a)

∂U(a, t)
∂r

= 0, t > 0, (10.46b)

U(r, 0) = a2 − r2, 0 < r < a. (10.46c)

When we take Laplace transforms of the PDE and use initial condition 10.46c,

sŨ(r, s) − (a2 − r2) = k

(
∂2Ũ

∂r2
+

1
r

∂Ũ

∂r

)
;

that is, Ũ(r, s) must satisfy the ODE

r
d2Ũ

dr2
+
dŨ

dr
− sr

k
Ũ =

r3 − a2r

k
, 0 < r < a, (10.47a)

subject to the transform of boundary condition 10.46b,

Ũ ′(a, s) = 0. (10.47b)

The change of independent variable u =
√
s/kri replaces the homogeneous equation

r
d2Ũ

dr2
+
dŨ

dr
− sr

k
Ũ = 0 (10.48)

with

u
d2Ũ

du2
+
dŨ

du
+ uŨ = 0. (10.49)

This is Bessel’s differential equation of order zero, with general solution

AJ0(u) +BY0(u).

Thus, a general solution of ODE 10.48 is

AJ0

(√
s

k
ri

)
+ BY0

(√
s

k
ri

)
. (10.50)

When the particular solution −r2/s + (a2s − 4k)/s2 of 10.47a is added to this, a
general solution of 10.47a is

Ũ(r, s) = AJ0

(√
s

k
ri

)
+BY0

(√
s

k
ri

)
− 4k
s2

+
a2 − r2

s
. (10.51)
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Because U(r, t) must remain bounded as r approaches zero, so also must Ũ(r, s).
This implies that B must vanish, in which case boundary condition 10.47b requires

i

√
s

k
AJ ′

0

(√
s

k
ai

)
− 2a

s
= 0.

When this equation is solved for A and the result is substituted into 10.51,

Ũ(r, s) =
2aJ0(

√
s/kri)

i
√
s3/kJ ′

0(
√
s/kai)

− 4k
s2

+
a2 − r2

s
. (10.52)

This function has singularities at s = 0 and values of s satisfying J ′
0(
√
s/kai) = 0.

If we set
√
s/ki = λn, singularities occur for s = −kλ2

n where J ′
0(λna) = 0. Power

series 8.18 in Section 8.3 can be used to expand Ũ (r, s) about s = 0,

Ũ (r, s) =
2
√
ka

s3/2i




1 −
(
√
s/kri)2

4
+

(
√
s/kri)4

64
− · · ·

−
(
√
s/kai)
2

+
(
√
s/kai)3

16
− · · ·


− 4k

s2
+
a2 − r2

s

=
2
√
ka

s3/2i

[
− 2√

s/kai
−
√
s/ki

a

(
a2

4
− r2

2

)
+ · · ·

]
− 4k
s2

+
a2 − r2

s

=
a2

2s
+ · · · .

When this result is multiplied by est,

estŨ(r, s) =
(

1 + st+
s2t2

2
+ · · ·

)(
a2

2s
+ · · ·

)
.

Thus, the residue of estŨ(r, s) at s = 0 is a2/2. Because the derivative of J ′
0 does

not vanish at its zeros, the remaining singularities at s = −kλ2
n are poles of order

1, and residues of estŨ(r, s) at these poles are

lim
s→−kλ2

n

(s+ kλ2
n)est

[
2aJ0(

√
s/kri)√

s3/kiJ ′
0(
√
s/kai)

− 4k
s2

+
a2 − r2

s

]

=
2a

−kλ3
n

e−kλ2
ntJ0(λnr) lim

s→−kλ2
n

s+ kλ2
n

J ′
0(
√
s/kai)

=
−2a
kλ3

n

e−kλ2
ntJ0(λnr) lim

s→−kλ2
n

1
ai

2
√
ks
J ′′

0 (
√
s/kai)

(by l’Hôpital’s rule)

=
−4
kλ3

n

e−kλ2
ntJ0(λnr)

1
−1
kλn

J ′′
0 (λna)

=
4

λ2
nJ

′′
0 (λna)

e−kλ2
ntJ0(λnr).

But, because J0(λnr) satisfies equation 10.48 when s = −kλ2
n,

r
d2J0(λnr)

dr2
+
dJ0(λnr)

dr
+ λ2

nrJ0(λnr) = 0
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or,

λ2
nrJ

′′
0 (λnr) + λnJ

′
0(λnr) + λ2

nrJ0(λnr) = 0.

When we set r = a in this equation and note that J ′
0(λna) = 0, we obtain

J ′′
0 (λna) = −J0(λna).

Residues of estŨ (r, s) at s = −kλ2
n can therefore be expressed as

−4
λ2

nJ0(λna)
e−kλ2

ntJ0(λnr).

The sum of the residues at s = 0 and s = −kλ2
n yields the temperature function

U(r, t) =
a2

2
− 4

∞∑

n=1

e−kλ2
ntJ0(λnr)

λ2
nJ0(λna)

.• (10.53)

The following vibration problem has a nonhomogeneous boundary condition.

Example 10.17 A circular membrane of radius a is initially at rest on the xy-plane. Find its displace-
ment for time t > 0 if its edge is forced to undergo periodic oscillations described
by A sinωt, A a constant. Assume that resonance does not occur.

Solution The initial boundary value problem for displacements z(r, t) of the
membrane is

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r

)
, 0 < r < a, t > 0, (10.54a)

z(a, t) = A sinωt, t > 0, (10.54b)
z(r, 0) = 0, 0 < r < a, (10.54c)
zt(r, 0) = 0, 0 < r < a. (10.54d)

When we apply the Laplace transform to the PDE and use the initial conditions,

s2z̃ = c2
(
d2z̃

dr2
+

1
r

dz̃

dr

)
;

that is, z̃(r, s) must satisfy

r
d2z̃

dr2
+
dz̃

dr
− s2r

c2
z̃ = 0, (10.55a)

subject to the transform of boundary condition 10.54b,

z̃(a, s) =
Aω

s2 + ω2
. (10.55b)

The change of independent variable u = sri/c replaces this ODE with

u
d2z̃

du2
+
dz̃

du
+ uz̃ =0, (10.56)

Bessel’s differential equation of order zero. Since a general solution is BJ0(u) +
DY0(u), it follows that
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z̃(r, s) = BJ0

(
sri

c

)
+DY0

(
sri

c

)
. (10.57)

Because z(r, t) must remain bounded as r approaches zero, so also must z̃(r, s). This
implies that D must vanish, in which case boundary condition 10.55b requires

Aω

s2 + ω2
= BJ0

(
sai

c

)
.

When this is solved for B, we obtain

z̃(r, s) =
Aω

s2 + ω2

J0(sri/c)
J0(sai/c)

. (10.58)

This function has singularities at s = ±ωi and values of s satisfying J0(sai/c) = 0.
If we set si/c = λn, singularities occur for s = −cλni where J0(λna) = 0. (For
every positive value of λn satisfying this equation, λ−n = −λn is also a solution.)
Provided ω 6= cλn for any n (the nonresonant case), all singularities are poles of
order 1. The residue of estz̃(r, s) at s = ωi is

lim
s→ωi

(s− ωi)estz̃(r, s) = lim
s→ωi

(s− ωi)
Aωest

(s+ ωi)(s− ωi)
J0(sri/c)
J0(sai/c)

=
Aωeωti

2ωi
J0(−ωr/c)
J0(−ωa/c)

= − i

2
Aeωti J0(ωr/c)

J0(ωa/c)
.

Similarly, the residue at s = −ωi is

i

2
Ae−ωti J0(ωr/c)

J0(ωa/c)
.

Residues at s = −cλni are

lim
s→−cλni

(s+ cλni)est Aω

s2 + ω2

J0(sri/c)
J0(sai/c)

=
Aω

ω2 − c2λ2
n

e−cλntiJ0(λnr) lim
s→−cλni

s+ cλni

J0(sai/c)

=
Aω

ω2 − c2λ2
n

e−cλntiJ0(λnr) lim
s→−cλni

1
ai

c
J ′

0(sai/c)
(by l’Hôpital’s rule)

=
−Aωcie−cλnti

a(ω2 − c2λ2
n)
J0(λnr)

1
J ′

0(λna)
=

Aωcie−cλnti

a(ω2 − c2λ2
n)
J0(λnr)
J1(λna)

.

Ths sum of the residues at s = ±ωi and s = −cλni yields the displacement of the
membrane

z(r, t) = − i

2
Aeωti J0(ωr/c)

J0(ωa/c)
+
i

2
Ae−ωti J0(ωr/c)

J0(ωa/c)
+

∞∑

n=−∞
n6=0

Aωcie−cλnti

a(ω2 − c2λ2
n)
J0(λnr)
J1(λna)

= A
J0(ωr/c)
J0(ωa/c)

(
eωti − e−ωti

2i

)
+

∞∑

n=1

Aωcie−cλnti

a(ω2 − c2λ2
n)
J0(λnr)
J1(λna)
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+
−1∑

n=−∞

Aωcie−cλnti

a(ω2 − c2λ2
n)
J0(λnr)
J1(λna)

= A
J0(ωr/c)
J0(ωa/c)

sinωt+
Aωci

a

∞∑

n=1

e−cλnti

ω2 − c2λ2
n

J0(λnr)
J1(λna)

+
Aωci

a

∞∑

n=1

e−cλ−nti

ω2 − c2λ2
−n

J0(λ−nr)
J1(λ−na)

.

Since λ−n = −λn, and J0 and J1 are even and odd functions, respectively, it follows
that

z(r, t) = A sinωt
J0(ωr/c)
J0(ωa/c)

− Aωci

a

∞∑

n=1

ecλnti − e−cλnti

ω2 − c2λ2
n

J0(λnr)
J0(λna)

= A sinωt
J0(ωr/c)
J0(ωa/c)

+
2Aωc
a

∞∑

n=1

sin cλnt

ω2 − c2λ2
n

J0(λnr)
J0(λna)

. (10.59)

The solution of this problem, obtained by finite Fourier transforms in Exercise 22
of Section 9.2, is

z(r, t) = −2AC
a

∞∑

n=1

cλn sinωt− ω sin cλnt

(ω2 − c2λ2
n)J1(λna)

J0(λnr).

The Laplace transform solution is preferable; it expresses part of the finite Fourier
transform solution in closed form.•

EXERCISES 10.5
Part A Heat Conduction

1. Solve Exercise 1(b) in Section 9.1.

2. Solve Exercise 1(c) in Section 9.1.

3. Laplace transforms do not handle problems in polar coordinates efficiently when initial condi-
tions contain unspecified functions. To illustrate this, find the Laplace transform of the PDE
for Exercise 1(a) in Section 9.1. How difficult is it to solve the ODE in Ũ(r, s)?

4. Solve Example 9.5 in Section 9.2.

5. (a) An infinitely long cylinder of radius a is initially at temperature 0◦C throughout. If the
surface r = a has variable temperature f(t) for t > 0, find the temperature inside the
cylinder.

(b) Simplify the solution when f(t) = U , a constant. Do you obtain the solution to Exercise 4?

6. Solve Exercise 2(b) in Section 9.2.

7. (a) A cylinder occupying the region 0 ≤ r ≤ a, 0 ≤ z ≤ L, is initially at constant tempera-
ture U0

◦C throughout. What is the initial boundary value problem for temperature in the
cylinder if its surface is held at 0◦C for t > 0?

(b) If a finite Fourier transform is used to remove the z-variable from the problem in U(r, z, t),
what is the initial boundary value problem for Ũ(r, µm, t) (where µm = mπ/L are eigenvalues
associated with this transform)?
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(c) Show that when the Laplace transform is applied to the PDE in Ũ(r, µm, t), the transform
function ˜̃U (r, µm, s) must satisfy

r
d2 ˜̃U
dr2

+
d ˜̃U
dr

− r
( s
k

+ µ2
m

)
˜̃U = −rU01̃m

k
, 0 < r < a,

˜̃U(a, µm, s) = 0,

where 1̃m =
√

2L[1 + (−1)m+1]/(mπ) is the finite Fourier transform of the unity function.
(d) Verify that the solution for ˜̃U(r, µm, s) is

˜̃U(r, µm, s) =
U01̃m

s+ kµ2
m

[
1 −

J0(
√
µ2

m + s/kri)
J0(
√
µ2

m + s/kai)

]
.

(e) Prove that ˜̃U(r, µm, s) has a removable singularity at s = −kµ2
m and poles of order 1 at

s = −k(λ2
n +µ2

m) where J0(λna) = 0. Show that the residues of est ˜̃U (r, µm, s) at these poles
are

2U01̃m

aλn
e−k(λ2

n+µ2
m)t J0(λnr)

J1(λna)
.

(f) Finally, invert the Laplace transform and the finite Fourier transform to find U(r, z, t).

Vibrations

8. Solve Exercise 23 in Section 9.1.

9. Solve Exercise 24 in Section 9.1.

10. Solve Exercise 23 in Section 9.2 in the nonresonance case.
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CHAPTER 11 FOURIER AND HANKEL TRANSFORMS

§11.1 Introduction

In Chapters 3–9 we restricted consideration to problems on bounded spatial do-
mains, but many important problems take place on infinite or semi-infinite do-
mains. For example, suppose a rod of infinite length is initially at temperature
f(x), −∞ < x < ∞. The initial value problem for temperature U(x, t) in the rod
when the sides are insulated is

∂U

∂t
= k

∂2U

∂x2
, −∞ < x <∞, t > 0, (11.1a)

U(x, 0) = f(x), −∞ < x <∞. (11.1b)

It may be argued that there is no such thing as an infinite rod. Physically it must
be finite, and therefore boundary effects must be taken into account. This can be
countered by stating that, for small t, the rod may be so long that boundary effects
are negligibly small in that part of the rod under consideration. Consequently, if
there is a simple solution to the infinite problem that is an excellent approximation
to the Fourier series solution of the bounded problem, then clearly there is an
advantage in considering the infinite problem.

In this chapter we illustrate that separation of variables on problems with infi-
nite spatial domains leads to integral representations of the solution called Fourier
integrals. The Fourier integral replaces the Fourier series representation for finite
intervals; it is direct result of the fact that eigenvalues of the separated equation
form a continuous, rather than discrete, set. When the solution of an infinite spa-
tial problem is known to be even or odd, the Fourier integral takes on a simplified
form called the Fourier cosine or sine integral. These integrals also arise naturally
in problems on semi-infinite intervals (0 < x < ∞) when the boundary condition
at x = 0 is Neumann or Dirichlet. Generalized Fourier integrals arise when the
boundary condition at x = 0 is of Robin type. Associated with each Fourier in-
tegral is an integral transform that provides a convenient alternative to separation
of variables. These transforms are as valuable for homogeneous problems as they
are for nonhomogeneous problems (unlike finite Fourier transforms, which are not
normally used on homogeneous problems.)

We begin by illustrating the continuous nature of “eigenvalues” for infinite
spatial problems. Separation of variables U(x, t) = X(x)T (t) on problem 11.1 yields

X ′′ + αX = 0, T ′ + kαT = 0, α = constant. (11.2)

The solution for T (t) is Ce−kαt, which clearly indicates that α must be nonnegative.
We therefore set α = λ2, in which case

X(x) = A cosλx+B sin λx. (11.3)

Alternatively, we could argue that the solution X(x) of X ′′ + αX = 0 must be
bounded as x → ±∞, and this would again imply that α be nonnegative. Thus,
any function of the form

e−kλ2t(A cosλx+ B sinλx)
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for arbitrary A, B, and λ satisfies PDE 11.1a. For problems on bounded intervals,
boundary conditions determine a discrete set of eigenvalues λn and an equation
relating A and B. Separated functions are then superposed as infinite series. For
infinite intervals, no boundary conditions exist, and hence A, B, and λ are all
arbitrary. But suppose for the moment that A and B are functions of λ. It is
straightforward to show that when the integral

U(x, t) =
∫ ∞

0

e−kλ2t[A(λ) cosλx+B(λ) sinλx] dλ (11.4)

is suitably convergent so that integrations with respect to λ may be interchanged
with differentiations with respect to x and t, such functions satisfy 11.1a (see Exer-
cise 2). This integral is a superposition of separated functions over all values of the
parameter λ, and it satisfies PDE 11.1a for arbitrary A(λ) and B(λ). To determine
these functions, we demand that U(x, t) as defined by the integral in equation 11.4
satisfy initial condition 11.1b:

f(x) =
∫ ∞

0

[A(λ) cosλx+ B(λ) sinλx] dλ, −∞ < x <∞. (11.5)

The solution of problem 11.1 is therefore defined by improper integral 11.4, provided
we can find functionsA(λ) andB(λ) satisfying equation 11.5. Equation 11.5 is called
the Fourier integral representation of f(x); it is the integral analogue of the
Fourier series of a periodic function. In Section 11.2 we investigate conditions under
which a function has a Fourier integral representation, and we determine formulas
for A(λ) and B(λ).

EXERCISES 11.1

1. Why does the integral superposition in equation 11.4 not extend over the interval −∞ < λ <∞?

2. Show that if partial derivatives of the improper integral in 11.4 with respect to x and t may be
interchanged with the λ-integation, then U(x, t) satisfies PDE 11.1a.
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§11.2 The Fourier Integral Formulas

To state conditions under which the Fourier integral of a function represents the
function, we require the concept of absolute integrability.

Definition 11.1 A function f(x) is said to be absolutely integrable on the interval −∞ < x <∞

if
∫ ∞

−∞
|f(x)| dx converges.

For example, the functions e−x2
and (x2 + 1)−1 are absolutely integrable on

−∞ < x <∞, but x, sinx, and 1/
√
|x| are not.

Corresponding to Theorem 3.2 in Section 3.1 for Fourier series, we have the
following result for Fourier integrals.

Theorem 11.1 If f(x) is piecewise continuous on every finite interval and absolutely integrable on
−∞ < x <∞, then at every x at which f(x) has a right- and left-derivative,

f(x+) + f(x−)
2

=
∫ ∞

0

[A(λ) cosλx+ B(λ) sinλx] dλ (11.6a)

provided A(λ) and B(λ) are calculated by the formulas

A(λ) =
1
π

∫ ∞

−∞
f(x) cosλxdx, B(λ) =

1
π

∫ ∞

−∞
f(x) sinλx dx. (11.6b)

Equation 11.6 is called the Fourier integral formula for the function f(x).
It is verified in Appendix B. Since functions that are piecewise smooth must have
right- and left-derivatives, we may state the following corollary to Theorem 11.1.

Corollary If f(x) is absolutely integrable on −∞ < x < ∞ and piecewise smooth on every
finite interval, then f(x) can be expressed in Fourier integral form 11.6.

One of the most important functions that we encounter in this chapter is con-
tained in the following example.

Example 11.1 Find the Fourier integral representation of the Gaussian f(x) = e−ax2
, a > 0 a

constant.

Solution The function and its derivative are continuous, and the well-known
result from statistics

∫ ∞

−∞
e−ax2

dx =
√
π

a
, (11.7)

shows that the function is absolutely integrable (see Exercise ‘stat Int’ for verifi-
cation of this formula). Hence, the function has a Fourier integral representation

e−ax2
=
∫ ∞

0

[A(λ) cosλx+B(λ) sinλx] dλ

where

A(λ) =
1
π

∫ ∞

−∞
e−ax2

cosλx dx and B(λ) =
1
π

∫ ∞

−∞
e−ax2

sin λxdx.
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To evaluate A(λ), we note that the presence of the exponential e−ax2
permits dif-

ferentiation under the integral to obtain

dA

dλ
=

1
π

∫ ∞

−∞
−xe−ax2

sin λxdx.

Integration by parts now gives

dA

dλ
=

1
π

{
e−ax2

2a
sin λx

}∞

−∞

− 1
π

∫ ∞

−∞

e−ax2

2a
λ cosλx dx = − λ

2a
A(λ).

In other words, A(λ) must satisfy the ODE

dA

dλ
+

λ

2a
A = 0.

An initial condition for this differential equation is

A(0) =
1
π

∫ ∞

−∞
e−ax2

dx =
1√
aπ
.

The solution of this problem is

A(λ) =
1√
aπ
e−λ2/(4a).

Because e−ax2
sinλx is an odd function, we quickly conclude that B(λ) = 0. We

may therefore write that

e−ax2
=
∫ ∞

0

e−λ2/(4a)

√
aπ

cosλxdλ =
1√
aπ

∫ ∞

0

e−λ2/(4a) cosλx dλ.

An alternative derivation of A(λ) using complex contour integrals is described in
Exercise 12. Figures 11.1 illustrate convergence of this improper integral to e−ax2

for three values of a. Figure 11.1a is a plot of e−x2/100 and its Fourier integral
representation on the interval 0 ≤ x ≤ 20 using an upper limit of integration equal
to 1 to approximate the improper integral; the curves are indistinguishable. Figure
11.1b is a plot of e−x2

and its Fourier integral representation for 0 ≤ x ≤ 3 using
an upper limit of 10; once again the curves are indistinguishable. Figure 11.1c is a
plot of e−100x2

and its Fourier integral representation on the interval 0 ≤ x ≤ 0.3
using an upper limit of 25; it is not an adequate representation. In Figure 11.1d,
we have used an upper limit of 50, and the representation is indistinguishable from
the Gaussian.•

x2010

1

x

1

1 2

Figure 11.1a Figure 11.1b
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x0.20.1

1

x0.20.1

1

Figure 11.1c Figure 11.1d

Using a finite value for the upper limit of integration in formula 11.6a, as we
did in this example, is equivalent to taking the partial sum of a Fourier series to
approximate the series.

When a function f(x) satisfying the conditions of Theorem 11.1 (or its corol-
lary) is even, it is obvious that

A(λ) =
2
π

∫ ∞

0

f(x) cosλx dx, B(λ) = 0. (11.8b)

in which case

f(x+) + f(x−)
2

=
∫ ∞

0

A(λ) cosλxdλ. (11.8a)

This result is called the Fourier cosine integral formula. The function e−kx2
in

Example 11.1 is represented in the form of a Fourier cosine integral.

Example 11.2 Find the Fourier integral representation for the
function

f(x) =
{
k(L− |x|)/L, |x| ≤ L
0, |x| > L

.

Solution Because f(x) is even (Figure 11.2), it
has a cosine integral representation, where

y

x

k

L L-

Figure 11.2

A(λ) =
2
π

∫ ∞

0

f(x) cosλx dx =
2
π

∫ L

0

k

L
(L− x) cosλxdx

=
2k
πL

{
L− x

λ
sin λx− 1

λ2
cosλx

}L

0

=
2k
πLλ2

(1− cosλL).

Since f(x) is continuous, we may write

f(x) =
∫ ∞

0

2k
πLλ2

(1− cosλL) cosλxdλ =
2k
πL

∫ ∞

0

1− cosλL
λ2

cosλx dλ.

Figure 11.3a shows how the Fourier cosine integral approximates f(x) for x > 0
when the infinite interval of integration for the improper integral is replaced by the
finite interval 0 ≤ λ ≤ 5. The approximation is better in Figure 11.3b when the
interval of integration is 0 ≤ λ ≤ 10.•



432 SECTION 11.2

x

k

k

L L

/2

2
x

k

k

L L

/2

2

Figure 11.3a Figure 11.3b

When f(x) is an odd function, coefficient A(λ) = 0, and f(x) may be repre-
sented by the Fourier sine integral formula

f(x+) + f(x−)
2

=
∫ ∞

0

B(λ) sinλx dλ, (11.9a)

where

B(λ) =
2
π

∫ ∞

0

f(x) sinλx dx. (11.9b)

Example 11.3 Find the Fourier integral representation for the
function

(sgnx)e−|x| =
{
e−x, x > 0
−ex, x < 0

.

Solution Because the function is odd (Figure 11.4), it
has a sine integral representation, where

y

x

1

-1

Figure 11.4

B(λ) =
2
π

∫ ∞

0

e−x sinλx dx =
2
π

{
−e−x

1 + λ2
(sinλx+ λ cosλx)

}∞

0

=
2λ

π(1 + λ2)
.

Hence,

(sgnx)e−|x| =
∫ ∞

0

2λ
π(1 + λ2)

sinλx dλ,

provided the function is assigned the value zero at x = 0. Figure 11.5a shows how
the Fourier sine integral approximates f(x) for x > 0 when the infinite interval of
integration for the improper integral is replaced by the finite interval 0 ≤ λ ≤ 10.
The approximation is better in Figure 11.5b when the interval of integration is
0 ≤ λ ≤ 20. Convergence of the improper integral is much slower in this example,
compared to previous examples, due to the discontinuity of the function at x = 0.•

x

1

1 2 3 4 5 x

1

1 2 3 4 5

Figure 11.5a Figure 11.5b
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The Fourier sine and cosine integral formulas also provide integral represen-
tations for functions that are defined only for 0 < x < ∞. Indeed, when f(x) is
absolutely integrable on 0 < x < ∞, and f(x) is piecewise smooth on every finite
interval 0 ≤ x ≤ X, integrals 11.8 and 11.9 converge to [f(x+)+f(x−)]/2 for x > 0.
At x = 0, the Fourier cosine integral converges to f(0+), and the sine integral yields
the value zero.

Theorem 11.1 would seem to eliminate many functions that we might wish
to represent in the form of a Fourier integral. For instance, it would be quite
reasonable to have a sinusoidal initial temperature distribution f(x) in problem
11.1. But such a function is not absolutely integrable on −∞ < x <∞; absolutely
integrable functions must necessarily have limit zero as x → ±∞. Thus, Fourier
integrals cannot presently be used to solve problem 11.1 when f(x) is sinusoidal.
Generalized functions, the class of functions that contain the Dirac delta function as
a special case (see Section 2.1 and Chapter 12) can be used to weaken the condition
of absolute integrability. In this chapter, however, we shall maintain this restriction
unless otherwise specified and concentrate our attention on how Fourier integrals
and Fourier transforms are used to solve problems, rather than attempt to enlarge
the class of problems to which the techniques can be applied.

Fourier integral formula 11.6 can be used, in conjunction with separation of
variables, to solve problems with spatial domain −∞ < x < ∞. In many of these
problems, Fourier integral 11.6 reduces to the cosine or sine integral 11.8 or 11.9.
Additionally, sine and cosine integrals are useful for problems on the semi-infinite
domain 0 < x < ∞ when the boundary condition at x = 0 is Dirichlet or Neu-
mann. We choose not to give illustrations; that is, we shall not show how to use
Fourier integrals to solve homogeneous problems on infinite or semi-infinite inter-
vals, and we do so for the following reason. Finite Fourier transforms in Chapter
7 deal with nonhomogeneities in PDEs and boundary conditions for problems on
finite domains; they are not used on homogeneous problems where separation of
variables and generalized Fourier series suffice. Fourier transforms, which will be
introduced in Sections 11.3 and 11.5, once again handle nonhomogeneities in a PDE
or boundary condition (on infinite and semi-infinite intervals), but they often pro-
vide simpler solutions for homogeneous problems. As a result, it is preferable to
avoid separation of variables and Fourier integrals and use Fourier transforms on all
problems, homogeneous and nonhomogeneous.

EXERCISES 11.2
In Exercises 1–5 find the Fourier integral representation of the function. Draw
a graph of the function to which the integral converges. In addition, plot the
Fourier integral on the given interval using the suggested values of λ to illustrate
its approximation to f(x).

1. f(x) = e−a|x|, a > 0 constant Use a = 1 on −5 ≤ x ≤ 5 with 0 ≤ λ ≤ 5.

2. f(x) = h(x− a) − h(x− b), b > a constants. h(x− a) is the Heaviside unit step function
Use a = 1 and b = 2 on 0 ≤ x ≤ 3 with 0 ≤ λ ≤ 20.

3. f(x) =
{

(b/a)(a− |x|), |x| < a
0, |x| > a

, a > 0, b > 0 constants Use a = 1 and b = 1 on

−2 ≤ x ≤ 2 with 0 ≤ λ ≤ 10.
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4. f(x) =
{
b(a2 − x2)/a2, |x| < a
0, |x| > a

, a > 0, b > 0 constants Use a = 1 and b = 1 on

−2 ≤ x ≤ 2 with 0 ≤ λ ≤ 10.

5. f(x) = e−axh(x), a > 0 constant, where h(x) is the Heaviside unit step function. Use a = 1
on −1 ≤ x ≤ 3 with 0 ≤ λ ≤ 20.

6. What is the Fourier cosine integral for the function f(x) = e−kx2
(k > 0), defined only for

x ≥ 0?
In Exercises 7–10 f(x) is defined only for x ≥ 0. Find its Fourier sine and cosine
integral representations. To what does each integral converge at x = 0?

7. f(x) = h(x− a) − h(x− b), b > a > 0 constants (see Exercise 2)

8. f(x) =
{

(b/a)(a− |x− c|), |x− c| < a
0, |x− c| > a

, a, b, and c positive constants with c > a > 0

9. f(x) = e−ax cos bx, a > 0, b > 0 constants

10. f(x) = e−ax sin bx, a > 0, b > 0 constants

11. To evaluate

I =
∫ ∞

−∞
e−kx2

dx = 2
∫ ∞

0

e−kx2
dx,

we write

I2

4
=
(∫ ∞

0

e−kx2
dx

)(∫ ∞

0

e−ky2
dy

)
=
∫ ∞

0

∫ ∞

0

e−k(x2+y2) dx

and transform the double integral to polar coordinates. Show that I =
√
π/k.

12. In this exercise we use complex residue theory to evaluate A(λ) in Example 11.1.
(a) Transform the complex combination of real integrals

I =
∫ ∞

−∞
e−ax2

eiλx dx

by means of z = x− iλ/(2a) into the contour integral

I = e−λ2/(4a)

∫

C

e−az2
dz

along the line Im(z) = −iλ/(2a).

(b) Use the contour integral
∫
©∨

C′
e−az2

dz, where C ′ is the rectangle in the figure below, to

find I.
y

x
RR

C

i
k

z

z

=Im( )

=Re( )

2

-

l-

(c) Take real and imaginary parts of I to find A(λ) and B(λ).
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§11.3 The Fourier Transform

In this section we introduce the Fourier transform in order to solve nonhomoge-
neous initial boundary value problems on the infinite interval −∞ < x < ∞. But
as suggested in Section 11.2, they are also advantageous for solving homogeneous
problems. To obtain the transform, we express Fourier integral 11.6a in complex
form, reminiscent of the complex form for Fourier series (see Exercise 27 in Section
3.1),

f(x+) + f(x−)
2

=
∫ ∞

0

[
A(λ)

(
eiλx + e−iλx

2

)
+B(λ)

(
eiλx − e−iλx

2i

)]
dλ

=
∫ ∞

0

[
eiλx

(
A(λ) − iB(λ)

2

)
+ e−iλx

(
A(λ) + iB(λ)

2

)]
dλ

=
∫ ∞

0

eiλx

[
A(λ) − iB(λ)

2

]
dλ+

∫ −∞

0

eiλx

[
A(−λ) + iB(−λ)

2

]
(−dλ)

=
∫ ∞

0

C(λ)eiλxdλ+
∫ 0

−∞
C(λ)eiλxdλ =

∫ ∞

−∞
C(λ)eiλxdλ,

where

C(λ) =
{

[A(λ) − iB(λ)]/2, λ > 0
[A(−λ) + iB(−λ)]/2, λ < 0 .

But using equation 11.6b, we may write, for λ > 0,

C(λ) =
1
2π

∫ ∞

−∞
f(x) cosλx dx− i

2π

∫ ∞

−∞
f(x) sinλxdx =

1
2π

∫ ∞

−∞
f(x)e−iλxdx,

and for λ < 0,

C(λ) =
1
2π

∫ ∞

−∞
f(x) cos (−λx) dx+

i

2π

∫ ∞

−∞
f(x) sin (−λx)dx =

1
2π

∫ ∞

−∞
f(x)e−iλxdx.

If, as has been our custom, we define, or redefine, if necessary, f(x) as the average
value of left- and right-hand limits at any point of discontinuity, we have shown that
Fourier integral 11.6 may be expressed in the complex form

f(x) =
∫ ∞

−∞
C(λ)eiλxdλ where C(λ) =

1
2π

∫ ∞

−∞
f(x)e−iλxdx. (11.10a)

A somewhat more critical analysis of the improper integrals leading to the first
integral in 11.10a indicates that the integral should be taken in the sense of Cauchy’s
principal value,

f(x) = lim
R→∞

∫ R

−R

C(λ)eiλxdx (11.10b)

(see Exercise 32). We shall continue to write the integral in 11.10a for brevity, but
if convergence difficulties arise, we shall replace it with 11.10b.

It is clear that by redefining C(λ), we could also write

f(x) =
1
2π

∫ ∞

−∞
C(λ)eiλxdλ where C(λ) =

∫ ∞

−∞
f(x)e−iλxdx, (11.11)
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or,

f(x) =
1√
2π

∫ ∞

−∞
C(λ)eiλxdλ where C(λ) =

1√
2π

∫ ∞

−∞
f(x)e−iλxdx. (11.12)

Any of the these three pairs can be used to define the Fourier transform; we pick
the second simply because it involves the factor 2π only in the latter stages of
applications. It is customary to use ω in place of λ for Fourier transforms.

Definition 11.2 The Fourier transform of a function f(x) is defined as

f̃(ω) = F{f(x)}(ω) =
∫ ∞

−∞
f(x)e−iωxdx. (11.13a)

The associated inverse transform is

f(x) = F−1{f̃(ω)}(x) =
1
2π

∫ ∞

−∞
f̃(ω)eiωxdω. (11.13b)

Convergence of the integral is guaranteed when f(x) is piecewise smooth on
every finite interval and absolutely integrable on −∞ < x < ∞. When these
conditions are satisfied, definition 11.13 leads to a continuous Fourier transform
function. We state this as the first of many properties of Fourier transforms.

Theorem 11.2 The Fourier transform of a function that is piecewise smooth on every finite interval
and absolutely integrable for −∞ < x <∞ is a continuous function.

Absolute integrability of f(x) is a much more demanding condition than being
of exponential order for existence of the Laplace transform of a function f(t). This
is due to the fact that in the definition of the Laplace transform, the factor e−st

suppresses f(t) substantially for large t, but the factor e−iωx = cosωx− i sinωx in
definition 11.13 has no such effect, the function f(x) must be integrable on its own.
This effectively eliminates most of the functions that we worked with in Chapter 10
such as polynomials, sines and cosines, and exponentials; they are not absolutely
integrable on the real line.

We have introduced Fourier transform 11.13 in order to solve (initial) boundary
value problems on infinite intervals −∞ < x <∞. We shall show how to do this in
Section 11.4. Although the finite Fourier transform of Chapter 7 was introduced for
similar problems on finite domains, our treatment of the finite and “infinite” trans-
forms are quite different. There are many finite Fourier transforms (each associated
with a Sturm-Liouville system); because of this, we made no attempt to discuss
general properties of finite Fourier transforms. As a result, when we apply a finite
Fourier transform to a PDE, we must work our way through the integrals involved,
bringing into play boundary and/or initial conditions at appropriate times. On
the other hand, because there are only three Fourier transforms (the above trans-
form and the sine and cosine transforms in Section 11.5), it is possible to develop
properties of these transforms that make it unnecessary to return to their integral
definitions when solving (initial) boundary value problems. This makes it much
simpler to apply Fourier transforms; it is reminiscent of our treatment of Laplace
transforms in Chapter 10.

Although we have used the tilde notation, f̃ , for both the Laplace transform and
the Fourier transform, and we will also use it for Fourier sine and cosine transforms
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in Section 11.5, context always makes it clear which transform is appropriate. In
addition, none of the problems that we consider in this chapter simultaneously use
more than one type of transform.

Equations 11.13 should be compared with equations 7.3 in Chapter 7 for the
finite Fourier transform. Finite Fourier transforms are associated with Sturm-
Liouville systems. When [λn, yn(x)] are eigenpairs of Sturm-Liouville system 5.3
in Chapter 5, the finite Fourier transform of a function f(x) is

f̃(λn) =
∫ b

a

p(x)f(x)yn(x) dx,

and the inverse transform is

f(x) =
∞∑

n=1

f̃(λn)yn(x).

The finite Fourier transform is a sequence of numbers {f̃(λn)}, or a discrete func-
tion defined only for integers n; the inverse transform is a superposition over all
eigenfunctions. Fourier transform 11.13a defines a continuous function f̃(ω), and
this is due to the fact that “eigenfunctions” of the differential equation

d2X

dx2
+ ω2X = 0, X(x) bounded,

are A cosωx + B sinωx, where “eigenvalues” ω are arbitrary. Inverse transform
11.13b is an integral superposition over all ω.

It is straightforward to identify the real and imaginary parts of f̃(ω),

f̃(ω) =
∫ ∞

−∞
f(x)e−iωxdx =

∫ ∞

−∞
f(x)(cosωx− i sinωx) dx

=
∫ ∞

−∞
f(x) cosωxdx− i

∫ ∞

−∞
f(x) sinωx dx.

If f(x) is an even function, then the second of these integrals vanishes, and f(x) is
odd, the first vanishes.

Theorem 11.3 When f(x) is an even function, its Fourier transform is a real function, given by

f̃(ω) =
∫ ∞

−∞
f(x) cosωxdx = 2

∫ ∞

0

f(x) cosωx dx; (11.14a)

and when f(x) is an odd function, its Fourier transform is purely imaginary, given
by

f̃(ω) = −i
∫ ∞

−∞
f(x) sinωx dx = −2i

∫ ∞

0

f(x) sinωxdx. (11.14b)

Example 11.4 Find the Fourier transform of the function
in Figure 11.6 where a > 0 is a constant.

Solution Because the function is
continuous and absolutely integrable
on the real line, its Fourier transform
exists. Furthermore, since the function

x

e ax-

-e ax-

1

-1
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is odd, its Fourier transform is given Figure 11.6
by equation 11.14b,

f̃(ω) = −2i
∫ ∞

0

e−ax sinωxdx.

We could integrate this by parts, but it is easier to use a complex integral,

f̃(ω) = −2i Im
[∫ ∞

0

e−axeiωxdx

]
= −2i Im

[∫ ∞

0

e(−a+ωi)xdx

]

= −2i Im

[{
e(−a+ωi)x

−a+ ωi

}∞

0

]
= −2i Im

[
1

a− ωi

]
=

−2ωi
a2 + ω2

.•

Because the real and imaginary parts of the Fourier transform are improper
integrals (see equation 11.13), they can often be calculated using residues from the
theory of complex functions. This is especially so when f(x) is a rational function
of x. We illustrate this in the next example.

Example 11.5 Find the Fourier transform of the function f(x) =
1

a2 + x2
, where a > 0 is a con-

stant.

Solution Because the function is continuous and absolutely integrable on the
real line, its Fourier transform exists. Furthermore, since the function is even, its
Fourier transform is given by

f̃(ω) =
∫ ∞

−∞

cosωx
a2 + x2

dx.

We use residues to evaluate this integral. According to equation D.17 in Appendix
D,

f̃(ω) = −2π Im
{

Res
[

eiωz

a2 + z2
, ai

]}
,

provided ω > 0. For ω > 0 then,

f̃(ω) = −2π Im
{

lim
z→ai

[
(z − ai)eiωz

(z + ai)(z − ai)

]}
=
π

a
e−aω.

The integral definition of f̃(ω) makes it clear that f̃(ω) is an even function of ω.
Consequently, when ω < 0, we write that

f̃(ω) = f̃(−ω) =
π

a
e−a(−ω) =

π

a
eaω.

Both cases ω > 0 and ω < 0 are contained in

f̃(ω) =
π

a
e−a|ω|.

This result is also valid for ω = 0 since

f̃(ω) =
∫ ∞

−∞

1
a2 + x2

dx =
π

a
.•

In our third example, the function f(x) is defined only over a finite interval so
that the improper integral in definition 11.13 reduces to an ordinary integral.
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Example 11.6 Find the Fourier transform for the function
in Figure 11.7.

Solution Since the function is even,
continuous, and absolutely integrable, its
Fourier transform is given by equation 11.14a,

f̃(ω) = 2
∫ ∞

0

f(x) cosωx dx

= 2
∫ 1

0

(1− x) cosωx dx.

1

-1 1 x

Integration by parts gives Figure 11.7

f̃(ω) = 2
{

1
ω

(1− x) sinωx
}1

0

− 2
∫ 1

0

− 1
ω

sinωx dx (provided ω 6= 0)

=
2
ω

{
− 1
ω

cosωx
}1

0

=
2
ω2

(1 − cosω) =
4
ω2

sin2 ω

2
.

When ω = 0,

f̃(0) = 2
∫ ∞

0

f(x) dx = 2
∫ 1

0

(1 − x) dx = 2
{
x− x2

2

}1

0

= 1.

Theorem 11.2 promised continuity of the Fourier transform. The only value of ω at
which continuity could be questioned is ω = 0. Since f̃(0) is defined, continuity is
established if limω→0 f̃(ω) = 1 also. This is easily verified

lim
ω→0

f̃(ω) = lim
ω→0

(
4
ω2

sin2 ω

2

)
= lim

ω→0

[
sin (ω/2)
ω/2

]2
= 1.

In other words, we can write that for all ω,

f̃(ω) =
4
ω2

sin2 ω

2
,

knowing that the limit as ω → 0 gives the value of the transform at ω = 0.•

One of the most important functions in the application of Fourier transforms
to heat conduction problems is contained in the following example.

Example 11.7 Find the Fourier transform of e−ax2
.

Solution The function is continuous and absolutely integrable (see Example
11.1). Once again the function is even, and therefore its Fourier transform is given
by equation 11.14a,

f̃(ω) = 2
∫ ∞

0

e−ax2
cosωxdx.

This integral was evaluated in Example 11.1 and Exercise 12 of Section 11.2. The
result is

f̃(ω) =
√
π

a
e−ω2/(4a).•
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The Inverse Fourier Transform

When f̃ is the Fourier transform of f , we say that f is the inverse Fourier
transform of f̃ , and we write f = F−1{f̃}. It can be retrieved from its transform
with the following improper integral

f(x) = F−1{f̃}(x) =
1
2π

∫ ∞

−∞
f̃(ω)eiωxdω. (11.15)

Should convergence difficulties be associated with this integral, it should be inter-
preted as its Cauchy’s principal value,

f(x) =
1
2π

∫
\

∞

−∞
f̃(ω)eiωxdω =

1
2π

lim
R→∞

∫ R

−R

f̃(ω)eiωxdω. (11.16)

Furthermore, be reminded that these equations are valid with the agreement that
f(x) is defined, or redefined if necessary, at points of discontinuity as its average of
right- and left-hnad limits.

Contour integral 10.24 for the inverse Laplace transform was unusable, but
fortunately, it was replaced by residues. The improper integral in equation 11.15
for the inverse Fourier transform is calculationally viable, but there are often more
efficient ways to evaluate the inverse transform.

In order that definitions of Fourier transform and inverse Fourier transforms
be more symmetric, some authors multiply each of the integrals in equations 11.13
and 11.15 by 1/

√
2π. Others interchange the exponentials using eiωx for the Fourier

transform and e−iωx for the inverse transform. Whichever convention is adopted,
solutions of initial boundary value problems are ultimately identical.

Corresponding to Theorem 11.3 for the Fourier transform, we have the following
for the inverse transform.

Theorem 11.4 When f̃(ω) is a (real and) even function, its inverse Fourier transform is given by

f(x) =
1
2π

∫ ∞

−∞
f̃(ω) cosωx dω =

1
π

∫ ∞

0

f̃(ω) cosωxdω; (11.17a)

and when f̃(ω) is a (real and) odd function, its inverse Fourier transform is given
by

f(x) =
i

2π

∫ ∞

−∞
f̃(ω) sinωx dω =

i

π

∫ ∞

0

f̃(ω) sinωxdω. (11.17b)

Example 11.8 Find the inverse Fourier transform of f̃(ω) =
1

(a2 + ω2)2
, where a > 0 is a constant.

Solution Because the transform is even, we can use equation 11.17a,

f(x) =
1
2π

∫ ∞

−∞

cosωx
(a2 + ω2)2

dω.

We use residues to evaluate this integral. According to equation D.17a in Appendix
D,

f̃(ω) =
1
2π

{
−2π Im

{
Res

[
eixz

(a2 + z2)2
, ai

]}}
,
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provided x > 0. For x > 0 then,

f(x) = − Im
{

Res
[

eixz

(a2 + z2)2
, ai

]}
= − Im

{
lim

z→ai

d

dz

[
(z − ai)2eixz

(z + ai)2(z − ai)2

]}

= − Im
{

lim
z→ai

[
ix(z + ai)2eixz − 2eixz(z + ai)

(z + ai)4

]}

= − Im
{
ix(2ai)e−ax − 2e−ax

(2ai)3

}
=

1
4a3

(1 + ax)e−ax.

The integral representation of f(x) makes it clear that f(x) is an even function of
x. Consequently, when x < 0, we write that

f(x) = f(−x) =
1

4a3
(1 − ax)eax.

Both cases x > 0 and x < 0 are contained in

f(x) =
1

4a3
(1 + a|x|)e−a|x|.

In addition, this formula is also valid at x = 0 since

f(0) =
1
2π

∫ ∞

−∞

1
(a2 + ω2)2

dω =
1

4a3
.•

Example 11.9 Find the inverse Fourier transform of f̃(ω) = e−aω2
?

Solution We could evaluate the improper integral in equation 11.15, but it is
easier to use the result of Example 11.7,

F
{
e−ax2

}
=
√
π

a
e−ω2/(4a).

If we replace a with 1/(4a), we get

F
{
e−x2/(4a)

}
=

√
4πae−aω2

and therefore F−1
{
e−aω2

}
=

1
2
√
aπ
e−x2/(4a).•

Example 11.10 Find the Fourier transform for the function f(x) = h(x+a)−h(x−a) (Figure 11.8a)
and illustrate graphically that integral 11.17a converges to [f(x+) + f(x−)]/2.

Solution Because the function is even, its Fourier transform is given by equation
11.14a,

f̃(ω) = 2
∫ ∞

0

[h(x+ a) − h(x− a)] cosωxdx = 2
∫ a

0

cosωx dx = 2
{

sinωx
ω

}a

0

=
2
ω

sin aω,

provided ω 6= 0. But

f̃(0) = 2
∫ ∞

0

[h(x+ a) − h(x− a)] dx = 2
∫ a

0

dx = 2a.

This is the limit of f̃(ω) as ω → 0, and therefore we write for all ω,

f̃(ω) =
2
ω

sin aω.
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Since f̃(ω) is an even function and f(x) has discontinuities, we use formula 11.17a
to write

f(x+) + f(x−)
2

=
2
π

∫ ∞

0

1
ω

sin aω cosωx dω.

We have shown approximations to this improper integral with a = 1 in Figures
11.8a,b using upper limits of integration equal to 50 and 100, respectively.•

x

y
1

1/2

-2 -1 1 2 x

y
1

1/2

-2 -1 1 2

Figure 11.8a Figure 11.8b

We use Fourier transforms to solve (initial) boundary value problems on infinite
domains. We shall show how to do this in Section 11.4. We prepare the way by
developing properties of the transform and its inverse that make it unnecessary to
return to integral definitions 11.13 and 11.15 each time a Fourier transform and its
inverse are required. Many of these properties are sufficiently easy to verify that
proofs are relegated to the exercises. First, we note that the Fourier transform and
its inverse are linear operators; that is,

F{c1f1 + c2f2} = c1F{f1} + c2F{f2}, (11.18a)
F−1{c1f̃1 + c2f̃2} = c1F−1{f̃1} + c2F−1{f̃2}. (11.18b)

(See Exercise 1 for verification.)

Shifting Properties of the Fourier Transform

Like shifting property 10.3 for the Laplace transform, we have the following
shifting property for the Fourier transform.

Theorem 11.5 When f(x) is piecewise smooth on every finite interval, and f(x) and e−axf(x) are
absolutely integrable on the real line,

F{e−axf(x)}(ω) = f̃(ω − ai), (11.19a)
F−1{f̃(ω − ai)}(x) = e−axf(x). (11.19b)

(See Exercise 3 for a proof).

Example 11.11 Find the Fourier transform of the function f(x) = e−bx[h(x+ a)− h(x− a)], where
a and b are positive constants.

Solution Example 11.10 derived the transform of h(x+ a) − h(x− a),

F{h(x+ a) − h(x− a)} =
2
ω

sin aω.

Equation 11.19a now gives

f̃(ω) =
2

ω − bi
sin a(ω − bi).•
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Example 11.12 Find the Fourier transform of the function f(x) = e−axh(x), where a is a positive
constant. Can you use property 11.19a?

Solution We cannot use property 11.19a since h(x) is not absolutely integrable
on the real line. We return to definition 11.13,

f̃(ω) =
∫ ∞

−∞
e−axh(x)e−iωx dx =

∫ ∞

0

e−(a+ωi)x dx =
{
e−(a+ωi)x

−(a+ ωi)

}∞

0

=
1

a+ ωi
.•

We cannot help but notice the similarity of this result to the Laplace transform
1/(s+a) for the function e−at. The function e−ax does not have a Fourier transform
(since it is not absolutely integrable on the real line), but e−axh(x) is absolutely
integrable. General discussions of this situation can be found in Exercise 33.

The second shifting property is contained in the next theorem. It should be
compared to property 10.4 of the Laplace transform.

Theorem 11.6 When f(x) is piecewise smooth on every finite interval and absolutely integrable on
the real line,

F{f(x− a)}(ω) = e−iaωF{f}(ω), (11.20a)
F−1{e−iaωf̃}(x) = F−1{f̃}(x− a). (11.20b)

(See Exercise 2 for verification).

Example 11.13 Find the Fourier transform of the function in
Figure 11.9.

Solution This is the function
in Figure 11.7 translated 3 units
to the right. Hence,

f̃(ω) =
4e−3ωi

ω2
sin2 ω

2
.•

1

2 4 x3

Figure 11.9

Multiplication by xn

The following theorem indicates that multiplying a function f(x) by xn results in
its Fourier transform being differentiated n times. Compare this to the analogous
property 10.5 for the Laplace transform.

Theorem 11.7 If f(x) is piecewise smooth on every finite interval and f(x) and xnf(x), n > 0 an
integer, are absolutely integrable on the real line, then

F{xnf(x)}(ω) = in
dn

dωn
[F{f}(ω)], (11.21a)

F−1{f̃ (n)(ω)}(x) = (−ix)nF−1{f̃}(x). (11.21b)

(See Exercise 4 for a proof.)

Example 11.14 Find the Fourier transform of f(x) = x2e−ax2
.

Solution Since F{e−ax2} =
√
π/ae−ω2/(4a) (see Example 11.7), property 11.21a

gives
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F{x2e−ax2
} = i2

d2

dω2

[√
π

a
e−ω2/(4a)

]
=

√
π

2a3/2

(
1 − ω2

2a

)
e−ω2/(4a).•

Transforms of Derivatives

The following theorem and its corollary eliminate much of the work when
Fourier transforms are applied to (initial) boundary value problems.

Theorem 11.8 Suppose f(x) is continuous for −∞ < x < ∞ and f ′(x) is piecewise continuous on
every finite interval. If both functions are absolutely integrable on −∞ < x < ∞,
then

F{f ′(x)} = iωF{f(x)}, (11.22a)

F−1{iωf̃(ω)} =
d

dx
[F−1{f̃(ω)}]. (11.22b)

Proof When integration by parts is used on the definition of F{f ′(x)},

F{f ′(x)} =
∫ ∞

−∞
f ′(x)e−iωxdx =

{
f(x)e−iωx

}∞

−∞
−
∫ ∞

−∞
f(x)(−iω)e−iωxdx

= iω

∫ ∞

−∞
f(x)e−iωxdx = iωF{f(x)}.

It is straightforward to extend this result to second derivatives (see the corollary
below) and higher-order derivatives (see Exercise 5).

Corollary Suppose f(x) and f ′(x) are continuous for −∞ < x < ∞ and f ′′(x) is piecewise
continuous on every finite interval. If all three functions are absolutely integrable
on −∞ < x <∞, then

F{f ′′(x)} = −ω2F{f(x)}, (11.23a)

F−1{−ω2f̃(ω)} =
d2

dx2
[F−1{f̃(ω)}]. (11.23b)

Convolutions and the Fourier Transform

In applications of Fourier transforms to initial boundary value problems, it is
often necessary to find the inverse transform of the product of two functions f̃ and g̃,
both of whose inverse transforms are known; that is, we require F−1{f̃ g̃}, knowing
that F−1{f̃} = f and F−1{g̃} = g. In Theorem 11.9, it is shown that

F−1{f̃(ω)g̃(ω)} =
∫ ∞

−∞
f(v)g(x− v) dv.

This integral, called the convolution of the functions f(x) and g(x), is often given
the notation (f ∗ g)(x) or f(x) ∗ g(x):

(f ∗ g)(x) = f(x) ∗ g(x) =
∫ ∞

−∞
f(v)g(x− v) dv. (11.24)

Comparison of convolutions 10.8 for Laplace transforms and 11.24 for Fourier trans-
forms indicates that integrands are identical, only limits of integration change.
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Theorem 11.9 Suppose that f(x) and g(x) are piecewise smooth on every finite interval and ab-
solutely integrable on −∞ < x <∞. If either f̃(ω) or g̃(ω) is absolutely integrable
on −∞ < ω <∞, then

F−1{f̃ g̃} = f ∗ g. (11.25)

Proof Let us assume that g̃(ω) is absolutely integrable. (The proof is similar if
f̃(ω) is absolutely integrable.) By equation 11.13b,

F−1{f̃(ω)g̃(ω)}(x) =
1
2π

∫ ∞

−∞
f̃(ω)g̃(ω)eiωxdω,

and when we substitute the integal definition of f̃(ω),

F−1{f̃(ω)g̃(ω)}(x) =
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(v)e−iωvdv

]
g̃(ω)eiωxdω.

The fact that f(x) and g̃(ω) are both absolutely integrable permits us to interchange
the order of integration and write

F−1{f̃(ω)g̃(ω)}(x) =
∫ ∞

−∞

[
1
2π

∫ ∞

−∞
g̃(ω)eiω(x−v)dω

]
f(v) dv =

∫ ∞

−∞
f(v)g(x− v) dv.

The simplicity of the proof of Theorem 11.9 is a direct result of the assumption
that g̃(ω) is absolutely integrable. This condition can be weakened, but because
functions that we encounter satisfy this condition, we pursue the discussion no
further.

By making a change of variable of integration in equation 11.24, it is easily
shown that convolutions are symmetric; that is, f∗g = g∗f . Other properties of con-
volutions are discussed in Exercise 6. An example of convolutions that we encounter
in heat conduction problems is finding the inverse transform of f̃(ω)e−kω2t where
f̃(ω) is the transform of an initial temperature distribution, k is thermal diffusivity,
and t is time. According to Example 11.9, F−1{e−kω2t} = [1/(2

√
kπt)]e−x2/(4kt),

and hence convolutions yield

F−1{f̃(ω)e−kω2t} =
∫ ∞

−∞
f(v)

1
2
√
kπt

e−(x−v)2/(4kt)dv =
1

2
√
kπt

∫ ∞

−∞
f(v)e−(x−v)2/(4kt)dv.

In this chapter, we use the Dirac delta function to model heat source at a point,
and a force applied to a vibrating string at a point. As a result, we need its Fourier
transform. With defining relation 2.13,

F{δ(x− x0)}(ω) =
∫ ∞

−∞
δ(x− x0)e−iωx dx = e−iωx0 . (11.26)

EXERCISES 11.3

1. Verify that the Fourier transform and its inverse are linear operators.

2. Verify property 11.20a.

3. Verify property 11.19a.
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4. Verify property 11.21a.
5. Verify property 11.23a.
6. Verify the following properties for convolutions:

f ∗ g = g ∗ f (11.27a)
f ∗ (kg) = (kf) ∗ g = k(f ∗ g), k = constant, (11.27b)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (11.27c)
f ∗ (g + h) = f ∗ g + f ∗ h (11.27d)

7. Verify the following shifting properties for the Fourier transform f̃(ω) = F{f}(ω):

F{f(x) cosax}(ω) =
f̃(ω − a) + f̃(ω + a)

2
, (11.28a)

F{f(x) sinax}(ω) =
f̃(ω − a) − f̃(ω + a)

2i
, (11.28b)

F−1{f̃(ω) cosaω}(x) =
f(x− a) + f(x+ a)

2
, (11.28c)

F−1{f̃(ω) sin aω}(x) =
f(x+ a) − f(x− a)

2i
. (11.28d)

8. (a) Show that

F{F{f}}(ω) = 2πf(−ω). (11.29)

(b) Illustrate the property in part (a) with the function f(x) = e−ax2
.

(c) Use equation 11.29 and Example 11.10 to find the Fourier transform of f(x) =
sin ax
x

.

(d) Does the result in part (c) violate Theorem 11.2? Explain.
In Exercises 9–12 use residues to find the Fourier transform of the function.

9. f(x) =
1

a4 + x4
, a > 0 constant 10. f(x) =

1
(a2 + x2)2

, a > 0 constant

11. f(x) =
x

(a2 + x2)2
, a > 0 constant 12. f(x) =

1
1 + x+ x2

In Exercises 13–26 find the Fourier transform of the function.
13. f(x) = e−a|x|, a > 0 constant 14. f(x) = xe−a|x|, a > 0 constant

15. f(x) = xe−ax2
, a > 0 constant 16. f(x) =

x

a2 + x2
, a > 0 constant

17. f(x) = |x|e−a|x|, a > 0 constant

18. f(x) = xne−axh(x), a > 0 constant, n ≥ 0 an integer

19. f(x) = h(x− a) − h(x− b), b > a constants

20. f(x) = x[h(x+ a) − h(x− a)], a > 0 constant

21. f(x) =
{

(b/a)(a− |x|), |x| < a
0, |x| > a

, a > 0, b > 0 constants

22. f(x) =
{
b(a2 − x2)/a2, |x| < a
0, |x| > a

, a > 0, b > 0 constants



SECTION 11.3 447

23. f(x) = e−kx2
cos ax, a > 0, k > 0 constants

24. f(x) = e−kx2
sin ax, a > 0, k > 0 constants

25. f(x) = cosax
[
h
(
x+

π

2a

)
− h

(
x− π

2a

)]
, a > 0 constant

26. f(x) = sin ax
[
h
(
x+

π

a

)
− h

(
x− π

a

)]
, a > 0 constant

The improper integrals in the next two exercises are required for evaluation of
the Fourier transforms in Exercise 29. These Fourier transforms are essential for
solving initial boundary value problems in Section 11.4.

27. (a) To evaluate the improper integrals

∫ ∞

0

coshαx
coshβx

cosωx dx and
∫ ∞

0

sinhαx
coshβx

sinωx dx,

where 0 < α < β, consider the contour integral∫
©∨

C

eαz

coshβz
eiωz dz =

∫
©∨

C

e(α+ωi)z

coshβz
dz,

where C is the contour in the figure
to the right. Use residues to show that
the value of the contour integral is

2π
β
eπ(−ω+αi)/(2β).

(b) Verify that integrals along the vertical line
segments approach zero as R → ∞.

Im

Re

2( )

-

i/

RR

b

b C

z

z

p

pi /

(c) Combine integrals along the horizontal line segments and take limits as R→ ∞ to show

that
∫ ∞

0

cosh (α+ ωi)x
coshβx

dx =
πeπ(−ω+αi)/(2β)

β[1 + eπ(−ω+αi)/β ]
.

(d) Finally, take real and imaginary parts to obtain
∫ ∞

0

coshαx
coshβx

cosωxdx =
π cos πα

2β cosh πω
2β

β
(
cosh πω

β + cos πα
β

) ,
∫ ∞

0

sinhαx
coshβx

sinωxdx =
π sin πα

2β sinh πω
2β

β
(
cosh πω

β + cos πα
β

) .

28. (a) To evaluate the improper integrals

∫ ∞

0

sinhαx
sinhβx

cosωxdx and
∫ ∞

0

coshαx
sinhβx

sinωx dx,
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where 0 < α < β, consider the contour integral∫
©∨

C

eαz

sinhβz
eiωz dz =

∫
©∨

C

e(α+ωi)z

sinhβz
dz,

where C is the contour in the figure
to the right. Use residues to show that
the value of the contour integral is

−2πi
β
eπ(−ω+αi)/β .

(b) Verify that integrals along the vertical line
segments approach zero as R → ∞.

Im

Re-

i/

RR

b

b C

z

z

p

pi /

2

rr-

(c) Prove that in the limit as r → 0, the integrals over the semi-circles at z = 0 and z = 2πi/β
have values

−πi
β

, and − πie2π(−ω+αi)/β

β
, respectively.

(d) Combine integrals along the horizontal line segments and the two semi-circles, and take
limits as R→ ∞ and r → 0 to show that

∫ ∞

0

sinh (α+ ωi)x
sinhβx

dx =
πi[1 − eπ(−ω+αi)/β ]
2β[1 + eπ(−ω+αi)/β ]

.

(e) Finally, take real and imaginary parts to obtain
∫ ∞

0

sinhαx
sinhβx

cosωxdx =
π sin πα

β

2β
(
cosh πω

β + cos πα
β

) ,
∫ ∞

0

coshαx
sinhβx

sinωxdx =
π sinh πω

β

2β
(
cosh πω

β + cos πα
β

) .

29. Use Exercises 27 and 28 to show that when 0 < α < β,

F
{

coshαx
coshβx

}
(ω) =

2π cos πα
2β cosh πω

2β

β
(
cosh πω

β
+ cos πα

β

) , F
{

sinhαx
coshβx

}
(ω) =

−2πi sin πα
β sinh πω

2β

β
(
cosh πω

β
+ cos πα

β

) ,

F
{

sinhαx
sinhβx

}
(ω) =

π sin πα
β

β
(
cosh πω

β + cos πα
β

) , F
{

coshαx
sinhβx

}
(ω) =

π sinh πω
β

β
(
cosh πω

β + cos πα
β

) .

30. (a) Show that

F−1{f(−ω)}(x) =
1
2π

F{f}(x). (11.30)

(b) Illustrate the property in part (a) with the function f(x) = e−ax2
.

(c) Use equation 11.30 and Exercise 29 to show that when 0 < α < β,

F−1

{
coshαω
coshβω

}
(x) =

cos πα
2β

cosh πx
2β

β
(
cosh πx

β + cos πα
β

) , F−1

{
sinhαω
coshβω

}
(x) =

−i sin πα
β

sinh πx
2β

β
(
cosh πx

β + cos πα
β

) ,

F−1

{
sinhαω
sinh βω

}
(x) =

sin πα
β

2β
(
cosh πx

β
+ cos πα

β

) , F−1

{
coshαω
sinhβω

}
(x) =

sinh πx
β

2β
(
cosh πx

β
+ cos πα

β

) .

31. Verify formally each of the following results, often called Parseval’s relations:
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∫ ∞

−∞
f̃(x)g(x) dx =

∫ ∞

−∞
f(x)g̃(x) dx (11.31a)

2π
∫ ∞

−∞
f(x)g(x) dx =

∫ ∞

−∞
f̃(ω)g̃(−ω) dω (11.31b)

2π
∫ ∞

−∞
[f(x)]2 dx =

∫ ∞

−∞
|f̃(ω)|2 dω (11.31c)

32. Verify that improper integral 11.10a should be taken in the sense of Cauchy’s principal value
11.10b.
The following exercises should be attempted only by readers who are already fa-
miliar with the Laplace transform. In these exercises, L{f(x)} denotes the Laplace
transform of a function f(x).

33. (a) Show that when f(x) is absolutely integrable on 0 < x <∞, and f(x) = 0 for x < 0,
F{f}(ω) = L{f}(iω). (11.32)

(b) Use the result in part (a) to calculate Fourier transforms for the functions in Exercise 18,
and in Exercise 19 (when a > 0).

34. (a) The inverse result of property 11.32 can be stated as follows: Suppose that when ω in the
Fourier transform f̃(ω) is replaced by −is, the function f̃(−is) has no poles on the imaginary
s-axis or in the right half-plane. If f̃(−is) has an inverse Laplace transform, this is also the
inverse Fourier transform of f̃(ω),

F−1{f̃(ω)} =
{
L−1{f̃(−is)}, x > 0
0, x < 0.

(11.33)

Use this result to find inverse Fourier transforms for the following:

(i) f̃(ω) =
1

(8 + iω)3
(ii) f̃(ω) =

b

a

[(
1 − e−iωa

ω2

)
− ia

ω

]
, a > 0, b > 0 constants

(b) Can the result in part (a) be used to find F−1

{
i

ω
e−iaω

}
?

35. (a) Show that when f(x) is absolutely integrable on −∞ < x < 0, and f(x) = 0 for x > 0,
F{f(x)}(ω) = L{f(−x)}(−iω). (11.34)

(b) Use the result in part (a) to find Fourier transforms for the following:

(i) f(x) =
{
−x(x+ L), −L ≤ x ≤ 0
0, otherwise

(ii) f(x) = ecx[h(x − a) − h(x − b)], a < b < 0,

c > 0

36. (a) Let f(x) be a function that has a Fourier transform. Denote by f+(x) and f−(x) the right
and left halves respectively, of f(x):

f+(x) =
{

0, x < 0
f(x), x > 0 ; f−(x) =

{
f(x), x < 0
0, x > 0

.

Show that

F{f}(ω) = F{f+}(ω) + F{f−}(ω).

(b) Use the result in part (a) in conjunction with equations 11.32 and 11.34 to find Fourier
transforms for the following:

(i) f(x) in Exercise 21 (ii) f(x) = sin ax[h(x+ 2nπ/a)− h(x− 2nπ/a)], n > 0 an integer,
a > 0



450 SECTION 11.4

§11.4 Application of the Fourier Transform to Initial Boundary Value Problems

Fourier transform 11.13 not only handles nonhomogeneous PDEs on infinite in-
tervals, but it also provides a valuable alternative to separation of variables and
Fourier integral 11.6 for homogeneous problems. We begin with homogeneous, heat
conduction problem 11.1. When we apply Fourier transform 11.13 to PDE 11.1a,

∫ ∞

−∞

∂U

∂t
e−iωxdx = k

∫ ∞

−∞

∂2U

∂x2
e−iωxdx.

When we interchange the operations of integration with respect to x and differen-
tiation with respect to t on the left, and use property 11.23a for the transform on
the right,

dŨ

dt
= −kω2Ũ(ω, t).

A general solution of this ODE in Ũ(ω, t) is

Ũ(ω, t) = Ce−kω2t.

The Fourier transform of initial condition 11.1b is Ũ (ω, 0) = f̃(ω), and this condition
requires C = f̃(ω). Thus,

Ũ(ω, t) = f̃(ω)e−kω2t,

and the inverse Fourier transform now gives

U(x, t) =
1
2π

∫ ∞

−∞
f̃(ω)e−kω2teiωxdω. (11.35a)

For heat conduction problems like this one, a much more useful form of the solution,
which expresses U(x, t) as a real integral involving f(x), rather than a complex
integal in f̃(ω), can be obtained with convolutions. Because the inverse transform
of e−kω2t is 1/(2

√
kπt)e−x2/(4kt) (see Example 11.7), convolution property 11.24

yields
U(x, t) =

∫ ∞

−∞
f(u)

1
2
√
kπt

e−(x−u)2/(4kt)du

=
1

2
√
kπt

∫ ∞

−∞
f(u)e−(x−u)2/(4kt)du. (11.35b)

This form for the solution clearly indicates the dependence of U(x, t) on the initial
temperature distribution f(x). It also has another advantage. Because represen-
tation 11.35b does not contain the Fourier transform of f(x), it may represent a
solution to problem 11.1 even when f(x) has no Fourier transform. Indeed, provided
f(x) is piecewise continuous on some bounded interval, and continuous and bounded
outside this interval, it can be shown that U(x, t) so defined satisfies problem 11.1.
This is illustrated in the first two special cases that follow.

Case 1: f(x) = U0, a constant
In this case, we would expect that U(x, t) = U0 for all x and t. That representation
11.35b gives this result is easily demonstrated by setting v = (x − u)/(2

√
kt) and

dv = −du/(2
√
kt),
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U(x, t) =
U0

2
√
kπt

∫ −∞

∞
e−v2

(−2
√
kt dv) =

U0√
π

∫ ∞

−∞
e−v2

dv = U0

(see Exercise ‘stat Int’ in Section 11.2 for the value of this integral). Thus, integral
11.35b has given the correct solution in spite of the fact that the function f(x) = U0

does not have a Fourier transform.

Case 2: f(x) = U0h(x)

In this case, we set v = (x− u)/(2
√
kt) and dv = −du/(2

√
kt) in

U(x, t) =
U0

2
√
kπt

∫ ∞

0

e−(x−u)2/(4kt)du

to obtain

U(x, t) =
U0

2
√
kπt

∫ −∞

x/(2
√

kt)

e−v2
(−2

√
kt dv) =

U0√
π

∫ x/(2
√

kt)

−∞
e−v2

dv

=
U0√
π

[∫ 0

−∞
e−v2

dv +
∫ x/(2

√
kt)

0

e−v2
dv

]

=
U0√
π

[√
π

2
+

√
π

2
erf
(

x

2
√
kt

)]
=
U0

2

[
1 + erf

(
x

2
√
kt

)]
.

This solution indicates how heat that is concentrated in one-half of a rod diffuses
into the other half. It indicates, in particular, that temperature at every point in
the left half of the rod (x < 0) is positive for every t > 0. This substantiates our
claim in Section 6.6 that heat propagates with infinite speed. We have plotted this
function for t = 106 and t = 107, and the initial temperature distribution U0h(x), in
Figure 11.10 for k = 10−6. They show that although heat propagates with infinite
speed, the amount is very small so that it takes a very long time for temperature
to approach its steady state value U0/2 throughout the rod.
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Figure 11.10 Figure 11.11

Case 3: f(x) = x(L− x), 0 ≤ x ≤ L, and vanishes otherwise

In this case, representation 11.35b gives

U(x, t) =
1

2
√
kπt

∫ L

0

u(L− u)e−(x−u)2/(4kt)du.

We have plotted the initial temperature function along with the temperature at
t = 1000 and t = 10 000 in Figure 11.11 using k = 114×10−6 (the thermal diffusivity
of copper) and L = 1.
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In the following example, heat is generated over the interval −x0 ≤ x ≤ x0 at
a constant rate.

Example 11.15 Solve the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
+
k

κ
[h(x+ x0)− h(x− x0)], −∞ < x <∞, t > 0, (11.36a)

U(x, 0) = f(x), −∞ < x <∞. (11.36b)

Solution When we take Fourier transforms of the PDE, and use property 11.23a
and Example 11.10,

dŨ

dt
= −kω2Ũ +

2k
κω

sinx0ω. (11.37a)

The transform Ũ(ω, t) must satisfy this ODE subject to the transform of initial
condition 11.36b,

Ũ(ω, 0) = f̃(ω). (11.37b)

A general solution of the ODE is

Ũ(ω, t) = Ce−kω2t +
2
κω3

sinxoω,

and the initial condition requires

f̃(ω) = C +
2
κω3

sinx0ω.

Thus,

Ũ(ω, t) =
[
f̃(ω)− 2

κω3
sin x0ω

]
e−kω2t +

2
κω3

sinx0ω,

and U(x, t) is the inverse transform thereof. According to convolution property
11.25, the inverse transform of f̃(ω)e−kω2t can be expressed as

1
2
√
kπt

∫ ∞

−∞
f(u)e−(x−u)2/(4kt)du,

and therefore

U(x, t) =
1

2
√
kπt

∫ ∞

−∞
f(u)e−(x−u)2/(4kt)du− 1

κπ

∫ ∞

−∞

1
ω3

(1− e−kω2t) sinx0ω e
iωxdω.•

Example 11.16 In Exercise 27 of Section 2.3 we introduced the telegraph equation

∂2I

∂x2
= CL

∂2I

∂t2
+ (RC +GL)

∂I

∂t
+RGI, −∞ < x <∞, t > 0, (11.38a)

where C, L, R, and G represent capacitance, inductance, resistance, and conduc-
tance, all per unit length of a transmission line. Function I(x, t) is the current in
the line for t > 0 and −∞ < x <∞, but it could also be the voltage. There will be
two initial conditions accompanying the PDE,

I(x, 0) = f1(x), −∞ < x <∞, (11.38b)
It(x, 0) = f2(x), −∞ < x <∞. (11.38c)
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By defining new parameters

2β =
R

L
+
G

C
, c2 =

1
CL

, k =
RG

CL
,

we can express the PDE in a simpler, and already recognized form,

c2Ixx = Itt + 2βIt + kI. (11.38d)

This is the PDE for transverse vibrations of a string subjected to a damping force
proportional to velocity (2β It) and a restoring force proportional to displacement
(kI) (see equations 2.46 and 2.47 in Section 2.3). Find the current I(x, t) for t > 0
and −∞ < x <∞.

Solution When we apply the Fourier transform to the PDE and use property
11.23a,

−c2ω2Ĩ =
d2Ĩ

dt2
+ 2β

dĨ

dt
+ k Ĩ,

or,

d2Ĩ

dt2
+ 2β

dĨ

dt
+ (k + c2ω2)Ĩ = 0, t > 0, (11.39a)

subject to

Ĩ(ω, 0) = f̃1(ω), (11.39b)
Ĩ ′(ω, 0) = f̃2(ω). (11.39c)

Solutions of ODE 11.39a depend on values of the parameters β, k, and c, and the
value of ω. The auxiliary equation associated with the differential equation is

m2 + 2βm+ (k + c2ω2) = 0 =⇒ m = −β ±
√
β2 − k − c2ω2.

We consider three cases:

Case 1 β2 − k < 0
In this case, roots of the auxiliary equation are complex for all values of ω, m =
−β ±

√
k − β2 + c2ω2i, and a general solution of differential equation 11.39a is

Ĩ(ω, t) = e−βt(A cos
√
k − β2 + c2ω2t+ B sin

√
k − β2 + c2ω2t).

When initial conditions 11.39b,c are applied, the result is

Ĩ(ω, t) = e−βt

[
f̃1(ω) cos

√
k − β2 + c2ω2t+

f̃2(ω) + βf̃1(ω)√
k − β2 + c2ω2

sin
√
k − β2 + c2ω2t

]
.

Current in the transmission line is

I(x, t) =
e−βt

2π

∫ ∞

−∞

[
f̃1(ω) cos

√
k − β2 + c2ω2t+

f̃2(ω) + βf̃1(ω)√
k − β2 + c2ω2

sin
√
k − β2 + c2ω2t

]
eiωxdω.

Case 2 β2 − k = 0
In this case, roots of the auxiliary equation are m = −β±cωi, and a general solution
of differential equation 11.39a is
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Ĩ(ω, t) = e−βt(A cos cωt+ B sin cωt).

When initial conditions 11.39b,c are applied, the result is

Ĩ(ω, t) = e−βt

[
f̃1(ω) cos cωt+

f̃2(ω) + βf̃1(ω)
cω

sin cωt

]
.

Current in the transmission line is

I(x, t) =
e−βt

2π

∫ ∞

−∞

[
f̃1(ω) cos cωt+

f̃2(ω) + βf̃1(ω)
cω

sin cωt

]
eiωxdω.

This solution can be expressed in closed form. Since f1(x) =
1
2π

∫ ∞

−∞
f̃1(ω)eiωxdω,

it follows that

e−βt

2π

∫ ∞

−∞
f̃1(ω) cos cωteiωxdω =

e−βt

2π

∫ ∞

−∞
f̃1(ω)

(
eicωt + e−icωt

2

)
eiωxdω

=
e−βt

2π

∫ ∞

−∞
f̃1(ω)[eiω(x+ct) + eiω(x−ct)]dω

=
e−βt

2
[f1(x+ ct) + f1(x− ct)].

According to Exercise 11.10 in Section 11.3, F{h(x+ ct)− h(x− ct)} =
2
ω

sin cωt.
Convolution property 11.25 then gives

F−1

{
f̃2(ω) + βf̃1(ω)

ω
sin cωt

}
=

1
2

∫ ∞

−∞
[h(x− u+ ct)− h(x− u− ct)][f2(u) + βf1(u)] du

=
1
2

∫ ∞

−∞
[h(u− x+ ct] − h(u− x− ct)][f2(u) + βf1(u)] du

=
1
2

∫ x+ct

x−ct

[f2(u) + βf1(u)] du.

Consequently, current can be expressed as

I(x, t) =
e−βt

2
[f1(x+ ct) + f1(x− ct)] +

e−βt

2c

∫ x+ct

x−ct

[f2(u) + βf1(u)] du.

Case 3 β2 − k > 0
In this case, roots of the auxiliary equation depend on values of ω,

m =

{
−β ±

√
k − β2 + c2ω2i, |cω| >

√
β2 − k

−β ±
√
β2 − k − c2ω2, |cω| <

√
β2 − k

and a general solution of differential equation 11.39a is

Ĩ(ω, t) =

{
e−βt(A cos

√
k − β2 + c2ω2t+ B sin

√
k − β2 + c2ω2t, |cω| >

√
β2 − k

e−βt(A cosh
√
β2 − k − c2ω2t+B sinh

√
β2 − k − c2ω2t, |cω| <

√
β2 − k.

When initial conditions 11.39b,c are applied, the result is
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Ĩ(ω, t) =





e−βt

[
f̃1(ω) cos

√
k − β2 + c2ω2t+

f̃2(ω) + βf̃1(ω)√
k − β2 + c2ω2

sin
√
k − β2 + c2ω2t

]
, |cω| >

√
β2 − k

e−βt

[
f̃1(ω) cosh

√
β2 − k − c2ω2t+

f̃2(ω) + βf̃1(ω)√
β2 − k − c2ω2

sinh
√
β2 − k − c2ω2t

]
, |cω| <

√
β2 − k.

Current in the transmission line is

I(x, t) =
e−βt

2π

∫ −c−1
√

β2−k

−∞

[
f̃1(ω) cos

√
k − β2 + c2ω2t+

f̃2(ω) + βf̃1(ω)√
k − β2 + c2ω2

sin
√
k − β2 + c2ω2t

]
eiωxdω

+
e−βt

2π

∫ c−1
√

β2−k

−c−1
√

β2−k

[
f̃1(ω) cosh

√
β2 − k − c2ω2t+

f̃2(ω) + βf̃1(ω)√
β2 − k − c2ω2

sinh
√
β2 − k − c2ω2t

]
eiωxdω

+
e−βt

2π

∫ ∞

c−1
√

β2−k

[
f̃1(ω) cos

√
k − β2 + c2ω2t+

f̃2(ω) + βf̃1(ω)√
k − β2 + c2ω2

sin
√
k − β2 + c2ω2t

]
eiωxdω.•

EXERCISES 11.4
Part A Heat Conduction

1. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t), −∞ < x <∞, t > 0,

U(x, 0) = f(x), −∞ < x <∞.

(b) Simplify the solution in part (a) in the case that g(x, t) ≡ 0 and

(i) f(x) =
{

1, |x| < a
0, |x| > a

; (ii) f(x) =
{

0, |x| < a
1, |x| > a

.

Plot the solutions on the interval −5 ≤ x ≤ 5 with k = 10−6 and a = 1 for t = 105 and
t = 106.

2. Express the solution of the following initial value problem as a real improper integral,

∂U

∂t
= k

∂2U

∂x2
+ α

∂U

∂x
, −∞ < x <∞, t > 0,

U(x, 0) = f(x), −∞ < x <∞,

where k and α are positive constants. Hint: See Exercise 20 in Section 11.3.

Part B Vibrations

3. Solve the following problem for displacements of an infinite string

∂2y

∂t2
= c2

∂2y

∂x2
, −∞ < x <∞, t > 0,

y(x, 0) = f(x), −∞ < x <∞,

yt(x, 0) = g(x), −∞ < x <∞.
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Determine the d’Alembert form of the solution.

4. Repeat Exercise 3 if a restoring force proportional to displacement acts on all points of the
string. Is there a d’Alembert solution?

5. Repeat Exercise 3 if a damping force proportional to velocity acts on all points of the string. Is
there a d’Alembert solution?
Part C Potential, Steady-state Heat Conduction, Static Deflection of Membranes

6. Solve the Dirichlet boundary value problem for steady-state temperature in the infinite strip
0 < y < L′, −∞ < x < ∞, when boundary temperatures are f(x) along y = 0 and g(x) along
y = L′.

7. Repeat Exercise 6 if the boundary condition along y = 0 is Neumann ∂U(x, 0)/∂y = f(x).

8. (a) Use the Fourier transform to show that the solution to Laplace’s equation for the upper
half-plane subject to the condition that V (x, 0) = f(x) is

V (x, y) =
y

π

∫ ∞

−∞

f(u)
(x− u)2 + y2

du.

This is called Poisson’s integral formula for the half-plane.
(b) What is the solution when f(x) = h(x)?
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§11.5 The Fourier Sine and Cosine Transforms

Fourier transforms are also associated with the Fourier cosine and sine integrals
11.8 and 11.9. They can be regarded as special cases of the Fourier transform when
the function is either even or odd, or as transforms for functions defined only on
the semi-infinite interval 0 < x < ∞. We take the latter approach in the following
definition.

Definition 11.3 The Fourier cosine transform of a function f(x) defined for 0 < x < ∞ is
denoted by f̃ = Fc{f} with values given by

f̃(ω) = Fc{f}(ω) =
∫ ∞

0

f(x) cosωx dx, (11.40a)

and inverse transform

f(x) = F−1
c {f̃}(x) =

2
π

∫ ∞

0

f̃(ω) cosωxdω. (11.40b)

The Fourier sine transform of a function f(x) defined for 0 < x <∞ is denoted
by f̃ = Fs{f} with values given by

f̃(ω) = Fs{f}(ω) =
∫ ∞

0

f(x) sinωx dx, (11.41a)

and inverse transform

f(x) = F−1
s {f̃}(x) =

2
π

∫ ∞

0

f̃(ω) sinωxdω. (11.41b)

According to equations 11.8 and 11.9, the transforms are the coefficients in
the Fourier cosine and sine integrals of f(x), and the inverse transforms are the
integral formulas. The transforms exist when f(x) is piecewise smooth on every
finite interval 0 ≤ x ≤ X and absolutely integrable on 0 < x <∞.

Example 11.17 Find the Fourier cosine and sine transforms of the function f(x) = e−ax (a > 0),
defined for x ≥ 0?

Solution The Fourier cosine and sine transforms are given by the integrals

Fc{e−ax}(ω) =
∫ ∞

0

e−ax cosωx dx and Fs{e−ax}(ω) =
∫ ∞

0

e−ax sinωx dx.

We can evaluate both of these by considering the improper integral
∫ ∞

0

e−axeiωx dx =
∫ ∞

0

e(−a+ωi)x dx =
{
e(−a+ωi)x

−a+ ωi

}∞

0

=
1

a− ωi
=

a+ ωi

a2 + ω2
.

Real and imaginary parts of this equation give

Fc{e−ax}(ω) =
a

ω2 + a2
and Fs{e−ax}(ω) =

ω

a2 + ω2
.

With these transforms, we may write the function e−ax, for x > 0, in either of the
forms



458 SECTION 11.5

e−ax =
2
π

∫ ∞

0

a

ω2 + a2
cosωx dω =

2a
π

∫ ∞

0

cosωx
ω2 + a2

dω

or

e−ax =
2
π

∫ ∞

0

ω

ω2 + a2
sinωx dω.•

When f(x) is an even, rational function with a Fourier cosine transform, the
transform can be calculated with residues.

Example 11.18 Find the Fourier cosine transform of the even, rational function f(x) =
1

a2 + x2
,

where a > 0 is a constant.

Solution The Fourier cosine transform is

f̃(ω) =
∫ ∞

0

cosωx
a2 + x2

dx.

If we express this in the form

f̃(ω) =
1
2

∫ ∞

−∞

cosωx
a2 + x2

dx,

then we could use residues to evaluate the integral. This was done in Example 11.5,

f̃(ω) =
π

2a
e−aω.•

When f(x) is an odd, rational function with a Fourier sine transform, the
transform can be calculated with residues.

Example 11.19 Find the Fourier sine transform of the odd, rational function f(x) =
x

(a2 + x2)2
,

where a > 0 is a constant.

Solution The Fourier sine transform is

f̃(ω) =
∫ ∞

0

x sinωx
(a2 + x2)2

dx.

If we express this in the form

f̃(ω) =
1
2

∫ ∞

−∞

x sinωx
(a2 + x2)2

dx,

then we can use residues to evaluate the integral. According to equation D.16b in
Appendix D,

f̃(ω) = πRe
{

Res
[

zeiωz

(a2 + z2)2
, ai

]}
= πRe

{
lim

z→ai

{
d

dz

[
(z − ai)2zeiωz

(z + ai)2(z − ai)2

]}}

= πRe
{

lim
z→ai

[
(z + ai)2(eiωz + iωzeiωz) − 2zeiωz(z + ai)

(z + ai)4

]}

= πRe
{

(2ai)[eiω(ai) + iω(ai)eiω(ai)] − 2(ai)eiω(ai)

(2ai)3

}

=
πω

4a
e−aω.•
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The Fourier sine and cosine transforms are linear operators (Exercise 1). They
have properties similar to those for the Fourier transform. In particular, correspond-
ing to shifting property 11.20, we have

Fs{f(x− a)h(x− a)}(ω) = (cosaω)Fs{f}(ω) + (sin aω)Fc{f}(ω), (11.42a)
Fc{f(x− a)h(x− a)}(ω) = (cosaω)Fc{f}(ω)− (sin aω)Fs{f}(ω). (11.42b)

The presence of h(x− a) is due to the fact that f(x) need not be defined for x < 0
and therefore f(x−a) may not be defined for x < a. (See Exercise 3 for verification
of these.)

Results corresponding to 11.22a and 11.23a for the sine and cosine transforms
are

Fc{f ′}(ω) = ωFs{f}(ω)− f(0+), (11.43a)
Fc{f ′′}(ω) = −ω2Fc{f}(ω)− f ′(0+), (11.43b)
Fs{f ′}(ω) = −ωFc{f}(ω), (11.43c)
Fs{f ′′}(ω) = −ω2Fs{f}(ω) + ωf(0+). (11.43d)

(See Exercise 5 for verification.) The limits in 11.43a,b,d allow for the possibility of
f(x) being undefined at x = 0 (but its right-hand limit must exist). The fact that the
sine transform of the first derivative of a function involves the cosine transform of the
function implies that the transform is not useful in differential equations involving
both first and second derivatives. The same is true for the cosine transform.

The following convolution properties for sine and cosine transforms are verified
in Exercise 7. When f = F−1

c {f̃} and g = F−1
c {g̃},

F−1
c {f̃ g̃}(x) =

1
2

∫ ∞

0

f(v)[g(x− v) + g(x+ v)] dv, (11.44a)

=
1
2

∫ ∞

0

g(v)[f(x− v) + f(x+ v)] dv, (11.44b)

provided f(x) and g(x) are extended as even functions for x < 0.
When f = F−1

s {f̃} and g = F−1
c {g̃} (note that g̃ is a Fourier cosine transform),

F−1
s {f̃ g̃}(x) =

1
2

∫ ∞

0

f(v)[g(x− v) − g(x+ v)] dv, (11.44c)

=
1
2

∫ ∞

0

g(v)[f(x+ v) + f(x− v)] dv, (11.44d)

provided f(x) and g(x), respectively, are extended as odd and even functions for
x < 0. There are other convolution results, but these prove the most useful in
applications.

EXERCISES 11.5

1. Verify that the Fourier sine and cosine transforms and their inverses are linear operators.

2. What are the results corresponding to equation 11.21a for Fs and Fc when n = 1 and n = 2?

3. Verify equations 11.42.
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4. (a) Prove that when f(x) is an even function with a Fourier transform,

F{f} = 2Fc{f}. (11.45a)

(b) Prove that when f(x) is an odd function with a Fourier transform,

F{f} = −2iFs{f}. (11.45b)

5. Verify equations 11.43.

6. Verify the following results for Fourier sine and cosine transforms, corresponding to equation
11.29,

Fc{Fc{f}}(ω) =
π

2
f(ω), (11.46a)

Fs{Fs{f}}(ω) =
π

2
f(ω). (11.46b)

7. (a) Verify convolution properties 11.44a,b for the Fourier cosine transform.
(b) Verify convolution properties 11.44c,d for the Fourier sine transform.
In Exercises 8–12 find the Fourier sine and cosine transforms of the function.

8. f(x) = δ(x− x0), x0 > 0 9. f(x) = e−ax2
, a > 0 constant

10. f(x) = xe−ax, a > 0 constant 11. f(x) = h(x− a) − h(x− b), b > a > 0 constants

12. f(x) =
{

(b/a)(a− |x− c|), |x− c| < a
0, |x− c| > a

, a,b, and c all positive constants with c > a

13. Find the Fourier sine transform of the function f(x) = xe−ax2
.

In Exercises 14–15 use residues to find the Fourier sine transform of the function.

14. f(x) =
x

a2 + x2
, a > 0 constant 15. f(x) =

1
x(a2 + x2)

, a > 0 constant

In Exercises 16–17 use residues to find the Fourier cosine transform of the function.

16. f(x) =
x2

a4 + x4
, a > 0 constant 17. f(x) =

x2

(a2 + x2)2
, a > 0 constant

18. Use Exercises 27 and 28 in Section 11.3 to show that when 0 < α < β,

Fs

{
sinhαx
coshβx

}
(ω) =

π sin πα
2β sinh πω

2β

β
(
cosh πω

β
+ cos πα

β

) , Fs

{
coshαx
sinhβx

}
(ω) =

π sinh πω
β

2β
(
cosh πω

β
+ cos πα

β

) ,

Fc

{
coshαx
coshβx

}
(ω) =

π cos πα
2β

cosh πω
2β

β
(
cosh πω

β + cos πα
β

) , Fc

{
sinhαx
sinhβx

}
(ω) =

π sin πα
β

2β
(
cosh πω

β + cos πα
β

) .

19. (a) Show that

F−1
c {f}(x) =

2
π
Fc{f}(x), (11.47a)

F−1
s {f}(x) =

2
π
Fs{f}(x). (11.47b)

(b) Use the results in part (a) and Exercise 18 to verify that, when 0 < α < β,
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F−1
s

{
sinhαω
coshβω

}
(x) =

2 sin πα
2β sinh πx

2β

β
(
cosh πx

β
+ cos πα

β

) , F−1
s

{
coshαω
sinhβω

}
(x) =

sinh πx
β

β
(
cosh πx

β
+ cos πα

β

) ,

F−1
c

{
coshαω
coshβω

}
(x) =

2 cos πα
2β

cosh πx
2β

β
(
cosh πx

β + cos πα
β

) , F−1
c

{
sinhαω
sinh βω

}
(x) =

sin πα
β

β
(
cosh πx

β + cos πα
β

) .

20. The error function, erf(x), is defined as

erf(x) =
2√
π

∫ x

0

e−u2
du.

Because this function is increasing for x > 0 and limx→∞ erf(x) = 1, it does not have Fourier
transforms. The complementary error function, erfc(x), defined by

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−u2
du,

does have Fourier transforms. Use properties 11.43 and Exercise 9 to derive the following results:

(a) Fs{erfc(ax)} =
1 − e−ω2/(4a2)

ω
, a > 0 constant

(b) Fc

{
ax erfc(ax) − 1√

π
e−a2x2

}
=

a

ω2
[−1 + e−ω2/(4a2)], a > 0 constant

The following exercise should be attempted only by readers who are already familiar
with the Laplace transform. In this exercise, L{f(x)} denotes the Laplace transform
of a function f(x).

21. (a) Show that when f(x) is absolutely integrable on 0 < x <∞, and f(x) = 0 for x < 0,

Fs{f(x)}(ω) = −Im[L{f(x)}(iω), (11.48a)
Fc{f(x)}(ω) = Re[L{f(x)}(iω). (11.48b)

(b) Use the results in part (a) to calculate Fourier sine and cosine transforms for the functions
in Exercises 11 and 12.

22. When the boundary condition at x = 0 for an initial boundary value problem on the semi-infinite
interval x > 0 is of Robin type, separation of variables leads to the system

X ′′ + ω2X = 0, x > 0
−lX ′(0) + hX(0) = 0,
X(x) bounded as x→ ∞.

An eigenfunction of this system is

Xω(x) =
1√

1 + [h/(ωl)]2

(
cosωx+

h

ωl
sinωx

)
(11.49)

for arbitrary ω, which we take as positive. Associated therewith is a generalized Fourier integral
formula that states that a function f(x) satisfying the conditions of Theorem 11.1 can be
represented in the form

f(x+) + f(x−)
2

=
2
π

∫ ∞

0

G(ω)Xω(x) dω, (11.50a)
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where

G(ω) =
∫ ∞

0

f(x)Xω(x) dx. (11.50b)

From this formula we define a generalized Fourier transform,

f̃(ω) = G{f(x)} =
∫ ∞

0

f(x)Xω(x) dx, (11.51a)

and an inverse transform

f(x) = G−1{f̃(ω)} =
2
π

∫ ∞

0

f̃(ω)Xω(x) dω. (11.51b)

Find transforms of the following functions:
(a) f(x) = e−ax, a > 0 constant
(b) f(x) = h(x− a) − h(x− b), b > a > 0 constants
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§11.6 Application of Fourier Sine and Cosine Transforms to Initial Boundary Value
Problems

Fourier sine and cosine transforms are used to solve initial boundary value problems
associated with second order partial differential equations on the semi-infinite inter-
val x > 0. Because property 11.43d for the Fourier sine transform utilizes the value
of the function at x = 0, the sine transform is applied to problems with a Dirichlet
boundary condition at x = 0. Similarly, property 11.43b indicates that the cosine
transform should be used when the boundary condition at x = 0 is of Neumann
type.

Example 11.20 Solve the vibration problem

∂2y

∂t2
= c2

∂2y

∂x2
, x > 0, t > 0, (11.52a)

y(0, t) = f1(t), t > 0, (11.52b)
y(x, 0) = f(x), x > 0, (11.52c)
yt(x, 0) = g(x), x > 0, (11.52d)

for displacement of a semi-infinite string with prescribed motion at its left end x = 0.

Solution Because the boundary condition at x = 0 is Dirichlet, we apply the
Fourier sine transform to the PDE and use property 11.43d for the transform of
∂2y/∂x2,

d2ỹ

dt2
= −ω2c2ỹ(ω, t) + ωc2f1(t).

Thus, the Fourier sine transform ỹ(ω, t) of y(x, t) must satisfy the ODE

d2ỹ

dt2
+ ω2c2ỹ = ωc2f1(t)

subject to transforms of initial conditions 11.52c,d,

ỹ(ω, 0) = f̃(ω), ỹ′(ω, 0) = g̃(ω).

Variation of parameters leads to the following general solution of the ODE

ỹ(ω, t) = A cos cωt+B sin cωt+ c

∫ t

0

f1(u) sin cω(t− u) du.

The initial conditions require A and B to satisfy

f̃(ω) = A, g̃(ω) = cωB.

Hence,

ỹ(ω, t) = f̃(ω) cos cωt+
g̃(ω)
cω

sin cωt+ c

∫ t

0

f1(u) sin cω(t− u) du, (11.53)

and y(x, t) is the inverse transform of this function

y(x, t) =
2
π

∫ ∞

0

ỹ(ω, t) sinωxdω. (11.54)

The first term in this integral is
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2
π

∫ ∞

0

f̃(ω) cos cωt sinωx dω =
2
π

∫ ∞

0

1
2
f̃(ω)[sinω(x− ct) + sinω(x+ ct)] dω

=
1
2
[f(x− ct) + f(x+ ct)],

provided f(x) is extended as an odd function.
According to Exercise 11 in Section 11.5, the Fourier cosine transform of h(x+

ct)−h(x−ct) is (sin cωt)/ω. Consequently, convolution identity 11.44d implies that
the inverse sine transform of [g̃(ω)/(cω)] sin cωt is

1
2c

∫ ∞

0

[h(v) − h(v − ct)][g(x+ v) + g(x− v)] dv =
1
2c

[∫ ct

0

g(x+ v) dv +
∫ ct

0

g(x− v) dv
]
,

provided g(x) is extended as an odd function for x < 0. When we set u = x+ v and
u = x− v, respectively, in these integrals, the result is

1
2c

[∫ x+ct

x

g(u) du+
∫ x−ct

x

g(u)(−du)
]

=
1
2c

∫ x+ct

x−ct

g(u) du.

The inverse transform of the integral term in ỹ(ω, t) can also be expressed in closed
form if we set u = c(t− v),

c

∫ t

0

f1(v) sin cω(t− v) dv = c

∫ 0

ct

f1

(
t− u

c

)
sinωu

(
−du
c

)
=
∫ ct

0

f1

(
t− u

c

)
sinωudu.

But this is the Fourier sine transform of the function
{
f1

(
t− x

c

)
, x < ct

0, x > ct

or
{

0, t < x/c

f1

(
t− x

c

)
, t > x/c

= f1

(
t− x

c

)
h
(
t− x

c

)
.

The solution is therefore

y(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

∫ x+ct

x−ct

g(u) du+ f1

(
t− x

c

)
h
(
t− x

c

)
.(11.55)

The first two terms are the d’Alembert part of the solution. The last term is due
to the nonhomogeneity at the end x = 0; it can be interpreted physically, and this
is most easily done when f(x) = g(x) = 0. In this case, the complete solution is

y(x, t) = f1

(
t− x

c

)
h
(
t− x

c

)
.

A point x on the string remains at rest until time t = x/c, when it begins to execute
the same motion as the end x = 0. The time x/c taken by the disturbance to reach
x is called retarded time. The disturbance f1(t) at x = 0 travels down the string
with velocity c.

The solution of the original problem is a superposition of the d’Alembert dis-
placement and the displacement due to the end effect at x = 0.•
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Example 11.21 The temperature of a semi-infinite rod at time t = 0 is f(x), x ≥ 0. For time t > 0,
heat is added to the rod uniformly over the end x = 0 at a variable rate f1(t) W/m2.
The initial boundary value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0, (11.56a)

Ux(0, t) = −κ−1f1(t), t > 0, (11.56b)
U(x, 0) = f(x), x > 0. (11.56c)

Find U(x, t).

Solution Because the boundary condition at x = 0 is Neumann, we apply the
Fourier cosine transform to the PDE and use property 11.43b,

dŨ

dt
= −kω2Ũ(ω, t) +

k

κ
f1(t).

Thus, the Fourier cosine transform Ũ(ω, t) must satisfy the ODE

dŨ

dt
+ kω2Ũ =

k

κ
f1(t)

subject to the transform of initial condition 11.56c,

Ũ(ω, 0) = f̃(ω).

A general solution of the ODE is

Ũ (ω, t) = Ce−kω2t +
k

κ

∫ t

0

e−kω2(t−u)f1(u) du,

and the initial condition requires f̃(ω) = C. Consequently,

Ũ (ω, t) = f̃(ω)e−kω2t +
k

κ

∫ t

0

e−kω2(t−u)f1(u) du, (11.57)

and the required temperature is the inverse cosine transform of this function. Ac-
cording to Exercise 9 in Section 11.5, the Fourier cosine transform of e−ax2

is
1
2

√
π

a
e−ω2/(4a), or, conversely, the inverse Fourier cosine transform of e−kω2t is

1√
kπt

e−x2/(4kt). Convolution property 11.44a therefore gives the inverse cosine

transform of f̃(ω)e−kω2t as

1
2

∫ ∞

0

f(v)
1√
kπt

[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv

=
1

2
√
kπt

∫ ∞

0

f(v)[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv.

Furthermore, the inverse cosine transform of e−kω2(t−u) is
1√

kπ(t− u)
e−x2/[4k(t−u)],

and therefore the inverse transform of the integral term can be expressed in the form

F−1
c

{∫ t

0

e−kω2(t−u)f1(u) du
}

=
∫ t

0

f1(u)√
kπ(t− u)

e−x2/[4k(t−u)] du.
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Thus, the temperature function is

U(x, t) =
1

2
√
kπt

∫ ∞

0

f(v)[e−(x−v)2/(4kt) + e−(x+v)2/(4kt)] dv

+
√
k

κ
√
π

∫ t

0

f1(u)√
t− u

e−x2/[4k(t−u)] du.• (11.58)

Example 11.22 Solve the following potential problem in the quarter plane x > 0, y > 0,
∂2V

∂x2
+
∂2V

∂y2
= 0, x > 0, y > 0, (11.59a)

V (0, y) = g(y), y > 0, (11.59b)
Vy(x, 0) = f(x), x > 0. (11.59c)

Solution Superposition can be used to express V (x, y) as the sum of functions
V1(x, y) and V2(x, y) satisfying

∂2V1

∂x2
+
∂2V1

∂y2
= 0, x > 0, y > 0,

V1(0, y) = g(y), y > 0,
∂V1(x, 0)

∂y
= 0, x > 0,

∂2V2

∂x2
+
∂2V2

∂y2
= 0, x > 0, y > 0,

V2(0, y) = 0, y > 0,
∂V2(x, 0)

∂y
= f(x), x > 0.

To find V1(x, y) we apply Fourier cosine transform 11.40a (with respect to y) to its
PDE and use property 11.43b,

d2Ṽ1

dx2
− ω2Ṽ1(x, ω) = 0, x > 0.

This transform function Ṽ1(x, ω) is also subject to

Ṽ1(0, ω) = g̃(ω).

A general solution of the ODE is

Ṽ1(x, ω) = Aeωx +Be−ωx.

For Ṽ1(x, ω) to remain bounded as x → ∞, A must be zero, and the boundary
condition then implies that B = g̃(ω). Hence,

Ṽ1(x, ω) = g̃(ω)e−ωx.

To invert this transform, first recall from to Example 11.17 that

Fc

{
e−ay

}
(ω) =

a

a2 + ω2
when a > 0.

With Exercise 19 in Section 11.5, we can say that

F−1
c {e−aω}(y) =

2
π

a

a2 + y2
.

Convolution property 11.44c, now gives

V1(x, y) =
1
2

∫ ∞

0

g(v)
(

2
π

)[
x

(y − v)2 + x2
+

x

(y + v)2 + x2

]
dv

=
x

π

∫ ∞

0

g(v)
[

1
x2 + (y − v)2

+
1

x2 + (y + v)2

]
dv.
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Taking Fourier sine transforms with respect to x in order to find V1(x, y) leads to a
nonhomogeneous ODE in Ṽ1(ω, y) that is more difficult to solve.

To find V2(x, y) we apply the Fourier sine transform with respect to x to its
PDE and use property 11.43d,

d2Ṽ2

dy2
− ω2Ṽ2(ω, y) = 0.

The transform must also satisfy

dṼ2(ω, 0)
dy

= f̃(ω).

A general solution of the ODE is

Ṽ2(ω, y) = Aeωy + Be−ωy.

For Ṽ2(ω, y) to remain bounded as y → ∞, A must be zero, and the boundary
condition on Ṽ2 then implies that B = −f̃(ω)/ω. Hence,

Ṽ2(ω, y) = − f̃(ω)
ω

e−ωy

and

V2(x, y) =
2
π

∫ ∞

0

− f̃(ω)
ω

e−ωy sinωx dω.

The final solution is

V (x, y) =
x

π

∫ ∞

0

g(v)
[

1
x2 + (y − v)2

+
1

x2 + (y + v)2

]
dv +

2
π

∫ ∞

0

− f̃(ω)
ω

e−ωy sinωxdω.•

Time-dependent heat and vibration problems on infinite or semi-infinite inter-
vals require Fourier transforms. The boundary value problem in Example 11.22
also requires Fourier transforms since both x and y are on semi-infinite intervals.
When solving Laplace’s (or Poisson’s) equation in the xy-plane where one of x or
y is of finite extent, it may not be advantageous to introduce Fourier transforms;
separation of variables or finite Fourier transforms may be preferable. We illustrate
in the following example.

Example 11.23 A thin plate has edges along y = 0, y = L′, and x = 0 for 0 ≤ y ≤ L′. The other
edge is so far to the right that its effect may be considered negligible. Assuming no
heat flow in the z-direction, find the steady-state temperature inside the plate (for
x > 0, 0 < y < L′) if sides y = 0 and y = L′ are held at constant temperature U◦

0 C,
and side x = 0 has temperature f(y), 0 ≤ y ≤ L′.

Solution The boundary value problem for steady-state temperature U(x, y) is

∂2U

∂x2
+
∂2U

∂y2
= 0, x > 0, 0 < y < L′, (11.60a)

U(x, 0) = U(x,L′) = U0, x > 0, (11.60b)
U(0, y) = f(y), 0 < y < L′. (11.60c)

The finite Fourier transform associated with y is
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f̃(λn) =
∫ L′

0

f(y)Yn(y) dy,

where λ2
n = n2π2/L′2 and Yn(y) =

√
2/L′ sinλny are eigenpairs of the Sturm-

Liouville system

Y ′′ + λ2Y = 0, 0 < y < L′, Y (0) = Y (L′) = 0.

When we apply the transform to the PDE, and use integration by parts,

∂2Ũ

∂x2
= −

∫ L′

0

∂2U

∂y2
Yn(y) dy = −

{
∂U

∂y
Yn

}L′

0

+
∫ L′

0

∂U

∂y
Y ′

n dy

=
{
UY ′

n

}L′

0
−
∫ L′

0

UY ′′
n dy = U0Y

′
n(L′) − U0Y

′
n(0)−

∫ L′

0

U
(
−λ2

nYn

)
dy

= U0[Y ′
n(L′) − Y ′

n(0)] + λ2
nŨ .

Thus, Ũ(x, λn) must satisfy the ODE

d2Ũ

dx2
− λ2

nŨ = U0[Y ′
n(L′) − Y ′

n(0)],

subject to

Ũ(0, λn) = f̃(λn).

A general solution of the differential equation is

Ũ(x, λn) = Aeλnx +Be−λnx − U0[Y ′
n(L′) − Y ′

n(0)]
λ2

n

.

For this to remain bounded as x → ∞, we must set A = 0, in which case the
boundary condition requires

f̃(λn) = B − U0[Y ′
n(L′)− Y ′

n(0)]
λ2

n

.

Thus,

Ũ(x, λn) = f̃(λn)e−λnx − U0[Y ′
n(L′) − Y ′

n(0)]
λ2

n

(1− e−λnx).

The inverse finite Fourier transform now gives

U(x, y) =
∞∑

n=1

Ũ (x, λn)Yn(y)

=
∞∑

n=1

{
f̃(λn)e−λnx − U0[Y ′

n(L′) − Y ′
n(0)]

λ2
n

(1 − e−λnx)
}√

2
L′ sinλny

=

√
2
L′

∞∑

n=1

f̃(λn)e−nπx/L′
sin

nπy

L′ +
2U0

π

∞∑

n=1

[1 + (−1)n+1]
n

(1 − e−nπx/L′
) sin

nπy

L′ .

Since

1̃ =
∫ L′

0

√
2
L′ sin

nπy

L′ dy =
√

2L′[1 + (−1)n+1]
nπ

,
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it follows that

U(x, y) = U0 +

√
2
L′

∞∑

n=1

{
f̃(λn) −

√
2L′U0[1 + (−1)n+1]

nπ

}
e−nπx/L′

sin
nπy

L′ .•

EXERCISES 11.6
Part A Heat Conduction

1. Use a Fourier transform to find an integral representation for the solution of the heat conduction
problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

U(0, t) = U = constant, t > 0,
U(x, 0) = 0, x > 0.

(Hint: See Exercise 20 in Section 11.5 when inverting the transform.) Is the solution the
same as that in Example 10.9?

(b) Plot the solution on the interval 0 ≤ x ≤ 5 with k = 10−6 and U = 1 for t = 105 and
t = 106.

(c) Comment on the possibility of using the transformation W = U − U to remove the nonho-
mogeneity from the boundary condition.

2. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

Ux(0, t) = −κ−1Q0 = constant, t > 0,
U(x, 0) = 0, x > 0.

(Hint: See Exercise 20 in Section 11.5 when inverting the transform.) Plot the solution on
the interval 0 ≤ x ≤ 5 with k = 10−6, κ = 10, and Q0 = 1000 for t = 105 and t = 106.

(b) Describe the temperature of the left end of the rod.

3. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t), x > 0, t > 0,

U(0, t) = f1(t), t > 0,
U(x, 0) = f(x), x > 0.

(b) Simplify the solution in part (a) when g(x, t) ≡ 0, f1(t) ≡ 0, and f(x) = U0 = constant.
(c) Simplify the solution in part (a) when g(x, t) ≡ 0, f(x) ≡ 0, and f1(t) = U = constant. Is

it the solution of Exercise 1?

4. (a) Use a Fourier transform to find an integral representation for the solution of the heat
conduction problem



470 SECTION 11.6

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t), x > 0, t > 0,

Ux(0, t) = −κ−1f1(t), t > 0,
U(x, 0) = f(x), x > 0.

(b) Simplify the solution in part (a) when g(x, t) ≡ 0, f1(t) ≡ 0, and f(x) = U0 = constant.
(c) Simplify the solution in part (a) when g(x, t) ≡ 0, f(x) ≡ 0, and f1(t) = Q0 = constant. Is

it the solution of Exercise 2?

5. Use the Fourier transform of Exercise 22 in Section 11.5 to find an integral representation for
the solution of the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

−κ∂U(0, t)
∂x

+ µU(0, t) = µUm = constant, t > 0,

U(x, 0) = 0, x > 0.

6. Use the Fourier transform of Exercise 22 in Section 11.5 to find an integral representation for
the solution of the heat conduction problem

∂U

∂t
= k

∂2U

∂x2
+
k

κ
g(x, t), x > 0, t > 0,

−κ∂U(0, t)
∂x

+ µU(0, t) = µf1(t), t > 0,

U(x, 0) = f(x), x > 0.

Part B Vibrations

7. Solve the vibration problem of Example 11.20 if a unit force acts at the point x = x0 on the
string for all t > 0.

8. Repeat Example 11.20 if the Dirichlet boundary condition at x = 0 is replaced by the Neumann
condition

yx(0, t) = −τ−1f1(t).

Constant τ is the tension in the string. This boundary condition describes the situation where
the end x = 0 of the string, taken as massless, moves vertically with tension and an external
force f1(t) acting on the end.
Part C Potential, Steady-state Heat Conduction, Static Deflection of Membranes

9. Find the electrostatic potential in the source-free region 0 < x < L, y > 0 when potential along
y = 0 is zero and potentials along x = 0 and x = L are f1(y) and f2(y), respectively.

10. Solve the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= 0, x > 0, 0 < y < L,

V (0, y) = 0, 0 < y < L,

V (x, 0) = f(x), x > 0,
V (x,L) = g(x), x > 0.
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11. Solve the boundary value problem in Exercise 10 if the boundary condition along the x-axis is
Neumann Vy(x, 0) = f(x).

12. Solve the boundary value problem in Exercise 10 if the boundary condition along y = L is
Neumann Vy(x,L) = g(x).

13. Solve the boundary value problem in Exercise 10 if the boundary condition along x = 0 is
homogeneous Neumann Vx(0, y) = 0.

14. Solve the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= 0, x > 0, y > 0,

V (0, y) = g(y), y > 0,
V (x, 0) = f(x), x > 0.

15. (a) Solve the boundary value problem for potential in the semi-infinite strip 0 < y < L′, x > 0
when:

(i) potential on y = 0 and y = L′ is zero and that on x = 0 is f(y) (simplify the solution when
f(y) is constant),

(ii) potential on x = 0 and y = 0 is zero and that on y = L′ is g(x),
(iii) potential on x = 0 and y = L′ is zero and that on y = 0 is g(x),
(iv) potentials on x = 0, y = 0, and y = L′ are f(y), g1(x), and g2(x), respectively. (Hint:

Superpose solutions of the types in (i), (ii), and (iii).)
(b) Try to solve the problem in (iv) by using:
(i) a Fourier sine transform on x (ii) a finite Fourier transform on y.

16. A thin plate has edges along y = 0, y = L′, and x = 0 for 0 ≤ y ≤ L′. The other edge is so far to
the right that its effect may be considered negligible. Assuming no heat flow in the z-direction,
find the steady-state temperature inside the plate (for x > 0, 0 < y < L′) if side y = 0 is held
at temperature 0◦C, side y = L′ is insulated, and, along x = 0:
(a) temperature is held at a constant U◦

0 C.
(b) heat is added to the plate at a constant rate Q0 > 0 W/m2 over the interval 0 < y < L′/2

and extracted at the same rate for L′/2 < y < L′.
(c) heat is transferred to a medium at constant temperature Um according Newton’s law of

cooling.

17. What are the solutions to Exercise 16 if edge y = 0 is insulated instead of held at temperature
0◦C.

18. Does the function

U(x, y) =
{
−Q0x/κ, 0 < y < L′/2
Q0x/κ, L′/2 < y < L′

satisfy the PDE and the boundary conditions on x = 0, y = 0, and y = L′ in Exercise 16(b)?
Why is this not the solution?

19. (a) A thin plate has edges along y = 0, y = L′, and x = 0 for 0 ≤ y ≤ L′. The other edge is so
far to the right that its effect may be considered negligible. Assuming no heat flow in the
z-direction, find the steady-state temperature inside the plate (for x > 0, 0 < y < L′) if side
x = 0 is held at temperature f(y), side y = 0 is held at temperature zero, and along side
y = L′ heat is transferred according to Newton’s law of cooling to a medium at constant
temperature Um.
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(b) Simplify the solution in part (a) when Um = 0 and f(y) = U0, a constant.

20. Repeat Exercise 19 when side y = 0 is insulated.

21. (a) A uniform charge distribution of density σ coulombs per cubic metre occupies the region
bounded by the planes x = 0, y = 0, and x = L (y ≥ 0). If the planes x = 0 and y = 0 are
kept at zero potential and x = L is maintained at a constant potential VL, find the potential
between the planes using:

(i) a finite Fourier transform.
(ii) a transformation to remove the constant nonhomogeneities σ and VL.
(b) Can we apply a Fourier sine transform with respect to y?

22. If the charge distribution in Exercise 21 is a function of y, σ(y) = e−y, find the potential between
the plates.

23. Solve Exercise 22 when VL = 0, using
(a) a finite Fourier transform (b) the Fourier sine transform

24. (a) Show that the Fourier sine transform with respect to x of the solution of the boundary value
problem

∂2V

∂x2
+
∂2V

∂y2
= 0, x > 0, y > 0,

V (0, y) = 0, y > 0,
V (x, 0) = f(x), x > 0,

is Ṽ (ω, y) = f̃(ω)e−ωy.
(b) Use Example 11.17 and the result of Exercise 8b in Section 11.3 to show that

FC

{
y

x2 + y2

}
=
π

2
e−ωy, y > 0.

(c) Now use convolution property 11.25 to show that

V (x, y) =
y

π

∫ ∞

0

f(u)
[

1
(x− u)2 + y2

− 1
(x+ u)2 + y2

]
du.

(d) Simplify the solution in part (c) when f(x) = 1.
(e) What is the solution when the boundary condition along x = 0 is V (0, y) = g(y)?

25. Simplify the solution to part (a)(i) of Exercise 15 when f(y) = 1.
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§11.7 Hankel Transforms

Fourier transforms have been used to remove Cartesian coordinates from initial
boundary value problems on infinite intervals; Fourier sine and cosine transforms
are applicable to Cartesian coordinates on semi-infinite intervals. For problems in
polar and cylindrical coordinates wherein the radial coordinate has range r ≥ 0, the
Hankel transform is prominent. It is based on Bessel’s differential equation

d

dr

(
r
dR

dr

)
+
(
λ2r − ν2

r

)
R = 0, r > 0, ν ≥ 0. (11.61)

We have already seen that solutions of this differential equation that are bounded
near r = 0 are multiples of

R(r) = Jν(λr). (11.62)

In order to associate a transform with Jν(λr), we must be aware of the behaviour
of Bessel functions for large r. It is shown in the theory of asymptotics that Jν(r)
may be approximated for large r by

Jν(r) ≈
√

2
πr

cos
(
r − π

4
− νπ

2

)
, (11.63)

the approximation being better the larger the value of r. This means that for larger
r, Jν(r) is oscillatory with an amplitude that decays at the same rate as 1/

√
r.

Corresponding to the corollary of Theorem 11.1 in Section 11.2, we have the
following Hankel integral formula.

Theorem 11.10 If
√
rf(r) is absolutely integrable on 0 < r < ∞, and f(r) is piecewise smooth on

every finite interval, then for 0 < r <∞,

f(r+) + f(r−)
2

=
∫ ∞

0

λA(λ)Jν(λr) dλ where A(λ) =
∫ ∞

0

rf(r)Jν(λr) dr. (11.64)

In view of the asymptotic behaviour of Jν(r) in expression 11.63, it is clear that
absolute integrability of

√
rf(r) guarantees convergence of the integral for A(λ).

Associated with this integral formula is the Hankel transform f̃ν(λ) of a function
f(r),

f̃ν(λ) =
∫ ∞

0

rf(r)Jν(λr) dr, (11.65a)

and its inverse

f(r) =
∫ ∞

0

λf̃ν(λ)Jν(λr) dλ, (11.65b)

where it is understood in 11.65b that f(r) is defined as the average of left- and
right-limits at points of discontinuity. We place a subscript ν on f̃ν(λ) to remind
ourselves that the Hankel transform is dependent on the choice of ν in differential
equation 11.61; changing ν changes the transform.

Example 11.24 Find the Hankel transform of f(r) =
{
rν , 0 < r < a
0, r > a

.
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Solution By definition 11.65a,

f̃ν(λ) =
∫ a

0

rν+1Jν(λr) dr.

If we set u = λr, then

f̃ν(λ) =
∫ λa

0

(u
λ

)ν+1

Jν(u)
du

λ
=

1
λν+2

∫ λa

0

uν+1Jν(u) du

=
1

λν+2

∫ λa

0

d

du
[uν+1Jν+1(u)] du (see equation 8.42 in Section 8.3)

=
1
λ
aν+1Jν+1(λa).

The inverse Hankel transform then gives
∫ ∞

0

λ

[
1
λ
aν+1Jν+1(λa)

]
Jν(λr) dλ =

{ rν , 0 < r < a
aν/2, r = a
0, r > a,

and from this we obtain the following useful integration formula

∫ ∞

0

Jν+1(λa)Jν(λr) dλ =





1
a

( r
a

)ν

, 0 < r < a

1/(2a), r = a
0, r > a.•

Example 11.25 Use the Hankel transform to find an integral representation for the solution of the
heat conduction problem

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, r > 0, t > 0, (11.66a)

U(r, 0) = f(r), r > 0. (11.66b)
Solution Because the Bessel function J0(r) results when separation of variables
is performed on the PDE, we apply the Hankel transform associated with J0(r),
namely

f̃(λ) =
∫ ∞

0

rf(r)J0(λr) dr,

where we have suppressed the zero subscript on f̃(λ). Application of this transform
to the PDE gives

dŨ

dt
= k

∫ ∞

0

r

(
∂2U

∂r2
+

1
r

∂U

∂r

)
J0(λr) dr

= k

{
r
∂U

∂r
J0(λr)

}∞

0

− k

∫ ∞

0

∂U

∂r

{
d

dr
[rJ0(λr)]− J0(λr)

}
dr

= −k
∫ ∞

0

∂U

∂r
r
d

dr
[J0(λr)] dr

(
provided lim

r→∞

√
r
∂U

∂r
= 0
)

= −k
{
Ur

d

dr
[J0(λr)]

}∞

0

+ k

∫ ∞

0

U
d

dr

[
r
dJ0(λr)
dr

]
dr

= k

∫ ∞

0

U [−λ2rJ0(λr)] dr
(
provided lim

r→∞

√
rU = 0

)

= −kλ2Ũ .
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Thus, Ũ(λ, t) must satisfy the ODE

dŨ

dt
+ kλ2Ũ = 0 (11.67a)

subject to the transform of condition 11.66b,

Ũ(λ, 0) = f̃(λ) =
∫ ∞

0

rf(r)J0(λr) dr. (11.67b)

The solution of this problem is

Ũ (λ, t) = f̃(λ)e−kλ2t, (11.68)

and therefore

U(r, t) =
∫ ∞

0

λf̃(λ)e−kλ2tJ0(λr) dλ.• (11.69)

EXERCISES 11.7

Part A Heat Conduction

1. Heat is generated at a constant rate g W/m3 inside the cylinder 0 < r < a for time t > 0. If
the temperature of space is zero at time t = 0, find the temperature at all points for t > 0.

2. An infinite wedge is bounded by the straight edges θ = 0 and θ = α (0 < α < 2π). At time
t = 0, its temperature is zero throughout, and for t > 0, its edges θ = 0 and θ = α are held
at constant temperature U . Find the temperature in the wedge for t > 0. Hint: Apply a finite
Fourier transform with respect to θ and a Hankel transform with respect to r. You will need
the result that

∫ ∞

0

Jν(x)
x

dx =
1
ν
.

Part B Vibrations

3. (a) A very large membrane is given an initial displacement that is only a function f(r) of
distance from some fixed point but has no initial velocity. Find an integral representation
for its subsequent displacement.

(b) Use Exercise 14 in Section 8.3 to show that when f(r) = A/
√

1 + (r/a)2, where a and A
are positive constants, the solution can be expressed in the form

z(r, t) = aA

∫ ∞

0

e−aλ cos cλtJ0(λr) dλ.

(c) Use Exercise 14 in Section 8.3 once again to simplify the solution to

z(r, t) =
aA
√√

(r2 + a2 − c2t2)2 + 4a2c2t2 + r2 + a2 − c2t2
√

2
√

(r2 + a2 − c2t2)2 + 4a2c2t2
.

4. Repeat part (a) of Exercise 3 when f(r) is the initial velocity of the membrane and it has no
initial displacement.
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Part C Potential, Steady-state Heat Conduction, Static Deflections of Mem-
branes

5. A disc 0 ≤ r < a in the xy-plane emits heat into the region z > 0 at a constant rate Q W/m2.
If the remainder (r > a) of the plane is insulated, the steady-state temperature in z > 0 must
satisfy

∂2U

∂r2
+

1
r

∂U

∂r
+
∂2U

∂z2
= 0, r > 0, z > 0,

∂U(r, 0)
∂z

=
{
−Q/κ, 0 ≤ r < a
0, r > a

.

Find U(r, z).

6. Repeat Exercise 5 if the disc is held at constant temperature U and the remainder of the
xy-plane is held at temperature zero.

7. Repeat Exercise 5 if the disc is held at constant temperature U and the remainder of the
xy-plane is insulated.

8. The disc 0 ≤ r < a in the xy-plane is kept at constant temperature U . Find steady-state
temperature in space.
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CHAPTER 12 GREEN’S FUNCTIONS FOR ORDINARY DIFFERENTIAL EQUATIONS

§12.1 Generalized Functions

Without justification, we have used the delta function of Section 2.1 to model math-
ematical idealizations called point entities — point charges, point masses, point heat
sources, and point forces, to name a few. It is the purpose of this chapter to justify
the use of the delta function in ordinary differential equations and to use them to
develop Green’s functions. In Chapter 13, we define multi-variable delta functions
and use them to develop Green’s functions for partial differential equations.

First we illustrate once again how delta functions simplify the solution of ODEs
containing point “entities”. Suppose a 1-N force is applied to the midpoint of a taut
string (of negligible mass) as shown in Figure 12.1. We have a point force of one
newton acting at the midpoint of the string. The boundary value problem that
describes static deflections of the string is

−τ d
2y

dx2
= F (x), 0 < x < L, (12.1a)

y(0) = 0 = y(L), (12.1b)

where τ is the constant tension in
the string and F (x) is the force
per unit x-length on the string due
to the applied force. Although it
might seem to be a simple proce-
dure to integrate the differential
equation twice and apply the boun-
dary conditions (for determination
of constants of integration), inte-

y

xL L
2

1 newton

gration of F (x) presents a problem. Figure 12.1
In fact, even representation of F (x)
is problematic. It might seem natural to represent F (x) as follows

F (x) =





0, 0 < x < L/2
1, x = L/2
0, L/2 < x < L.

(12.2)

Antidifferentiation of differential equation 12.1a with this representation gives

y(x) =
{
Ax+B, 0 < x < L/2
Cx+D, L/2 < x < L.

(Recall from elementary calculus that we antidifferentiate only over an interval, not
at a point; hence the absence of an antiderivative “at” x = L/2.) If we now apply
boundary conditions 12.1b and demand that y(x) be continuous at x = L/2, we
obtain

y(x) =
{
Ax, 0 ≤ x ≤ L/2
−A(x− L), L/2 < x ≤ L.

But how do we calculate A? Certainly the size of the force (1 N here) and the
tension τ in the string must determine A, but there seems to be no way to use this
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information. The problem must be representation 12.2 for a point force concentrated
at x = L/2. Perhaps what we should do is distribute this force along the string,
solve the problem, and then take a limit as the distributed force approaches a
concentrated force. There is a multitude of ways that F (x) might be defined, but
clearly each must satisfy the condition

∫ L

0

F (x) dx = 1. (12.3)

Two possibilities, which are symmetric, are shown in Figure 12.2.

y

xL L L L

e

e e

1

2 2 2 2- +

y F x= ( )

2

y

xL L L L

e

e e

1

2 2- +

y F x= ( )

2

Figure 12.2a Figure 12.2b

Suppose we use the distribution in Figure 12.2a. Differential equation 12.1a
becomes

d2y

dx2
= −1

τ





0, 0 < x < (L− ε)/2
1/ε, (L− ε)/2 < x < (L+ ε)/2
0, (L+ ε)/2 < x < L,

and integration gives

y(x) = −1
τ




Ax+B, 0 < x < (L− ε)/2
x2/(2ε) + Cx+D, (L− ε)/2 < x < (L+ ε)/2
Ex+ F, (L+ ε)/2 < x < L.

If we apply boundary conditions 12.1b and demand that y(x) and y′(x) be contin-
uous at x = (L− ε)/2 and x = (L+ ε)/2, we find that

y(x) =
1
τ





x

2
, 0 ≤ x ≤ (L− ε)/2

−x
2

2ε
+
Lx

2ε
− 1

8ε
(L− ε)2, (L− ε)/2 ≤ x ≤ (L+ ε)/2

L− x

2
, (L+ ε)/2 ≤ x ≤ L.

(12.4)

A graph of this function is shown in Figure 12.3. To obtain the solution of prob-
lem 12.1 for a concentrated force, we now let ε approach zero. Geometrically, the
parabolic section becomes smaller and smaller in width, and in the limit the two
straight-line sections meet at x = L/2 (Figure 12.4). This implies that the displace-
ment at L/2 is L/(4τ) and the displacement function for the unit point force in
Figure 12.1 is that in Figure 12.4, defined algebraically by

y(x) =
{
x/(2τ), 0 ≤ x ≤ L/2
(L− x)/(2τ), L/2 ≤ x ≤ L. (12.5)
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y
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Figure 12.3 Figure 12.4

In Exercise 7, displacement y(x) for the distributed load in Figure 12.2b is
calculated. Although it is different from 12.4, its limit as ε approaches zero is once
again given by equation 12.5.

Now suppose that we use δ(x − L/2) to model the unit force at x = L/2, so
that problem 12.1 reads

−τ d
2y

dx2
= δ(x− L/2), 0 < x < L, (12.6a)

y(0) = 0 = y(L). (12.6b)

If we integrate the differential equation twice using equation 2.16 and Exercise 8 in
Section 2.1, we obtain

y(x) = −1
τ

(x− L/2)h(x− L/2) + Cx+D,

where h(x − L/2) is the Heaviside unit step function. The boundary conditions
require

0 = y(0) = D, 0 = y(L) = − L

2τ
+ CL+D =⇒ C =

1
2τ
, D = 0.

The deflection of the string is therefore

y(x) = −1
τ

(x− L/2)h(x− L/2) +
x

2τ
=
{
x/(2τ), 0 ≤ x ≤ L/2
(L− x)/(2τ), L/2 ≤ x ≤ L,

solution 12.5. (Because h(x− L/2) is undefined at x = L/2, we implicitly assume
that limits are taken as x → L/2.) These calculations have demonstrated the
simplicity of the delta function representation of a point force as opposed to a
distributed force and limits. Exercises 9, 10, 14, and 15 provide further illustrations.

When we solve linear, second-order differential equations

P (x)
d2y

dx2
+Q(x)

dy

dx
+ R(x)y = f(x),

where P (x), Q(x), and R(x) are continuous and f(x) is piecewise continuous, the
solution should be continuous and have a continuous first derivative. In fact, for
the distributed load in Figure 12.2a we actually imposed these conditions at x =
(L ± ε)/2 to obtain displacement 12.4. But notice that limit function 12.5, shown
in Figure 12.4, has a discontinuity in y′(x) at x = L/2. In other words, when point
sources influence second-order differential equations, we cannot expect solutions to
have continuous first derivatives.
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We now continue our discussion of delta functions as representations for concen-
trated sources. Based on the above example (where the unit force was distributed
over an interval on the x-axis), it might seem reasonable to define δ(x − c) as the
limit as ε→ 0 of the unit pulse function Pε(x, c) in Figure 12.5; that is, define

δ(x− c) = lim
ε→0

Pε(x, c). (12.7)

Because the area under Pε(x, c) is unity
for any ε > 0, this definition appears to
preserve the “unit” character of the source.
But, from the classical point of view of a
function as a mapping from domain to range,
definition 12.7 is unacceptable. It maps all
values x 6= c onto zero, and the value of
δ(x− c) at x = c is somehow “infinite”.
What we are saying is that δ(x− c) cannot
be defined in a pointwise sense; functions that
represent point sources require a completely new

y

x

e

e e

1

2 2
- +

y x= ( )

c cc

c,eP

approach. Figure 12.5
To introduce this approach, recall that when yn(x) are normalized eigenfunc-

tions of a Sturm-Liouville system on an interval a ≤ x ≤ b, and f(x) is suitably
behaved, the finite Fourier transform of f(x) is

f̃(λn) =
∫ b

a

p(x)f(x)yn(x) dx (12.8)

where p(x) is the weight function of the Sturm-Liouville system. The emphasis
here is that given a function f(x), each eigenfunction yn(x) associates a number
f̃(λn) with f(x), and the sequence of numbers {f̃(λn)} is called the finite Fourier
transform of f(x). Suppose we switch the emphasis to one of the eigenfunctions,
say yn(x), for a fixed integer n. This eigenfunction associates a number f̃(λn) given
by equation 12.8 with any given function f(x). Various words are used to describe
this association, including mapping, operator, and functional. We think of yn(x) as
a mapping, or operator, that maps, or operates on, functions f(x) to yield a number
f̃(λn) defined by integral 12.8,

f(x)
yn(x)

−−−−−→ f̃(λn) =
∫ b

a

p(x)f(x)yn(x) dx.

By this definition, each eigenfunction yn(x) associates with a function f(x) its nth

Fourier coefficient f̃(λn),

f(x)
yn(x)
−−−→ f̃(λn).

The word functional is used to describe a function whose domain is a set of functions.
Here yn(x) , the functional, associates a number f̃(λn) with any given function f(x).

But we could do this with any function g(x), continuous on a ≤ x ≤ b, not
just eigenfunctions of Sturm-Liouville systems. We can regard g(x) as an operator,
mapping, or functional, that associates with any function f(x) a number defined by
the following definite integral
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f(x)
g(x)

−−−−−→
∫ b

a

g(x)f(x) dx.

It is this view of an ordinary function as a mapping, operator, or functional that we
adopt to define δ(x − c). The “generalized” function δ(x − c), called the (Dirac)
delta function, is the functional that maps a function f(x), continuous at x = c,
onto its value at x = c,

f(x)
δ(x−c)

−−−−−→ f(c). (12.9)

For example,

x2 + 2x− 3
δ(x−2)

−−−−−→ 5

and

(x+ 1)2 cosx
δ(x)

−−−−→ 1.

In order that the delta functional have an integral representation, we write

f(x)
δ(x−c)

−−−−−→ f(c) =
∫ ∞

−∞
f(x)δ(x− c) dx. (12.10)

Because δ(x− c) cannot be regarded pointwise, the multiplication in this integral,
and the integral itself, are symbolic. When we encounter an integral such as that
in equation 12.10, we interpret it as the action of the functional δ(x− c) operating
on f(x) and immediately write f(c). For example,

∫ ∞

−∞

(
x2 +

2
x− 1

)
δ(x) dx = −2

and
∫ ∞

−∞
δ(x+ 2) dx = 1

(since the left side of the latter integral is interpreted as the delta function δ(x+ 2)
operating on the function f(x) ≡ 1).

Many authors regard the integral in equation 12.10 as the defining relation for
the delta function δ(x − c). In actual fact, equation 12.9 is the defining relation
of δ(x − c) as a mapping, operator, or functional, and the integral in equation
12.10 is a symbolic representation. We have manipulated many ODEs and PDEs
containing delta functions, but these equations were never regarded pointwise. They
were always integrated and symbolic representation 12.10 was used to simplify any
integral involving a delta function.

Because δ(x− c) picks out the value of a function at x = c, we also write

∫ b

a

f(x)δ(x− c) dx = f(c) (12.11a)

whenever a < c < b; that is, the limits on the integral need not be ±∞. Furthermore,
if x = c is not between a and b, we set
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∫ b

a

f(x)δ(x− c) dx = 0. (12.11b)

For instance,
∫ 6

−2

√
x+ 5 δ(x) dx =

√
5

and
∫ 3

2

(x2 + 2x− 4)δ(x+ 1) dx = 0.

The above discussion of delta functions from a mapping, an operator, or a
functional perspective still does not justify their use as mathematical representations
of point entities. Our discussion of problem 12.1 and exercises 9, 10, 14, and 15
suggest that this should be the case, but they are not mathematical verifications.

EXERCISES 12.1
In Exercises 1–6 evaluate the integral.

1.
∫ ∞

−∞
(x2 − 2x+ 4)δ(x− 1) dx 2.

∫ 3

−8

sin (3x+ 1)δ(x) dx

3.
∫ 20

−4

(ex + x2)δ(x+ 3) dx 4.
∫ ∞

3

(x2 + 1/x)δ(x) dx

5.
∫ ∞

−∞
(2x2 + x3 + 4)δ(x− 4) dx 6.

∫ ∞

−∞
(1 + 4x− cosx)δ(x+ 10) dx

7. Solve problem 12.1 when F (x) is defined as in Figure 12.2b, and sketch the displacement func-
tion. Show that the displacement of Figure 12.4 is obtained in the limit as ε→ 0+.

8. Define your own distributed force function F (x) (subject to condition 12.3) and solve problem
12.1, taking limits as F (x) approaches a point force. Do you obtain the result in Figure 12.4?

9. (a) Calculate the displacement of a taut string (of negligible mass and length L) when two unit
point masses are attached at distances L/3 from each end. Use distribution functions like
that in Figure 12.2a for each mass.

(b) Show that the solution in part (a) is obtained if delta functions are used to represent the
point masses.

10. (a) A beam of length L and negligible weight is subjected to a unit downward force at its
midpoint. If the left end of the beam (x = 0) is fixed horizontally and the right end (x = L)
is free, use a distributed force like that of Figure 12.2a and limits as ε → 0+ to find the
static deflection of the beam. Sketch the graph of the displacement function. Are y′(x),
y′′(x), and y′′′(x) continuous?

(b) Show that the solution in part (a) is obtained if a delta function is used to represent the
point force.

11. Find deflections of the beam in Exercise 10 if the point force is placed at the end x = L by:
(a) distributing the force and taking limits as the length over which distribution takes place

approaches zero;
(b) representing the force by −δ(x− x0) and taking the limit of the solution as x0 → L.
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12. The displacement of a mass M from its equilibrium position at the end of a spring with constant
k is described by the differential equation

M
d2y

dt2
+ ky = F (t)

when viscous damping is negligible. In this exercise we determine the displacement y(t) due to
an instantaneous unit force F (t) applied at time T ,

F (t) =

{ 0, 0 < t < T
1, t = T
0, t > T .

We do this by distributing the unit impulse in two ways and also using a delta function.
(a) First, distribute F (t) over a time interval of length ε around T according to

F1(t) =





0, 0 < t < T − ε/2
1/ε, T − ε/2 < t < T + ε/2
0, t > T + ε/2.

(Notice that the units of F1(t) are units of force per unit of time, so that the total area
“under” the F1(t) curve is unity.) Solve the differential equation with F (t) replaced by
F1(t) subject to the initial conditions y(0) = y′(0) = 0. Find and sketch the limit function
as ε→ 0+.

(b) Repeat part (a) with F (t) distributed over the time interval T < t < T + ε according to

F2(t) =

{ 0, 0 < t < T
1/ε, T < t < T + ε
0, t > T + ε.

(c) Use variation of parameters to solve the initial value problem when F (t) is replaced by
δ(t− T ).

13. Show that the same function as that in Exercise 12 is obtained if we assume that y(t) = 0 for
t < T and that for t ≥ T , y(t) satisfies

M
d2y

dt2
+ ky = 0, t > T,

y(T ) = 0, y′(T ) =
1
M
.

Distributing point forces for multidimensional boundary value problems is more
complex. The remaining exercises give examples.

14. A square membrane stretched tightly over the region 0 ≤ x, y ≤ L has edges fixed on the
xy-plane. Distribute a unit load at the midpoint of the membrane according to

F (x, y) =
{
−1/ε2, (L− ε)/2 < x, y < (L+ ε)/2
0, otherwise.

(a) Find the static deflection of the membrane due to this load by using the finite Fourier
transform associated with the x-variable, or an eigenfunction expansion

z(x, y) =
∞∑

n=1

an(y)

√
2
L

sin
nπx

L
.
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(b) Take the limit of the function z(x, y) in part (a) as ε → 0+ to find the static deflection of
the membrane under a unit concentrated load at its centre.

(c) Show that the same solution as in part (b) is obtained if the unit load is represented by the
product of delta functions −δ(x− L/2)δ(y − L/2).

(d) Is the result in part (b) defined at (L/2, L/2)?

15. Repeat parts (a) and (b) of Exercise 14 for a circular membrane of radius R. Distribute the
unit load at the midpoint of the membrane according to

F (r) =
{
−1/(πε2), 0 ≤ r < ε
0, otherwise.

(c) Show that the same solution as in part (b) is obtained if the unit load is represented by the
delta function −δ(r)/(2πr). In Section 13.1, we shall see why this is the delta function at
r = 0.
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§12.2 Introductory Example

In this section we use a simple example to illustrate Green’s functions. The bound-
ary value problem

−τ d
2y

dx2
= F (x), (12.12a)

y(0) = y(L) = 0 (12.12b)

describes static deflections of a taut string
with tension τ , length L, and fixed end points,
due to a load F (x) (Figure 12.6). We can solve
this problem by using variation of parameters
on the general solution Ax+B of the associated
homogeneous equation (see Section 4.3).
Derivatives of A(x) and B(x) must satisfy

y

xL
String

Figure 12.6

A′x+B′ = 0,

A′ = −F (x)
τ

.

Solutions of these equations may be expressed as definite integrals

A(x) =
∫ x

0

−τ−1F (X) dX + C, B(x) =
∫ x

0

τ−1XF (X) dX +D,

and hence

y(x) = x

[∫ x

0

−τ−1F (X) dX + C

]
+
∫ x

0

τ−1XF (X) dX +D

=
1
τ

∫ x

0

(X − x)F (X) dX + Cx+D.

Boundary conditions 12.12b require the constants C and D to satisfy

0 = y(0) = D,

0 = y(L) =
1
τ

∫ L

0

(X − L)F (X) dX + CL+D,

and therefore

y(x) =
1
τ

∫ x

0

(X − x)F (X) dX +
x

Lτ

∫ L

0

(L−X)F (X) dX

=
1
τ

∫ x

0

[
(X − x) +

x(L−X)
L

]
F (X) dX +

x

Lτ

∫ L

x

(L−X)F (X) dX

=
1
Lτ

∫ x

0

X(L− x)F (X) dX +
x

Lτ

∫ L

x

(L−X)F (X) dX

or
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y(x) =
∫ L

0

g(x;X)F (X) dX, (12.13a)

where

g(x;X) =





X(L− x)
Lτ

, 0 ≤ X ≤ x

x(L−X)
Lτ

, x ≤ X ≤ L.
(12.13b)

The solution of problem 12.12 has therefore been expressed in integral form — the
integral of the nonhomogeneity F (x) multiplied by the function g(x;X). The func-
tion g(x;X) is called the Green’s function for boundary value problem 12.12. It does
not depend on F (x); it depends only on the differential operator and the boundary
conditions. Once g(x;X) is known, the solution for any F (x) can be represented in
the form of a definite integral involving g(x;X) and F (x), and this integral repre-
sentation clearly displays how the solution depends on F (x). In addition, we shall
see that when the boundary conditions are nonhomogeneous, representation of the
solution in terms of the Green’s function also indicates the nature of the depen-
dence on these nonhomogeneities. Finally, it should be clear that formulation of the
solution as a definite integral is a distinct advantage in numerical analysis.

The representation of g(x;X) in equation 12.13b regards X as the independent
variable and x as a parameter. By interchanging the two expressions, we obtain a
representation wherein X is the parameter and x is the independent variable,

g(x;X) =





x(L−X)
Lτ

, 0 ≤ x ≤ X

X(L− x)
Lτ

, X ≤ x ≤ L.
(12.13c)

With representation 12.13c, it is straightforward to illustrate three properties of this
Green’s function that are shared by all Green’s functions of one variabale. First,

g(x;X) is continuous for all x (including x = X). (12.14a)

Second, the derivative of g(x;X) with respect to x is continuous for all x 6= X, and

lim
x→X+

dg

dx
− lim

x→X−

dg

dx
=
(
−X
Lτ

)
−
(
L−X

Lτ

)
= −1

τ
. (12.14b)

This jump is the reciprocal of the coefficient of d2y/dx2 in differential equation
12.12a. Finally, it is straightforward to check that at every x 6= X,

g(x;X) satisfies the homogeneous version of the
differential equation from which it was derived.

(12.14c)

As we said, properties 12.14a–c are shared by all Greens functions associated
with ordinary differential equations. In fact, we shall use them to characterize
Green’s functions in Section 12.3.

EXERCISES 12.2

1. Consider the boundary value problem
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d2y

dx2
+ y = F (x), 0 < x < L,

y(0) = 0 = y′(L).

(a) Use variation of parameters to show that the solution can be expressed in the form

y(x) =
∫ L

0

g(x;X)F (X) dX,

where g(x;X) is the Green’s function of the problem defined by

g(x;X) =
−1

cosL

{
sinX cos (L− x), 0 ≤ X ≤ x
sinx cos (L−X), x ≤ X ≤ L

.

(b) Show that g(x;X) satisfies properties 12.14a–c.
2. Show that if F (x) is set equal to δ(x− L/2) in equation 12.13a, solution 12.5 of problem 12.1

is obtained.



488 SECTION 12.3

§12.3 Green’s Functions

In this section we associate Green’s functions with linear, second-order ordinary
differential equations

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = f(x), α < x < β. (12.15)

Functions P (x), Q(x), and R(x) are assumed continuous for α ≤ x ≤ β, but no
assumption is yet made on the behaviour of f(x). Provided P (x) does not vanish

on the interval α ≤ x ≤ β, multiplication of ODE 12.15 by P−1e
∫

(Q/P ) dx gives

d

dx

[
e
∫

(Q/P ) dx dy

dx

]
+
R

P
e
∫

(Q/P ) dxy =
1
P
e
∫

(Q/P ) dxf(x).

When we set r(x) = e
∫

(Q/P ) dx, q(x) = −RP−1e
∫

(Q/P ) dx, and

F (x) = P−1e
∫

(Q/P ) dx, the equation takes on a form reminiscent of that in Sturm-
Liouville theory,

d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β. (12.16a)

In other words, every linear, second-order differential equation for which P (x) 6= 0
can be expressed in form 12.16a, where r(x) > 0. This is called the self-adjoint
form of the differential equation. We shall often find it convenient to denote the
self-adjoint differential operator on the left side of equation 12.16a by L, in which
case the differential equation is expressed more compactly as

Ly = F (x), α < x < β. (12.16b)

To obtain a unique solution of equation 12.16, it is necessary to specify two
boundary conditions. The most general boundary conditions that we consider are
of the form

B1y = −l1y′(α) + h1y(α) − l3y
′(β) + h3y(β) = m1, (12.17a)

B2y = l2y
′(β) + h2(β) + l4y

′(α) + h4y(α) = m2, (12.17b)

where l1, l2, l3, l4, h1, h2, h3, h4, m1, and m2 are given constants. For the most
part, we consider conditions of the form

B1y = −l1y′(α) + h1y(α) = m1, (12.18a)
B2y = l2y

′(β) + h2y(β) = m2, (12.18b)

They are called unmixed boundary conditions because one condition is at x = α
and the other is at x = β. On occasion, however, we shall consider periodic
conditions

y(α) = y(β), (12.19a)
y′(α) = y′(β). (12.19b)

They arise only when r(α) = r(β), and they are always homogeneous. We have seen
both types of conditions many times throughout Chapters 2–11.
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For the moment, we concentrate only on the self-adjoint operator L in equation
12.16, not on the differential equation or the boundary conditions. When u(x)
and v(x) are continuously differentiable functions on α ≤ x ≤ β with piecewise
continuous second derivatives, it is straightforward to show that

uLv − vLu =
d

dx
J(u, v) =

d

dx
[r(uv′ − vu′)]. (12.20)

This equation is known as Lagrange’s identity. The quantity

J(u, v) = r(uv′ − vu′) (12.21)

is called the conjunct of u and v. Lagrange’s identity is valid at every point except
discontinuities of the second derivatives of u and v. Because such discontinuities
must be finite, equation 12.20 may be integrated between any two values of x in the
interval α ≤ x ≤ β,

∫ x2

x1

(uLv − vLu) dx =
{
J(u, v)

}x2

x1

. (12.22)

This result is called Green’s formula on the interval x1 ≤ x ≤ x2. When x1 = α
and x2 = β, we obtain Green’s formula on α ≤ x ≤ β,

∫ β

α

(uLv − vLu) dx =
{
J(u, v)

}β

α
. (12.23)

Identities 12.20–12.23 were based on the operator L in differential equation 12.16,
but not on the differential equation itself; that is, F (x) was not introduced. Nor were
boundary conditions used in the derivation. In other words, identities 12.20–12.23
are properties of the operator L.

Suppose now that u(x) and v(x) satisfy the homogeneous version of differential
equation 12.16. Lagrange’s identity makes it clear that the conjunct of u and v
is constant. This result is sufficiently important that we state it in the form of a
theorem.

Theorem 12.1 If u(x) and v(x) satisfy the homogeneous differential equation Ly = 0, then J(u, v)
is a constant (independent of x).

The constant value vanishes only if u(x) and v(x) are linearly dependent.
With these preliminaries out of the way, we are prepared to define Green’s

functions for boundary value problems of the form

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β, (12.24a)

B1y = m1, (12.24b)
B2y = m2, (12.24c)

where r(x) is continuously differentiable and does not vanish for α ≤ x ≤ β and
q(x) is continuous therein. (If the boundary conditions are periodic, they are also
homogeneous, m1 = m2 = 0.) When F (x) is a piecewise continuous function, a
solution of 12.24 is called classical if it is continuously differentiable, has a piecewise
continuous second derivative, satisfies the boundary conditions 12.24b,c, and is such
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that Ly and F (x) are identical at every point of continuity of F (x). We mention
this fact because Green’s functions do not turn out to be classical solutions. The
Green’s function g(x;X) associated with problem 12.24, if it exists, is defined as
the solution of

Lg = δ(x−X), (12.25a)
B1g = 0, (12.25b)
B2g = 0. (12.25c)

It is the solution of the same problem, with two changes. The source function F (x)
is replaced by a concentrated unit source, and the boundary conditions are made
homogeneous. Because δ(x−X) is not piecewise continuous, Green’s function can-
not be called a classical solution of problem 12.25. It turns out that g(x;X) is
an ordinary function (as opposed to a generalized function). This is established in
Schwartz’s theory of distributions, wherein it is also shown that solutions of differ-
ential equation 12.25a have the following properties analogous to those in equations
12.14,

(1) g(x;X) is continuous for α ≤ x ≤ β; (12.26a)

(2) dg(x;X)/dx is continuous except for a discontinuity at x = X of
magnitude 1/r(X); that is

lim
x→X+

dg

dx
− lim

x→X−

dg

dx
=

1
r(X)

; (12.26b)

(3) for all x 6= X,

Lg = 0. (12.26c)

These properties, along with boundary conditions 12.25b,c, completely characterize
Green’s functions; in fact, we now use them to derive formulas for Green’s functions.

Condition 12.26c implies that g(x;X) must be of the form

g(x;X) =
{
Eu(x) +Bv(x), α ≤ x < X
Du(x) +Gv(x), X < x ≤ β, (12.27)

where u(x) and v(x) are continuously differentiable, linearly independent solutions
of Ly = 0. Inclusion of x = α and x = β is a result of continuity condition 12.26a.
Continuity at x = X requires

Eu(X) +Bv(X) = Du(X) +Gv(X),

and condition 12.26b for the jump in dg/dx at x = X implies that

Du′(X) +Gv′(X)−Eu′(X)−Bv′(X) =
1

r(X)
.

When these equations are solved for B and D in terms of E and G, and substituted
into formula 12.27, the result is

g(x;X) =





Eu(x) +Gv(x) − u(X)v(x)
J(u, v)

, α ≤ x ≤ X

Eu(x) +Gv(x) − v(X)u(x)
J(u, v)

, X ≤ x ≤ β.
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The Heaviside unit step function can be used to combine these two expressions into
one,

g(x;X) = Eu(x) +Gv(x) − 1
J(u, v)

[u(X)v(x)h(X − x) + v(X)u(x)h(x−X)].

We prefer a slightly different form obtained by using the fact that h(x − X) =
1 − h(X − x),

g(x;X) = Eu(x) +Gv(x) − 1
J(u, v)

{u(X)v(x)[1− h(x−X)] + v(X)u(x)[1− h(X − x)]}

=
[
E − v(X)

J(u, v)

]
u(x) +

[
G− u(X)

J(u, v)

]
v(x)

+
1

J(u, v)
[u(x)v(X)h(X − x) + u(X)v(x)h(x−X)]

= Au(x) + Cv(x) +
1

J(u, v)
[u(x)v(X)h(X − x) + u(X)v(x)h(x−X)]. (12.28)

We understand that terms involving the Heaviside unit step function are regarded
in the limit sense (x→ X) at x = X.

The remaining unknowns A and C are evaluated using boundary conditions
12.25b,c. They require

0 = B1g = AB1u+ CB1v +B1a, (12.29a)
0 = B2g = AB2u+ CB2v +B2a, (12.29b)

where a = J−1[u(x)v(X)h(X−x) +u(X)v(x)h(x−X)]. These algebraic equations
for A and C have a unique solution provided

∣∣∣∣
B1u B1v
B2u B2v

∣∣∣∣ 6= 0. (12.30)

Thus, when condition 12.30 is satisfied, g(x;X) is defined by 12.28, where A and C
are chosen so that g(x;X) satisfies 12.25b,c.

We briefly examine here the significance of a vanishing determinant and deal
with it more fully in Section 12.5. A vanishing determinant is equivalent to the
existence of a constant k, which might be zero, such that

B1u = kB1v and B2u = kB2v (12.31a)

or,

B1(u− kv) = 0 and B2(u− kv) = 0. (12.31b)

Since u(x) and v(x) are linearly independent, we can say that the determinant
vanishes if and only if there is a nontrivial solution u − kv of the homogeneous
boundary value problem

d

dx

[
r(x)

dy

dx

]
− q(x)y = 0, α < x < β, (12.32a)

B1y = 0, (12.32b)
B2y = 0. (12.32c)
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We summarize these results in the following theorem.

Theorem 12.2 When homogeneous system 12.32 has only the trivial solution, the Green’s function
for problem 12.24 is uniquely given by

g(x;X) = Au(x) + Cv(x) +
1

J(u, v)
[u(x)v(X)h(X − x) + u(X)v(x)h(x−X)],(12.33)

where u(x) and v(x) are linearly independent solutions of 12.32a, and A and C are
chosen so that g(x;X) satisfies 12.25b,c.

When the boundary conditions are unmixed, determination of g(x;X) can be
simplified further.

Corollary When homogeneous system 12.32 has only the trivial solution and boundary condi-
tions are unmixed, the Green’s function for problem 12.24 is uniquely given by

g(x;X) =
1

J(u, v)
[u(x)v(X)h(X − x) + u(X)v(x)h(x−X)], (12.34)

where u(x) and v(x) are linearly independent solutions of 12.32a satisfying B1u = 0
and B2v = 0.

Proof This function satisfies 12.25a since it satisfies characterizing properties
12.26. In addition, when x < X, g(x;X) reduces to J−1u(x)v(X), which, as a
function of x, satisfies B1g = 0. Similarly, because B2v = 0, we must have B2g = 0.

Once again, we point out that due to the Heaviside functions, expressions for
g(x;X) in 12.33 and 12.34 are not defined at x = X. However, the requirement
that g(x;X) be continuous at at x = X (equation 12.26a) implies that g(x;X) can
be calculated at x = X by either of the limits limx→X+ g(x;X) = limx→X− g(x;X),
and we implicitly understand this when we write 12.33 and 12.34.

Notice that for unmixed boundary conditions, g(x;X) is symmetric in x and
X. That this is also true for periodic boundary conditions is verified in Theorem
12.5 of this section.

Example 12.1 Use formula 12.34 to find the Green’s function for problem 12.12.

Solution Solutions of y′′ = 0 satisfying y(0) = 0 and y(L) = 0, respectively, are
u(x) = x and v(x) = L−x. With J(u, v) = r(uv′−vu′) = −τ [x(−1)−(1)(L−x)] =
Lτ , formula 12.34 gives

g(x;X) =
1
Lτ

[x(L−X)h(X − x) +X(L− x)h(x−X)],

and this is expression 12.13c.•

Example 12.2 Find the Green’s function for the boundary value problem

d2y

dx2
+ 4y = F (x), α < x < β

y(α) = m1, y′(β) = m2.

Solution Solutions of y′′ + 4y = 0 are y(x) = A cos 2x+B sin 2x. For a solution
to satisfy y(α) = 0, we must have
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0 = A cos 2α+ B sin 2α =⇒ B = −A cot 2α.

Thus,

y(x) = A cos 2x− A cot 2α sin 2x =
A

sin 2α
(cos 2x sin 2α− sin 2x cos 2α)

=
−A

sin 2α
sin 2(x− α).

We therefore take u(x) = sin 2(x− α). Similarly, a function satisfying y′(β) = 0 is
v(x) = cos 2(β − x). With

J(u, v) = uv′ − vu′ = 2 sin 2(x− α) sin 2(β − x) − 2 cos 2(x− α) cos 2(β − x)
= −2 cos 2(β − α),

formula 12.34 gives

g(x;X) =
1

−2 cos 2(β − α)
[sin 2(x− α) cos 2(β −X)h(X − x)

+ sin 2(X − α) cos 2(β − x)h(x−X)].•

Example 12.3 Find the Green’s function for

d2y

dx2
+ 2

dy

dx
+ 10y = F (x), 0 < x < π/2,

y′(0) = 5, y(π/2) = 2.

Solution Solutions of y′′ + 2y′ + 10y = 0 are always of the form e−x(A sin 3x+
B cos 3x). Solutions that satisfy y′(0) = 0 and y(π/2) = 0, respectively, are u(x) =
e−x(sin 3x + 3 cos 3x) and v(x) = e−x cos 3x. To find the conjunct of u and v, we
express the differential equation in self-adjoint form by multiplying by e2x,

e2x d
2y

dx2
+ 2e2x dy

dx
+ 10e2xy = e2xF (x)

or
d

dx

(
e2x dy

dx

)
+ 10e2xy = e2xF (x).

With r(x) identified as e2x,

J(u, v) = e2x[e−x(sin 3x+ 3 cos 3x)(−e−x cos 3x− 3e−x sin 3x)
− e−x cos 3x(−10e−x sin 3x)]

= −3,

and therefore

g(x;X) = −1
3
[e−(x+X) cos 3X(sin 3x+ 3 cos 3x)h(X − x)

+ e−(x+X) cos 3x(sin 3X + 3 cos 3X)h(x−X)].•
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Example 12.4 Find the Green’s function for the problem

d2y

dx2
+ y = F (x), 0 < x < 1,

y(0)− y(1) = 0, y′(0)− y′(1) = 0.

Solution Since u(x) = sin x and v(x) = cosx are solutions of y′′ +y = 0, we may
take (according to formula 12.33)

g(x;X) = A sin x+ C cosx+
1

J(sinx, cos x)
[sin x cosX h(X − x)

+ sinX cosxh(x−X)],

where J(sinx, cosx) = sinx(− sinx)− cosx(cosx) = −1. The boundary conditions
must also be satisfied by g(x;X), and therefore

C −A sin 1 − C cos 1 + sinX cos 1 = 0,
A− cosX −A cos 1 + C sin 1 − sinX sin 1 = 0.

These can be solved for A and C,

A =
cosX − cos (1 +X)

2(1− cos 1)
, C =

sinX + sin (1 −X)
2(1− cos 1)

,

and

g(x;X) =
1

2(1− cos 1)
{sinx[cosX − cos (1 +X)] + cosx[sinX + sin (1 −X)]}

− sin x cosX h(X − x) − sinX cosxh(x−X).•

In order to show how Green’s functions yield integral representations of bound-
ary value problems (Section 12.4), we must extend Green’s formula 12.23 to encom-
pass delta functions.

Theorem 12.3 Let L be the differential operator in problem 12.24a. When v(x;X) is a solution of
Lv = δ(x−X) and u(x) is continuously differentiable with a piecewise continuous
second derivative,

∫ β

α

(uLv − vLu) dx =
{
r(uv′ − vu′)

}β

α
. (12.35)

Proof Suppose u(x) has a discontinuity in its second derivative at a pointX < X.
(Similar discussions can be made if u(x) has more than one such point or if X > X.)
Then

∫ β

α

(uLv − vLu) dx =
∫ X

α

(uLv − vLu) dx+
∫ X−ε

X

(uLv − vLu) dx

+
∫ X+ε

X−ε

(uLv − vLu) dx+
∫ β

X+ε

(uLv − vLu) dx,

where ε > 0 is some small number. Green’s formula 12.22 can be applied to the first,
second, and fourth of these integrals since Lv = 0 therein (see condition 12.26c),
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∫ β

α

(uLv − vLu) dx =
{
r(uv′ − vu′)

}X

α
+
{
r(uv′ − vu′)

}X−ε

X

+
∫ X+ε

X−ε

[uδ(x−X) − vLu] dx +
{
r(uv′ − vu′)

}β

X+ε
.

Because r, u, u′, v, and v′ are all continuous at X, terms in X vanish, and the
expression on the right reduces to
∫ β

α

(uLv − vLu) dx =
{
r(uv′ − vu′)

}β

α
+ r(X − ε)[u(X − ε)v′(X − ε;X)

− v(X − ε;X)u′(X − ε)] − r(X + ε)[u(X + ε)v′(X + ε;X)

− v(X + ε;X)u′(X + ε)] + u(X)−
∫ X+ε

X−ε

vLudx.

We now take limits as ε → 0+. Since v, u, u′, and u′′ are continuous on X − ε ≤
x ≤ X + ε, the final integral vanishes in the limit, and the remaining terms give
∫ β

α

(uLv − vLu) dx =
{
r(uv′ − vu′)

}β

α
+ r(X)[u(X)v′(X−;X)− v(X;X)u′(X)]

− r(X)[u(X)v′(X+;X)− v(X;X)u′(X)] + u(X)

=
{
r(uv′ − vu′)

}β

α
+ r(X)u(X)[v′(X−;X)− v′(X+;X)] + u(X)

=
{
r(uv′ − vu′)

}β

α

(because v satisfies condition 12.26b).

A similar proof leads to the following extension of Green’s formula.

Theorem 12.4 Let L be the differential operator of problem 12.24. When u and v satisfy Lu =
δ(x−X) and Lv = δ(x− Y ),

∫ β

α

(uLv − vLu) dx =
{
r(uv′ − vu′)

}β

α
. (12.36)

In this case, the integral of uLv−vLu over the interval α ≤ x ≤ β is subdivided into
five integrals over the intervals α ≤ x ≤ X−ε, X−ε ≤ x ≤ X+ε, X+ε ≤ x ≤ Y −ε,
Y −ε ≤ x ≤ Y +ε, Y +ε ≤ x ≤ β (for X < Y ), and Green’s formula 12.22 is applied
to the first, third, and fifth. Details are given in Exercise 24.

Formula 12.34 indicates that Green’s functions for problems with unmixed
boundary conditions are symmetric. That this is true for periodic boundary condi-
tions as well is proved in the next theorem.

Theorem 12.5 When boundary conditions in problem 12.24 are unmixed or periodic, Green’s func-
tion g(x;X) is symmetric,

g(x;X) = g(X;x). (12.37)
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Proof When we set u = g(x;X) and v = g(x;Y ) in version 12.36 of Green’s
formula, the result is

∫ β

α

[g(x;X)Lg(x;Y ) − g(x;Y )Lg(x;X)] dx

=
{
r(x)

[
g(x;X)

dg(x;Y )
dx

− g(x;Y )
dg(x;X)

dx

]}β

α

.

It is straightforward to show that when g(x;X) satisfies unmixed boundary condi-
tions 12.18 or periodic conditions 12.19, the right side of this equation must vanish,
and therefore

0 =
∫ β

α

[g(x;X)δ(x− Y ) − g(x;Y )δ(x−X)] dx = g(Y ;X) − g(X;Y ).

It is interesting to interpret this sym-
metry physically, say, in string problem
12.12 of Section 12.2. Green’s function
g(x;X) for this problem is the deflec-
tion of the string due to a unit force
at position X. Symmetry of g(x;X)
means that the deflection at x due to
a unit force at X is identical to the
deflection at X due to a unit force
at x. This is often referred to as Maxwell’s

y
y x g x Xy X g X x =( ) ( ; )( ) = ( ; )

x X xL

reciprocity and is illustrated in Figure 12.7. Figure 12.7

EXERCISES 12.3
In Exercises 1–5 write the differential equation in self-adjoint form.

1. x
d2y

dx2
+
dy

dx
+ 3y = F (x) 2.

d2y

dx2
+
dy

dx
− 2y = F (x)

3. x2 d
2y

dx2
+ 2x

dy

dx
− (x+ 1)y = F (x) 4. x2 d

2y

dx2
− x

dy

dx
− (x+ 1)y = F (x)

5.
d2y

dx2
+ 4

dy

dx
= F (x)

In Exercises 6–16 find the Green’s function for the boundary value problem.

6.
d2y

dx2
= F (x), 0 < x < L, y(0) = 0, y′(L) = 0

7.
d2y

dx2
+ y = F (x), 0 < x < L, y(0) = 0, y′(L) = 0

8.
d2y

dx2
+ k2y = F (x), 0 < x < π, y(0) = 0, y(π) = 0 (k > 0 is a constant, but not an integer)

9.
d2y

dx2
= F (x), 0 < x < L, y(0) = y′(0), y′(L) = 0

10.
d2y

dx2
− 3

dy

dx
− 4y = F (x), 0 < x < L, y(0) = 0, y′(L) = 0
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11.
d2y

dx2
+ 2

dy

dx
+ 5y = F (x), 0 < x < π/2, y′(0) = 0, y(π/2) = 0

12. x2 d
2y

dx2
+ 2x

dy

dx
− 6y = F (x), 1 < x < 2, y(1) = y′(2), y′(1) = 0

13.
d2y

dx2
+ k2y = F (x), 0 < x < L, y(0) = 0, y(L) = 0, (k > 0 a constant). Would you

place any restrictions on k?

14.
d2y

dx2
+ k2y = F (x), 0 < x < L, y(0) = 0, y′(L) = 0, (k > 0 a constant). Would you

place any restrictions on k?

15.
d2y

dx2
+ k2y = F (x), α < x < β, y(α) = y(β), y′(α) = y′(β) (k > 0 a constant). Would

you
place any restrictions on k?

16. x
d2y

dx2
+
dy

dx
+ xy = F (x), 0 < α < x < β, y(α) = 0, y(β) = 0

17. Find the Green’s function for the boundary value problem

d2y

dx2
= F (x), 0 < x < L,

y(0) = 0, l2y
′(L) + h2y(L) = 0,

using: (a) equation 12.33; (b) equation 12.34. Verify that results are identical.

18. Find the Green’s function for the boundary value problem

d2y

dx2
= F (x), 0 < x < L,

−l1y′(0) + h1y(0) = 0, l2y
′(L) + h2y(L) = 0,

using: (a) equation 12.33; (b) equation 12.34. Verify that results are identical.

19. The boundary value problem for static deflection of a beam subjected to a distributed force
F (x) is

EI
d4y

dx4
= F (x), 0 < x < L,

Boundary conditions at x = 0 and x = L,

where E and I are constants. The Green’s function g(x;X) for this fourth-order problem
satisfies

EI
d4y

dx4
= δ(x−X),

Homogeneous boundary conditions at x = 0 and x = L.

Thus, it is the solution of the problem due to a unit concentrated force at X (with homogeneous
boundary conditions). Solutions of the differential equation are characterized by the following
properties:
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(i) g(x;X), dg(x;X)/dx, and d2g(x;X)/dx2 are continuous for 0 ≤ x ≤ L except for a removable
discontinuity at x = X;

(ii) d3g(x;X)/dx3 is continuous except for a discontinuity at x = X of magnitude (EI)−1; that
is,

lim
x→X+

d3g

dx3
− lim

x→X−

d3g

dx3
=

1
EI

;

(iii) for any x 6= X,

EI
d4g(x;X)

dx4
= 0.

Use the characterization in (i), (ii), and (iii) to show that g(x;X) can be expressed in the
form

g(x;X) =
1

6EI
(x−X)3h(x−X) +Ax3 +Bx2 + Cx+D,

where A, B, C, and D are constants. (The constants are evaluated using the homogeneous
boundary conditions.)

In Exercises 20–23 use the result of Exercise 19 to find the Green’s function for
static deflections of a beam of length L (0 ≤ x ≤ L), where the boundary conditions
are as given.

20. y(0) = y′(0) = 0 = y′′(L) = y′′′(L) (cantilevered)

21. y(0) = y′′(0) = 0 = y(L) = y′′(L) (simply supported at both ends)

22. y(0) = y′(0) = 0 = y(L) = y′(L) (clamped at both ends)

23. y(0) = y′(0) = 0 = y(L) = y′′(L) (clamped at one end, simply supported at the other)

24. Prove Theorem 12.4.

25. When the boundary conditions in problem 12.24 are unmixed, it is sometimes advantageous
to represent the Green’s function of the problem in terms of orthonormal eigenfunctions of the
corresponding Sturm-Liouville system,

d

dx

[
r(x)

dy

dx

]
+ [λp(x) − q(x)]y = 0, α < x < β,

B1y = 0, B2y = 0.

(Notice that the weight function p(x) is unspecified, but normally there is only one choice of
p(x) for which the differential equation gives rise to standard functions.) Show that when yn(x)
are normalized eigenfunctions corresponding to eigenvalues λn, Green’s function g(x;X) can be
expressed in the form

g(x;X) =
∞∑

n=1

yn(X)yn(x)
−λn

,

provided that λ = 0 is not an eigenvalue of the SL-system for any weight function. (Hint: Use
Green’s formula 12.35 with u = yn(x) and v = g(x;X).)

26. Find an eigenfunction expansion (Exercise 25) for the Green’s function of the boundary value
problem
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d2y

dx2
= F (x), 0 < x < L,

y(0) = 0, y(L) = 0.
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§12.4 Solutions of Boundary Value Problems Using Green’s Functions

In this section we show how to solve a boundary value problem once the Green’s
function for the problem is known. First, we consider problems with homogeneous
boundary conditions and subsequently, problems with nonhomogeneous boundary
conditions.
Problems with Homogeneous Boundary Conditions
Representations of solutions to problems with homogeneous boundary conditions
are provided by the following theorem.

Theorem 12.6 When the Green’s function g(x;X) for the boundary value problem

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β, (12.38a)

B1y = 0, (12.38b)
B2y = 0, (12.38c)

exists, the solution of the boundary value problem is

y(x) =
∫ β

α

g(x;X)F (X) dX. (12.39)

Proof The Green’s function for problem 12.38 satisfies equations 12.25. If we
substitute 12.39 into 12.38a and reverse orders of integration with respect to X and
differentiations with respect to x,

Ly = L

∫ β

α

g(x;X)F (X) dX =
∫ β

α

[Lg(x;X)]F (X) dX

=
∫ β

α

δ(x−X)F (X) dX (by 12.25a)

= F (x).

Furthermore, because g(x;X) satisfies 12.25b,c, y(x) must satisfy 12.38b,c.

As a result of this theorem, once we know the Green’s function for a bound-
ary value problem, the solution for any source function F (x) can be obtained by
integration. Think of the integral as a superposition. Because the Green’s func-
tion is the solution of problem 12.38 due to a unit point source at X, we interpret
g(x;X)F (X) dX as the effect due to that part F (X) dX of the source over the in-
terval dX of the x-axis, and the integral adds over all sources from x = α to x = β.
Were the source composed of both a distributed portion F (x) and n concentrated
parts of magnitudes Fj at points xj , the solution of problem 12.38 would be

y(x) =
∫ β

α

g(x;X)


F (X) +

n∑

j=1

Fjδ(X − xj)


 dX

=
∫ β

α

g(x;X)F (X) dX +
n∑

j=1

Fjg(x;xj). (12.40)

We give two illustrative examples.
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Example 12.5 A taut string of length L has its ends
fixed at x = 0 and x = L on the x-axis.
A concentrated mass of M kg is attached
to the string at x = L/3 (Figure 12.8).
Find the deflections in the string if gravity
on the string itself is also taken into account.

Solution The boundary value

y
xL L

3

Mg-

problem for deflections of the string is Figure 12.8

−τ d
2y

dx2
= −9.81− 9.81Mδ(x− L/3),

y(0) = 0 = y(L).
According to equation 12.13c and Example 12.1, the Green’s function for this prob-
lem is

g(x;X) =
1
Lτ

[x(L−X)h(X − x) +X(L− x)h(x−X)].

The solution is therefore defined by integral 12.39,

y(x) =
∫ L

0

g(x;X)[−9.81 − 9.81Mδ(X − L/3)] dX

= −9.81
∫ L

0

g(x;X) dX − 9.81Mg(x;L/3)

=
−9.81
Lτ

∫ x

0

X(L− x) dX − 9.81
Lτ

∫ L

x

x(L−X) dX

− 9.81M
Lτ

[
x

(
L− L

3

)
h

(
L

3
− x

)
+
(
L

3

)
(L− x)h

(
x− L

3

)]

=
−9.81
Lτ

(L− x)
(
x2

2

)
− 9.81

Lτ

x(L− x)2

2

− 9.81M
Lτ

[
2Lx
3
h

(
L

3
− x

)
+
(
L

3

)
(L− x)h

(
x− L

3

)]

=
−9.81x(L− x)

2τ
− 9.81M

3τ

{
2x, 0 ≤ x ≤ L/3
L− x, L/3 ≤ x ≤ L

.

This is superposition of the displacement due to gravity (the first term) and that
due to the concentrated load (the second term) (Figure 12.9). The parts of the
string are parabolic in shape, but because a large value of M was used in the plot,
they appear almost straight.•

y
xL L

y x L x L x=
-9.81

2
( )- 9.81

3
-( )-

3

M
t

y x L x x=
-9.81

2
( )-

3
- M

t
19.62

Figure 12.9
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Example 12.6 Solve the boundary value problem

d2y

dx2
+ 4y = F (x), 0 < x < 3,

y(0) = 0 = y′(3)

when (a) F (x) = 2x and (b) F (x) = h(x− 1)− h(x− 2).

Solution The Green’s function for this problem can be obtained from Example
12.2 by setting α = 0 and β = 3,

g(x;X) =
−1

2 cos 6
[sin 2x cos (6− 2X)h(X − x) + sin 2X cos (6 − 2x)h(x−X)].

With source function F (x), the solution of the boundary value problem is

y(x) =
∫ 3

0

g(x;X)F (X) dX.

(a) When F (x) = 2x,

y(x) =
∫ 3

0

2Xg(x;X) dX

=
−1

2 cos 6

∫ x

0

2X sin 2X cos (6 − 2x)dX

− 1
2 cos 6

∫ 3

x

2X sin 2x cos (6− 2X)dX

=
− cos (6− 2x)

cos 6

{
−X cos 2X

2
+

sin 2X
4

}x

0

− sin 2x
cos 6

{
−X sin (6− 2X)

2
+

cos (6− 2X)
4

}3

x

=
x

2
− sin 2x

4 cos 6
.

(This solution could also be derived very simply by finding the general solution of
y′′ + 4y = 2x and using boundary conditions to evaluate arbitrary constants.)
(b) For F (x) = h(x− 1)− h(x− 2), the solution is

y(x) =
∫ 3

0

[h(X − 1)− h(X − 2)]g(x;X) dX =
∫ 2

1

g(x;X) dX.

When x ≤ 1,

y(x) =
∫ 2

1

−1
2 cos 6

sin 2x cos (6 − 2X)dX

=
sin 2x
2 cos 6

{
sin (6 − 2X)

2

}2

1

=
sin 2x(sin 2 − sin 4)

4 cos 6
;

when 1 < x < 2,
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y(x) =
∫ x

1

−1
2 cos 6

sin 2X cos (6 − 2x) dX +
∫ 2

x

−1
2 cos 6

sin 2x cos (6 − 2X)dX

=
cos (6− 2x)

2 cos 6

{
cos 2X

2

}x

1

+
sin 2x
2 cos 6

{
sin (6 − 2X)

2

}2

x

=
1
4

+
1

4 cos 6
[sin 2x sin 2 − cos (6 − 2x) cos 2];

and when 2 ≤ x < 3,

y(x) =
∫ 2

1

−1
2 cos 6

sin 2X cos (6 − 2x)dX =
cos (6− 2x)

2 cos 6

{
cos 2X

2

}2

1

=
cos (6 − 2x)(cos 4 − cos 2)

4 cos 6
.

This solution is not so easily produced using methods from elementary differential
equations. It requires integration of the differential equation on three separate
intervals and matching of the solution and its first derivative at x = 1 and x = 2.•

Problems with Nonhomogeneous Boundary Conditions

Suppose now that boundary conditions 12.38b,c are not homogeneous, in which case
the problem becomes

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β, (12.41a)

B1y = m1, (12.41b)
B2y = m2. (12.41c)

Only unmixed boundary conditions and periodic conditions, which are always ho-
mogeneous, are considered. For unmixed boundary conditions, problem 12.41 takes
the form

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β, (12.42a)

B1y = −l1y′(α) + h1y(α) = m1, (12.42b)
B2y = l2y

′(β) + h2y(β) = m2. (12.42c)

There are two ways to solve this problem; one is to use superposition, and the other
is to use Green’s formula. Both methods use Green’s function for the associated
problem with homogeneous boundary conditions,

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), α < x < β, (12.43a)

B1y = 0, (12.43b)
B2y = 0. (12.43c)

In the superposition method, we note that
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y1(x) =
∫ β

α

g(x;X)F (X) dX,

where g(x;X) is the associated Green’s function, is a solution of problem 12.43. A
solution of problem 12.42 will therefore be y = y1 + y2 if y2 satisfies

Ly = 0, α < x < β, (12.44a)
B1y = m1, (12.44b)
B2y = m2. (12.44c)

In ODEs it is quite often straightforward to obtain y2(x) — apply boundary con-
ditions 12.44b,c to a general solution of differential equation 12.44a. We illustrate
with the following example.

Example 12.7 Solve the boundary value problem

−τ d
2y

dx2
= F (x), 0 < x < L,

y(0) = m1, y(L) = m2.

Solution In Section 12.2 we derived the solution

y1(x) =
∫ L

0

g(x;X)F (X) dX =
L− x

Lτ

∫ x

0

XF (X) dX +
x

Lτ

∫ L

x

(L−X)F (X) dX

for the associated problem with homogeneous boundary conditions. To this we must
add the solution of

d2y

dx2
= 0, y(0) = m1, y(L) = m2.

Since every solution of this differential equation must be of the form y2(x) = Ax+B,
to satisfy the boundary conditions we require

m1 = B, m2 = AL+B.

Thus, y2(x) = (m2 −m1)x/L+m1, and

y(x) = y1(x) + y2(x) = (m2 −m1)
x

L
+m1 +

L− x

Lτ

∫ x

0

XF (X) dX

+
x

Lτ

∫ L

x

(L−X)F (X) dX.•

This superposition method works well for ODEs but fails to generalize to PDEs;
it is not usually possible to produce general solutions of homogeneous PDEs and
apply nonhomogeneous boundary conditions to determine arbitrary functions. An
alternative approach, which does generalize to PDEs, is to use Green’s formula 12.35.
This method also illustrates how the solution depends on the nonhomogeneities in
the boundary conditions.

Theorem 12.7 When the Green’s function g(x;X) for boundary value problem 12.42 exists, the
solution of the boundary value problem is

y(x) =
∫ β

α

g(x;X)F (X) dX − m1

l1
r(α)g(x;α) − m2

l2
r(β)g(x;β). (12.45a)
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When l1 = l2 = 0 (and we set h1 = h2 = 1), the solution is

y(x) =
∫ β

α

g(x;X)F (X) dX +m2r(β)
∂g(x;β)
∂X

−m1r(α)
∂g(x;α)
∂X

. (12.45b)

Proof If y(x) is the required solution of problem 12.42 and v(x) is the Green’s
function g(x;X) for the problem, Green’s formula 12.35 becomes
∫ β

α

yLg(x;X) dx−
∫ β

α

g(x;X)Ly dx =
{
r(x)

[
y(x)

∂g(x;X)
∂x

− g(x;X)y′(x)
]}β

α

.

Because Ly = F (x) and Lg(x;X) = δ(x−X), we may write
∫ β

α

y(x)δ(x−X) dx−
∫ β

α

g(x;X)F (x) dx =
{
r(x)

[
y(x)

∂g(x;X)
∂x

− g(x;X)y′(x)
]}β

α

or

y(X)−
∫ β

α

g(x;X)F (x) dx = r(β)
[
y(β)

∂g(β;X)
∂x

− g(β;X)y′(β)
]

− r(α)
[
y(α)

∂g(α;X)
∂x

− g(α;X)y′(α)
]
. (12.46)

If we now substitute from the boundary conditions

B1y = −l1y′(α) + h1y(α) = m1, (12.47a)
B2y = l2y

′(β) + h2y(β) = m2, (12.47b)

y(X)−
∫ β

α

g(x;X)F (x) dx = r(β)
[
y(β)

∂g(β;X)
∂x

− g(β;X)
(
m2

l2
− h2

l2
y(β)

)]

− r(α)
[
y(α)

∂g(α;X)
∂x

− g(α;X)
(
−m1

l1
+
h1

l1
y(α)

)]

= r(β)
[
−m2

l2
g(β;X) +

y(β)
l2

(
l2
∂g(β;X)

∂x
+ h2g(β;X)

)]

− r(α)
[
m1

l1
g(α;X) − y(α)

l1

(
−l1

∂g(α;X)
∂x

+ h1g(α;X)
)]

.

But g(x;X) must satisfy homogeneous versions of boundary conditions 12.47; that
is,

−l1
∂g(α;X)

∂x
+ h1g(α;X) = 0, (12.48a)

l2
∂g(β;X)

∂x
+ h2g(β;X) = 0. (12.48b)

Consequently

y(X) =
∫ β

α

g(x;X)F (x) dx− m1

l1
r(α)g(α;X) − m2

l2
r(β)g(β;X).

When we interchange x and X and use the fact that g(x;X) is symmetric, we obtain
solution 12.45a. When l1 = l2 = 0, we interchange x and X in solution 12.46 to
obtain 12.45b.
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Solutions 12.45a and 12.45b clearly indicate the dependence of y(x) on all three
nonhomogeneities in problem 12.42. The integral term accounts for the nonhomo-
geneity F (x) in the PDE, and the remaining terms contain contributions due to
nonhomogeneities in the boundary conditions. With F (x) piecewise continuous,
the integral term in 12.45 is continuous in x. Furthermore, because g(x;X) is con-
tinuous and ∂g(x;X)/∂x has a discontinuity only when x = X, it follows that the
additional terms in 12.45 due to the nonhomogeneities in the boundary conditions
are also continuous. In other words, the representation of the solution to a boundary
value problem in terms of its Green’s function is always a continuous function.

Example 12.8 Use formula 12.45b to solve the boundary value problem of Example 12.7.

Solution The Green’s function for this problem is

g(x;X) =
1
Lτ

[x(L−X)h(X − x) +X(L− x)h(x−X)].

In Example 12.7 we used the direct method to find the particular solution satisfying
the homogeneous differential equation and nonhomogeneous boundary conditions.
Alternatively, according to equation 12.45b,

y(x) =
∫ L

0

g(x;X)F (X) dX − τm2
∂g(x;L)
∂X

+ τm1
∂g(x; 0)
∂X

=
∫ L

0

g(x;X)F (X) dX − τm2

Lτ
[−xh(X − x) + (L− x)h(x−X)]|X=L

+
τm1

Lτ
[−xh(X − x) + (L− x)h(x−X)]|X=0

=
∫ L

0

g(x;X)F (X) dX +
m2

L
x+

m1

L
(L− x)

=
∫ L

0

g(x;X)F (X) dX + (m2 −m1)
x

L
+m1

= (m2 −m1)
x

L
+m1 +

L− x

Lτ

∫ x

0

XF (X) dX

+
x

Lτ

∫ L

x

(L−X)F (X) dX.•

Example 12.9 Solve the boundary value problem

d2y

dx2
+ 4y = F (x), α < x < β,

y(α) = m1, y′(β) = m2.

Solution According to Example 12.2, the Green’s function for this problem is

g(x;X) =
−1

2 cos 2(β − α)
[sin 2(x− α) cos 2(β −X)h(X − x)

+ sin 2(X − α) cos 2(β − x)h(x−X)].

To account for the nonhomogeneities m1 and m2 in the boundary conditions, we
use the term in 12.45a containing m2 and the term in 12.45b containing m1,
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y(x) =
∫ β

α

g(x;X)F (X) dX −m1
∂g(x;α)
∂X

−m2g(x;β)

=
∫ β

α

g(x;X)F (X) dX

+
m1

2 cos 2(β − α)
[2 sin 2(x− α) sin 2(β − α)h(α− x) + 2 cos 2(β − x)h(x− α)]

+
m2

2 cos 2(β − α)
[sin 2(x− α)h(β − x) + sin 2(β − α) cos 2(β − x)h(x− β)]

=
∫ β

α

g(x;X)F (X) dX +
2m1 cos 2(β − x) +m2 sin 2(x− α)

2 cos 2(β − α)
.•

EXERCISES 12.4
Do the General Results first.
Part A Heat Conduction

1. What is the Green’s function for the boundary value problem for steady-state temperature in
a rod from x = 0 to x = L with constant thermal conductivity k and zero end temperatures?

2. Solve the boundary value problem

− d

dx

(
κ
dU

dx

)
= F (x), α < x < β,

U(α) = 0 = U(β)

for steady-state temperature in a rod from x = α to x = β with variable thermal conductivity
κ(x) and heat generation F (x). Intepret the Green’s function physically.

3. Two rods of lengths L1 and L2 and constant thermal conductivities κ1 and κ2 are joined end
to end (the left end of L1 at x = 0 and the right end of L2 at x = L1 +L2). If the ends at x = 0
and x = L1 + L2 are kept at temperature zero, what is the Green’s function for steady-state
temperature in the rods?

Part B Vibrations

In Exercises 4–9 the function F (x) describes the applied force on a massless string
with constant tension τ stretched between two fixed points x = 0 and x = L. Find
and sketch a graph of the displacement y(x) in the string.

4. F (x) = −k, where k > 0 is a constant

5. F (x) =
{
−kx, 0 < x ≤ L/2
k(x− L), L/2 ≤ x < L

, k > 0 a constant

6. F (x) =





0, 0 < x < L/4
−k, L/4 < x < 3L/4
0, 3L/4 < x < L

, k > 0 a constant

7. F (x) is due to two concentrated loads −k (where k > 0) placed at x = L/4 and x = 3L/4.
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8. F (x) is due to the combination of the constant force −k in Exercise 4 and the concentrated
loads −k in Exercise 7.

9. F (x) =





−k, 0 < x < L/4
0, L/4 < x < 3L/4
−k, 3L/4 < x < L

, k > 0 a constant

10. Solve Exercise 15 in Section 2.3.

11. Solve Exercise 10 if a thin ring of mass m is attached halfway along the length of the bar.

12. Solve Exercise 10 if a mass M is attached to the lower end of the bar.

13. The bar in Exercise 12 is hung from a spring with constant k, and a thin ring of mass m is
attached halfway along the length of the bar. Find displacements of its cross sections in the
coordinate system shown in the figure below.

x

m

M

L

L

=0/2 in
unstretched

positionUnstretched
length of

at unstretched
position of spring

In Exercises 14–19 the function F (x) describes the applied force on a beam of length
L (0 ≤ x ≤ L), and the conditions represent boundary conditions at the ends of the
beam. Use the Green’s functions from Exercises 20–23 in Section 12.3 to find the
static deflection of the beam. Sketch the deflection curve in Exercises 14–17.

14. F (x) is due to a concentrated load of magnitude unity at x = L/2, and the weight of the beam
is negligible,

y(0) = y′(0) = 0 = y′′(L) = y′′′(L).

(See also Exercise 10 in Section 12.1.)

15. F (x) is due to the load of Exercise 14 placed at x = L. (See also Exercise 11 in Section 12.1.)

16. F (x) is due only to the weight per unit x-length w of a uniform beam,

y(0) = y′′(0) = 0 = y(L) = y′′(L).

17. F (x) is due to a uniform weight per unit x-length w of a uniform beam and a concentrated load
of magnitude k at x = L/2,

y(0) = y′(0) = 0 = y(L) = y′(L).

18. F (x) =





−w, 0 < x < L/4
−(w +W ), L/4 < x < 3L/4
−w, 3L/4 < x < L

, w and W constants,

y(0) = y′(0) = 0 = y′′(L) = y′′′(L).

19. F (x) is due to a uniform weight per unit x-length W on 0 < x < L/2 and a concentrated load
of magnitude k at x = L/4. The weight of the beam is negligible,



SECTION 12.4 509

y(0) = y′(0) = 0 = y(L) = y′′(L).

General Results

In Exercises 20–25 find an integral representation for the solution of the boundary
value problem.

20.
d2y

dx2
= F (x), 1 < x < 2, y′(1) = m1, y(2) = m2. What is the solution when F (x) = xex?

21.
d2y

dx2
+ y = F (x), 0 < x < 1, y(0) = m1, y

′(1) = m2. What is the solution when F (x) =
cosx?

22.
d2y

dx2
+ k2y = F (x), α < x < β, y(α) = 0, y′(β) = 1, k > 0 a constant. Is there a restric-

tion on the value of k? What is the solution when F (x) = 1?

23.
d2y

dx2
+ k2y = F (x), α < x < β, y(α) = y(β), y′(α) = y′(β), k > 0 a constant. (See Exer-

cise 15 in Section 12.3 for the Green’s function.) What is the solution when F (x) = x?

24. (x+ 1)
d2y

dx2
+
dy

dx
= F (x), 0 < x < 1, y(0) = 0, y(1) = 0. What is the solution when F (x) =

x?

25.
d2y

dx2
− 4

dy

dx
+ 8y = F (x), 0 < x < π, y(0) = y(π), y′(0) = 0. What is the solution when

F (x) = e2x?
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§12.5 Modified Green’s Functions

In Section 12.3, we saw that when homogeneous problem 12.32 has only the trivial
solution, Green’s function for the operator L and boundary conditions 12.32b,c
exists. If we associate the Sturm-Liouville system

d

dx

[
r(x)

dy

dx

]
+ [λp(x) − q(x)]y = 0, (12.49a)

B1y = 0, (12.49b)
B2y = 0, (12.49c)

with problem 12.32 (in the case of unmixed boundary conditions), it is equivalent
to say that Green’s function for the operator L and boundary conditions 12.32b,c
exists if λ = 0 is not an eigenvalue for SL-system 12.49. The weight function p(x)
is chosen appropriate to solutions of the SL-system when λ 6= 0. For example, if
the differential equation is y′′ = 0, then the appropriate choice for p(x) is unity
since this yields the differential equation y′′ + λ2y = 0 of the SL-system in Section
5.2. On the other hand, if the differential equation is (d/dx)(xdy/dx)− (ν2/x)y =
0, the appropriate choice for p(x) is x since this yields the differential equation
(d/dx)(xdy/dx) + (λ2x− ν2/x)y = 0 of the SL-system in Section 8.4.

To illustrate that Green’s function for the operator L and boundary conditions
12.32b,c does not exist when homogeneous problem 12.32 has nontrivial solutions
(or λ = 0 is an eigenvalue of 12.49), consider the boundary value problem

−κd
2U

dx2
= F (x), 0 < x < L,

U ′(0) = 0, U ′(L) = 0

for steady-state heat conduction in a rod with insulated sides and ends. The asso-
ciated homogeneous problem has nontrivial solution U = constant. Notice that if
we integrate the differential equation from x = 0 to x = L,

∫ L

0

F (x) dx =
∫ L

0

−κd
2U

dx2
dx =

{
−κdU

dx

}L

0

= 0.

Thus, if there is to be a solution to this problem, F (x) cannot be specified arbitrarily;
it must satisfy the condition

∫ L

0

F (x) dx = 0. (12.50)

Physically this means that with insulated sides and ends, the only way a steady-state
condition can prevail is if the total heat generation is zero.

Since the delta function δ(x−X) does not satisfy this condition (a unit point
source at x = X), there can be no solution to

−κd
2g

dx2
= δ(x−X),

g′(0;X) = 0, g′(L;X) = 0

for the associated Green’s function g(x;X).
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The condition equivalent to 12.50 in problems with more general differential
equations and nonhomogeneous boundary conditions is contained in the following
theorem.

Theorem 12.8 When a homogeneous boundary value problem

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = 0, α < x < β, (12.51a)

B1y = −l1y′(α) + h1y(α) = 0, (12.51b)
B1y = l2y

′(β) + h2y(β) = 0, (12.51c)

has nontrivial solutions w(x), the nonhomogeneous problem

Ly =
d

dx

[
r(x)

dy

dx

]
− q(x)y = F (x), (12.52a)

B1y = m1, (12.52b)
B1y = m2, (12.52c)

has a solution if and only if
∫ β

α

F (x)w(x) dx =
m1

l1
r(α)w(α) +

m2

l2
r(β)w(β), (12.53)

for every solution w(x) of the corresponding homogeneous problem. When l1 = 0
(and h1 = 1), the term (m1/l1)r(α)w(α) is replaced by m1r(α)w′(α); and when
l2 = 0 (and h2 = 1), the term (m2/l2)r(β)w(β) is replaced by −m2r(β)w′(β).

It is easy to establish the necessity of condition 12.53. If y(x) is a solution of
problem 12.52, then
∫ β

α

F (x)w(x) dx =
∫ β

α

(Ly)w(x) dx

=
∫ β

α

y(Lw) dx+
{
r(wy′ − yw′)

}β

α
(using Green’s formula 12.23)

= r(β)[w(β)y′(β)− y(β)w′(β)]− r(α)[w(α)y′(α) − y(α)w′(α)]

= r(β)
{
w(β)
l2

[m2 − h2y(β)]− y(β)w′(β)
}

− r(α)
{
w(α)
l1

[−m1 + h1y(α)] − y(α)w′(α)
}

=
m2

l2
r(β)w(β)− r(β)y(β)

l2
[l2w′(β) + h2w(β)]

+
m1

l1
r(α)w(α) − r(α)y(α)

l1
[−l1w′(α) + h1w(α)]

=
m1

l1
r(α)w(α) +

m2

l2
r(β)w(β).

When problem 12.51 has nontrivial solutions and consistency condition 12.53
is satisfied, the solution of 12.52 is not unique. If y(x) is a solution, so also is
y(x) + Cw(x) for arbitrary C and w(x) a solution of problem 12.51.
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To solve problem 12.52 when condition 12.53 is satisfied, we introduce modified
Green’s functions. We do so because there can be no “ordinary” Green’s function
satisfying

Lg = δ(x−X),
B1g = 0, B2g = 0,

since consistency condition 12.53 is not satisfied. Two situations arise, depending on
whether problem 12.51 has one or two linearly independent solutions. We consider
first the case in which problem 12.51 has only one nontrivial solution w(x) that is
unique to a multiplicative constant and may therefore be taken as normalized,

∫ β

α

p(x)[w(x)]2 dx = 1, (12.54)

where p(x) is the weight function for the associated Sturm-Liouville system 12.49. A
modified Green’s function associated with problem 12.52 is defined as a solution
g(x;X) of

Lg = δ(x−X) − w(x)w(X), (12.55a)
B1g = 0, (12.55b)
B2g = 0. (12.55c)

Because the right side of equation 12.55a satisfies consistency condition 12.53, The-
orem 12.8 guarantees a solution g(x;X). But because the solution is not unique,
g(x;X) may or may not be symmetric, depending on the method used in its con-
struction. It is important to note, however, that because the differential equation for
the ordinary Green’s function is modified only by the term w(x)w(X), the modified
Green’s function satisfies the same continuity properties as the ordinary Green’s
function. Indeed, we shall use these properties to find g(x;X).

Example 12.10 Find modified Green’s functions for the boundary value problem

d2y

dx2
+ 4y = F (x), 0 < x < π,

y(0) = 0 = y(π).

Solution Solutions of the homogeneous differential equation y′′ + 4y = 0 are of
the form y = A cos 2x+ B sin 2x. Since the function sin 2x satisfies both boundary
conditions, the Green’s function for this problem does not exist. With weight func-
tion p(x) = 1, we find that ‖ sin 2x‖2 = π/2. We define a modified Green’s function
g(x;X) as the solution of

d2g

dx2
+ 4g = δ(x−X) − 2

π
sin 2x sin 2X,

g(0;X) = 0 = g(π;X).

Because g(x;X) must satisfy property 12.26c, and a particular solution of g′′+4g =
−(2/π) sin 2x sin 2X is (2π)−1x sin 2X cos 2x, we take

g(x;X) =
x

2π
sin 2X cos 2x+

{
A sin 2x+B cos 2x, 0 ≤ x < X
C sin 2x+D cos 2x, X < x ≤ π.
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To determine A, B, C, and D, we apply the boundary conditions g(0;X) = 0 =
g(π;X),

B = 0,
1
2

sin 2X +D = 0,

and continuity conditions 12.26a,b at x = X,

A sin 2X + B cos 2X = C sin 2X +D cos 2X,

(2C cos 2X − 2D sin 2X) − (2A cos 2X − 2B sin 2X) = 1.

These four equations require

B = 0, D = −1
2

sin 2X, C = A+
1
2

cos 2X,

where A = A(X) is an arbitrary function of X. A modified Green’s function is
therefore

g(x;X) =
x

2π
sin 2X cos 2x+




A sin 2x, 0 ≤ x ≤ X(
A+

1
2

cos 2X
)

sin 2x− 1
2

sin 2X cos 2x, X ≤ x ≤ π

=
x

2π
sin 2X cos 2x+

{
A sin 2x, 0 ≤ x ≤ X

A sin 2x+
1
2

sin 2(x−X), X ≤ x ≤ π

=
x

2π
sin 2X cos 2x+A sin 2x+

1
2

sin 2(x−X)h(x−X).

Notice that the arbitrariness in g(x;X) is a constant A(X) times w(x), the solution
of the homogeneous problem.•

Modified Green’s functions can be used to solve problem 12.52, which has a
solution provided m1, m2, and F (x) satisfy condition 12.53.

Theorem 12.9 When homogeneous problem 12.51 has only one solution w(x) (unique to a mul-
tiplicative constant), and consistency condition 12.53 is satisfied by m1, m2, and
F (x), the solution of nonhomogeneous problem 12.52 is given by

y(x) =
∫ β

α

g(X;x)F (X) dX + Cw(x) − m1

l1
r(α)g(α, x) − m2

l2
r(β)g(β;x), (12.56a)

or, when l1 = l2 = 0,

y(x) =
∫ β

α

g(X;x)F (X) dX + Cw(x) +m2r(β)
∂g(β;x)
∂X

−m1r(α)
∂g(α;x)
∂X

,(12.56b)

where g(x;X) is a symmetric modified Green’s function satisfying equation 12.55.

Proof We let u = y(x) be the solution of problem 12.52 and v = g(x;X) in
Green’s formula 12.35,

∫ β

α

(yLg − gLy) dx =
{
r

(
y
∂g

∂x
− g

dy

dx

)}β

α

.

If we substitute from the differential equations for y and g,
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∫ β

α

{y[δ(x−X)− w(x)w(X)] − g F (x)} dx =
{
r

[
y
∂g

∂x
− gy′(x)

]}β

α

,

or,

y(X) =
∫ β

α

y(x)w(x)w(X) dx+
∫ β

α

F (x)g(x;X) dx+
{
r

[
y(x)

∂g(x;X)
∂x

− g(x;X)y′(x)
]}β

α

.

Suppose now that the boundary conditions are unmixed as in equations 12.47. If
l1 = l2 = 0 (and h1 = h2 = 1),

y(X) = Cw(X) +
∫ β

α

g(x;X)F (x) dx+ r(β)m2
∂g(β;X)

∂x
− r(α)m1

∂g(α;X)
∂x

.

Interchanging x and X gives solution 12.56b. When l1l2 6= 0,

y(X)− Cw(X) −
∫ β

α

g(x;X)F (x) dx = r(β)
[
y(β)

∂g(β;X)
∂x

− g(β;X)y′(β)
]

− r(α)
[
y(α)

∂g(α;X)
∂x

− g(α;X)y′(α)
]

= r(β)
[
y(β)

∂g(β;X)
∂x

− g(β;X)
(
m2

l2
− h2

l2
y(β)

)]

− r(α)
[
y(α)

∂g(α;X)
∂x

− g(α;X)
(
−m1

l1
+
h1

l1
y(α)

)]

= r(β)
{
−m2

l2
g(β;X) +

y(β)
l2

[
l2
∂g(β;X)

∂x
+ h2g(β;X)

]}

− r(α)
{
m1

l1
g(α;X) +

y(α)
l1

[
−l1

∂g(α;X)
∂x

+ h1g(α;X)
]}

.

But because g(x;X) satisfies

−l1
∂g(α;X)

∂x
+ h1g(α;X) = 0 and l2

∂g(β;X)
∂x

+ h2g(β;X) = 0,

it follows that

y(X) = Cw(X) +
∫ β

α

g(x;X)F (x) dx− m1

l1
r(α)g(α;X) − m2

l2
r(β)g(β;X).

When we interchange x and X,

y(x) = Cw(x) +
∫ β

α

g(X;x)F (X) dX − m1

l1
r(α)g(α;x) − m2

l2
r(β)g(β;x). (12.57)

If g(x;X) is symmetric, this becomes solution 12.56a.

Exercise 9 describes a technique for calculating symmetric modified Green’s
functions from nonsymmetric ones. The alternative is to use equation 12.57 with a
nonsymmetric modified Green’s function.

Example 12.11 Solve the boundary value problem

d2y

dx2
+ 4y = F (x), 0 < x < π,

y(0) = 0 = y(π).
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Solution According to Example 12.10, a modified Green’s function is

g(x;X) =
x

2π
sin 2X cos 2x+A sin 2x+

1
2

sin 2(x−X)h(x−X).

Because g(x;X) is not symmetric, we use equation 12.57 to express the solution of
the boundary value problem in the form

y(x) =
∫ π

0

g(X;x)F (X) dX + C sin 2x (C a constant)

=
∫ π

0

[
X

2π
sin 2x cos 2X + A(x) sin 2X +

1
2

sin 2(X − x)h(X − x)
]
F (X) dX + C sin 2x

= C sin 2x+
sin 2x

2π

∫ π

0

X cos 2XF (X) dX +A(x)
∫ π

0

F (X) sin 2X dX

+
1
2

∫ π

x

sin 2(X − x)F (X) dX.

Since the first integral is a constant, the second term may be grouped with C sin 2x.
Furthermore, the second integral vanishes because of consistency condition 12.53.
Thus, the final solution is

y(x) = C sin 2x+
1
2

∫ π

x

sin 2(X − x)F (X) dX.•

We have considered the situation in which the homogeneous problem 12.51
corresponding to 12.52 has a single nontrivial solution (unique to a multiplicative
constant). The remaining possibility is that all solutions of differential equation
12.51a satisfy boundary conditions 12.51b,c. In such a case, we can always find
two orthonormal solutions v(x) and w(x) of Ly = 0. If ψ(x) and φ(x) are linearly
independent solutions, two orthonormal solutions are

v(x) =
ψ(x)√∫ β

α

p(x)[ψ(x)]2 dx

, w(x) =
φ(x) − v(x)

∫ β

α

p(x)φ(x)v(x) dx
√√√√
∫ β

α

p(x)

[
φ(x) − v(x)

∫ β

α

p(x)φ(x)v(x) dx

]2

dx

,

(ψ(x) is normalized to form v(x). For w(x), the component of φ(x) in the “direction”
of v(x) is removed, and the result is then normalized.) We define a modified Green’s
function g(x;X) associated with problem 12.52 as a solution of

Lg = δ(x−X)− w(x)w(X) − v(x)x(X), (12.58a)
B1g = 0, (12.58b)
B2g = 0. (12.58c)

Because the right side of differential equation 12.58a satisfies consistency condition
12.53, g(x;X) must indeed exist. Green’s identity once again gives the solution of
problem 12.52 as

y(x) =
∫ β

α

g(X;x)F (X) dX + Cw(x) +Dv(x) − m1

l1
r(α)g(α;x)

− m2

l2
r(β)g(β;x), (12.59a)
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or, when l1 = l2 = 0,

y(x) =
∫ β

α

g(X;x)F (X) dX + Cw(x) +Dv(x) +m2r(β)
∂g(β;x)
∂X

−m1r(α)
∂g(α;x)
∂X

, (12.59b)

where C and D are arbitrary constants. In the event that g(x;X) is symmetric,
g(X;x) can be replaced by g(x;X).

Example 12.12 Solve the boundary value problem

d2y

dx2
+ y = F (x), 0 < x < 2π,

y(0) = y(2π), y′(0) = y′(2π).

Solution The homogeneous problem has nontrivial solutions sin x and cosx. Be-
cause these functions are orthogonal, a modified Green’s function for this problem
is defined by

d2g

dx2
+ g = δ(x−X) − 1

π
(sinx sinX + cosx cosX),

g(0;X) = g(2π,X),
∂g(0;X)

∂x
=
∂g(2π;X)

∂x
.

A solution of the differential equation is

g(x;X) =
x

2π
sin (X − x) +

{
A sin x+ B cosx, 0 ≤ x < X
C sinx+D cosx, X < x ≤ 2π.

To determine A, B, C, and D, we first apply the boundary conditions

B = sinX +D,

sinX
2π

+A =
sinX
2π

− cosX + C,

and then continuity conditions 12.26a,b at x = X,

A sinX + B cosX = C sinX +D cosX,

C cosX −D sinX −A cosX +B sinX = 1.

These four conditions require A = C − cosX and B = D + sinX, where C =
C(X) and D = D(X) are arbitrary functions of X. A modified Green’s function is
therefore

g(x;X) =
x

2π
sin (X − x) + C sinx+D cosx+

{
sinX cosx− cosX sinx, 0 ≤ x ≤ X
0, X ≤ x ≤ 2π

= C sin x+D cosx+ sin (X − x)
{
x/(2π) + 1, 0 ≤ x eX
x/(2π), X ≤ x ≤ 2π

= C sin x+D cosx+ sin (X − x)
[ x
2π

+ h(X − x)
]
.
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According to formula 12.59, the solution of the boundary value problem is

y(x) =
∫ 2π

0

g(X;x)F (X) dX +E sin x+G cosx

=
∫ 2π

0

{
C sinX +D cosX + sin (x−X)

[
X

2π
+ h(x−X)

]}
F (X) dX

+E sin x+G cosx

= E sinx+G cosx+
∫ 2π

0

sin (x−X)
[
X

2π
+ h(x−X)

]
F (X) dX,

since F (x) must satisfy the consistency conditions
∫ 2π

0

F (x) sinx dx = 0 =
∫ 2π

0

F (x) cosx dx.•

EXERCISES 12.5

1. Solve the boundary value problem

−κd
2U

dx2
= F (x), 0 < x < L,

U ′(0) = 0 = U ′(L)

when F (x) satisfies consistency condition 12.50. Calculate the solution in closed form when
F (x) = cos (πx/L).

2. Verify that the result in Example 12.12 gives the correct solution when F (x) = sin 2x.

3. (a) Simplify the solution to Example 12.11 when F (x) = cos 2x.
(b) Use equation 12.56b to find the solution when the boundary conditions are nonhomogeneous,

y(0) = m1, y(π) = m2.

What condition must be imposed on m1 and m2?

4. Solve the boundary value problem

d2y

dx2
+ k2y = F (x), 0 < x < L, (k > 0 a constant),

y(0) = 0 = y(L).

5. (a) Use the result of Exercise 4 to solve

d2y

dx2
+

9π2

L2
y = F (x), 0 < x < L,

y(0) = m1, y(L) = m2.

(b) Simplify the solution when F (x) = x. What is the consistency condition?

6. Solve the boundary value problem



518 SECTION 12.5

d2y

dx2
+ k2y = F (x), 0 < x < L, (k > 0 a constant),

y(0) = 0 = y′(L).

7. (a) Use the result of Exercise 6 to solve

d2y

dx2
+

25π2

4L2
y = F (x), 0 < x < L,

y(0) = m1, y′(L) = m2.

(b) Simplify the solution when F (x) = x2. What is the consistency condition?
8. A modified Green’s function for boundary value problem 12.52, when the corresponding homo-

geneous problem has only one solution w(x) (unique to a multiplicative constant), is defined by
boundary value problem 12.55. In this exercise we show that modified Green’s functions can
be defined in other ways. The homogeneous boundary value problem associated with the heat
conduction problem

−κd
2U

dx2
= F (x), 0 < x < L,

U ′(0) = m1, U ′(L) = m2,

has nontrivial solutions y = constant.
(a) Show that when a function g(x;X) satisfies

−κd
2g

dx2
= δ(x−X),

g
′(0;X) =

1
2κ
, g

′(L;X) = − 1
2κ
,

consistency condition 12.53 for nonhomogeneous problems is satisfied.
(b) Use Green’s formula 12.35 to show that U(x) can be exprssed in the form

U(x) =
∫ L

0

g(X;x)F (X) dX + κ[m2g(L;x) −m1g(0;x)] + C,

where C is an arbitrary constant. Find g(x;X) and simplify the solution.
(c) Use the result in part (b) to find the solution to the boundary value problem of Exercise 1

when F (x) = cos (πx/L).

9. (a) Show that there is only one modified Green’s function gs(x;X) satisfying equations 12.55
that is orthogonal to w(x) and that this function is given by

gs(x;X) = g(x;X) − w(x)
∫ β

α

g(ζ;X)w(ζ) dζ,

where g(x;X) is any modified Green’s function whatsoever.
(b) Use Green’s identity 12.36 with u = gs(x;X) and v = gs(x;Y ) to show that gs(x;X) is

symmetric. Are there any other symmetric modified Green’s functions?

10. Use Exercise 9 to find symmetric modified Green’s functions for the problem in Exercise 1.
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11. Use Exercise 9 to find symmetric modified Green’s functions for the problem in Example 12.10.

12. (a) Show that there is only one modified Green’s function gs(x;X) satisfying equations 12.58
that is orthogonal to w(x) and v(x) and that this function is given by

gs(x;X) = g(x;X) − w(x)
∫ β

α

g(ζ;X)w(ζ) dζ − v(x)
∫ β

α

g(ζ;X)v(ζ) dζ,

where g(x;X) is any modified Green’s function whatsoever.
(b) Use Green’s identity 12.36 with u = gs(x;X) and v = gs(x;Y ) to show that gs(x;X) is

symmetric. Are there any other symmetric modified Green’s functions?

13. Use Exercise 12 to find symmetric modified Green’s functions for the problem in Example 12.12.
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§12.6 Green’s Functions for Initial Value Problems

When the conditions that accompany differential equation 12.24a are of the form

y(α) = 0, y′(α) = 0, (12.60)

they are called initial conditions, and the problem is known as an initial value
problem rather than a boundary value problem. Because this situation arises
most frequently when the independent variable is time t, we rewrite the initial value
problem in the form

Ly =
d

dt

[
r(t)

dy

dt

]
− q(t)y = F (t), t > t0, (12.61a)

y(t0) = m1, (12.61b)
y′(t0) = m2. (12.61c)

Initial time t0 is usually chosen as t0 = 0, but for the sake of generality, we maintain
arbitrary t0.

Were we to follow the lead of boundary value problems, it would be natural to
define the Green’s function g(t;T ) for this problem as the function satisfying the
same differential equation with F (t) replaced by a delta function, and the corre-
sponding homogeneous initial conditions

Ly =
d

dt

[
r(t)

dy

dt

]
− q(t)y = δ(t− T ), t > t0, (12.62a)

g(t0;T ) = 0,
dg(t0;T )

dt
= 0. (12.62b)

Unfortunately, this would lead to improper integral representations of solutions of
problem 12.61, together with associated convergence problems. Instead, we define
the Green’s function g(t;T ) as what is called a causal fundamental solution of
12.61; it is the solution of

g(t;T ) = 0, t0 < t < T, (12.63a)
Lg = δ(t− T ). (12.63b)

Physically, g(t;T ) is the reaction of the system described by equations 12.61 to a
unit impulse at time T . Naturally, for time t < T , the system must be identically
equal to zero (hence the requirement 12.63a).

Provided r(t) does not vanish for t ≥ t0, the solution of problem 12.63 exists
and is unique. Furthermore, corresponding to properties 12.26, which characterize
the Green’s function for boundary value problem 12.24, the following conditions
characterize the Green’s function for initial value problem 12.61:

g(t;T ) = 0, t0 < t < T, (12.64a)

Lg =
d

dt

[
r(t)

dg

dt

]
− q(t)g = 0, t > T, (12.64b)

g(T+;T ) = 0, (12.64c)
dg(T+;T )

dt
=

1
r(T )

. (12.64d)
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When u(t) and v(t) are linearly independent solutions of differential equation
12.64b, the function

g(t;T ) =
1

J(u, v)
[u(T )v(t)− v(T )u(t)]h(t− T ) (12.65)

clearly satisfies problem 12.64 and must therefore be the Green’s function for prob-
lem 12.61. This formula replaces 12.34 for boundary value problems, but notice that
the condition that the associated homogeneous system has only the trivial solution
is absent for initial value problems (it is always satisfied).

Example 12.13 What is the Green’s function for the initial value problem

M
d2y

dt2
+ ky = F (t), t > 0,

y(0) = m1, y′(0) = m2

for displacements of a mass M on the end of a spring with constant k?

Solution Since sin
√
k/Mt and cos

√
k/Mt are solutions of My′′ + ky = 0, the

Green’s function, according to formula 12.65, is

g(t;T ) =
1

J(sin
√
k/Mt, cos

√
k/Mt)

(
sin

√
k

M
T cos

√
k

M
t− cos

√
k

M
T sin

√
k

M
t

)
h(t− T )

=
−1√
kM

sin

√
k

M
(T − t)h(t− T ) =

1√
kM

sin

√
k

M
(t− T )h(t− T ).•

The solution of an initial value problem can be expressed in terms of its Green’s
function. In particular, the solution of problem 12.61 is

y(t) =
∫ t

t0

g(t;T )F (T ) dT + r(t0)
[
m2g(t; t0) −m1

∂g(t; t0)
∂T

]
. (12.66)

The integral term, which accounts for the nonhomogeneity in the differential equa-
tion, is interpreted as the superposition of incremental results. Because the Green’s
function g(t;T ) is the result at time t due to a unit impulse δ(t − T ) at time T ,
g(t;T )F (T ) dT is the result at time t due to an incremental “force” F (T ) dT over
dT . The integral then adds over all contributions, beginning at time t0, to give the
final result at time t. The last two terms in 12.66 account for nonhomogeneities in
initial conditions 12.61b,c.

Example 12.14 What is the solution of the problem in Example 12.13?

Solution According to formula 12.66, the solution is

y(t) =
∫ t

0

1√
kM

sin

√
k

M
(t− T )h(t− T )F (T ) dT

+M

(
m2√
kM

sin

√
k

M
t+

m1√
kM

√
k

M
cos

√
k

M
t

)

=
1√
kM

∫ t

0

sin

√
k

M
(t− T )F (T ) dT +

√
M

k
m2 sin

√
k

M
t+m1 cos

√
k

M
t.•
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EXERCISES 12.6

1. A particle of mass M moves along the x-axis under the action of a force that is an explicit
function F (t) (t ≥ 0) of time t only. Find an integral representation for its position as a
function of time t if at time t = 0, it is moving with velocity v0 at position x0.

2. A mass M is suspended from a spring (with constant k). Vertical oscillations are initiated at
time t = 0 by displacing M from its equilibrium position and giving it an initial speed. If
motion takes place in a medium that causes a damping force proportional to velocity, and an
external force F (t) (t ≥ 0) acts on M , find an integral representation for the position of M as
a function of time t.

3. (a) Show that the solution of problem 12.61 can be expressed in the form

y(t) =
1

J(u, v)

[∫ t

t0

[u(T )v(t)− v(T )u(t)]F (T ) dT + r(t0)[m1v
′(t0)−m2v(t0)]u(t)

+ r(t0)[m2u(t0) −m1u
′(t0)]v(t)

]
,

where u(t) and v(t) are any two linearly independent solutions of Ly = 0.
(b) Use the result in part (a) to show that y(t) can also be written in the form

y(t) =
1

r(t0)

∫ t

t0

[u(T )v(t) − v(T )u(t)]F (T ) dT +m1u(t) +m2v(t),

where u(t) and v(t) are solutions of Ly = 0 satisfying

u(t0) = 1, u′(t0) = 0, v(t0) = 0, v′(t0) = 1.

4. Use Exercise 3(b) to obtain the solution for Example 12.14.

5. Use Exercise 3(b) to solve Exercise 2.
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CHAPTER 13 GREEN’S FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

§13.1 Multi-dimensional Delta Functions and Green’s Identities

In this chapter we develop Green’s functions for boundary value problems (and
initial boundary value problems) associated with partial differential equations. So-
lutions to such problems can then be represented in terms of integrals of source
functions and Green’s functions. We begin by discussing multi-dimensional delta
functions and Green’s identities.

Two- and three-dimensional delta functions, like δ(x − c), are defined from a
functional point of view. We discuss two-dimensional functions, but three-dimen-
sional results are analogous. The generalized function δ(x−a, y−b) maps a function
f(x, y) continuous at (a, b) onto its value at (a, b), and once again, we represent the
mapping symbolically as an integral, in this case, a double integral,

f(x, y)
δ(x−a,y−b)
−−−−−−−→ f(a, b) =

∫ ∞

−∞

∫ ∞

−∞
δ(x− a, y − b)f(x, y) dA. (13.1)

Because successive applications of delta functions lead to the same result,
∫ ∞

−∞

∫ ∞

−∞
δ(x− a)δ(x− b) f(x, y) dy dx =

∫ ∞

−∞
δ(x− a)f(x, b) dx = f(a, b), (13.2)

it follows that

δ(x− a, y − b) = δ(x− a)δ(y − b). (13.3)

In other words, the two-dimensional delta function in Cartesian coordinates is the
product of two one-dimensional delta functions. Corresponding to property 12.11
in Section 12.1, we take

∫∫

R

δ(x− a, y − b)f(x, y) dA =
{
f(a, b), (a, b) in R
0, (a, b) not in R. (13.4)

Delta functions in curvilinear coordinates are defined analogously to those in
Cartesian coordinates, but their expressions in terms of products of one-dimensional
delta functions are complicated by formulas for area and volume elements in curvi-
linear coordinates. To illustrate, suppose that a point with Cartesian coordinates
(x0, y0) has polar coordinates (r0, θ0). The delta function δ(r − r0, θ − θ0) in polar
coordinates is that generalized function that assigns to a function f(r, θ), continuous
at (r0, θ0), its value at (r0, θ0),

∫∫

R2
δ(r − r0, θ − θ0)f(r, θ) dA = f(r0, θ0), (13.5a)

where R2 refers to the xy-plane. But because the area element in polar coordinates
is dA = r dr dθ, equation 13.5 is expressible in the form

∫ π

−π

∫ ∞

0

δ(r − r0, θ − θ0)f(r, θ)r dr dθ = f(r0, θ0). (13.5b)

Since
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∫ π

−π

∫ ∞

0

δ(r − r0)δ(θ − θ0)f(r, θ) dr dθ = f(r0, θ0), (13.6)

it follows that rδ(r − r0, θ − θ0) = δ(r − r0)δ(θ − θ0), or

δ(r − r0, θ − θ0) =
1
r
δ(r − r0)δ(θ − θ0). (13.7)

Since the delta function δ(x − x0)δ(y − y0) and that in equation 13.7 pick out the
value of a function at the same point, we may write

δ(x− x0)δ(y − y0) =
1
r
δ(r − r0)δ(θ − θ0). (13.8a)

Similarly, transformation laws from delta functions in Cartesian coordinates to those
in cylindrical and spherical coordinates are

δ(x− x0)δ(y − y0)δ(z − z0) =
1
r
δ(r − r0)δ(θ − θ0)δ(z − z0), (13.8b)

δ(x− x0)δ(y − y0)δ(z − z0) =
1

r2 sinφ
δ(r − r0)δ(θ − θ0)δ(φ− φ0). (13.8c)

Many curvilinear coordinates system, and in particular the above three, have
singular points — points at which transformations between them and Cartesian
coordinates fail to be one-to-one. In polar coordinates, the origin is singular, and
in cylindrical and spherical coordinates, the z-axis is singular. Transformation laws
13.8 are not valid at singular points. To understand this, we first note that when
the functional on the right side of equation 13.8a operates on a function f(r, θ), it
produces f(r0, θ0), the value of the function at (r0, θ0). But if r0 = 0, the value
of the function f(r, θ) does not depend on the value of θ; its value is completely
dictated by setting r = 0. This means that when r0 = 0, the delta function δ(θ−θ0)
on the right side of 13.8a is redundant. To see how to remove this delta function,
notice that if we write F (0) for the value of f(0, θ), then

∫ ∞

0

δ(r)f(r, θ) dr = F (0).

Integration of this result with respect to θ gives
∫ π

−π

∫ ∞

0

δ(r)f(r, θ) dr dθ =
∫ π

−π

F (0) dθ

or,
∫ π

−π

∫ ∞

0

δ(r)
r
f(r, θ)r dr dθ = 2πF (0).

Thus,
∫ π

−π

∫ ∞

0

δ(r)
2πr

f(r, θ)r dr dθ = F (0).

But this equation implies that δ(r)/(2πr) must be the delta function at the origin;
that is,

δ(x)δ(y) =
δ(r)
2πr

. (13.9)
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A similar discussion in cylindrical coordinates shows that

δ(x)δ(y)δ(z − z0) =
δ(r)δ(z − z0)

2πr
. (13.10)

In spherical coordinates, we obtain

δ(x)δ(y)δ(z − z0) =





δ(r − r0)δ(φ)
2πr2 sinφ

, z0 > 0

δ(r − r0)δ(φ+ π)
2πr2 sinφ

, z0 < 0
(13.11a)

δ(x)δ(y)δ(z) =
δ(r)
4πr2

. (13.11b)

Boundary value problems are associated with elliptic PDEs. We consider only
two types in this chapter, those associated with the Helmholtz and Poisson equa-
tions. The two-dimensional Helmholtz equation is

∇2u+ k2u = F (x, y), (x, y) in A, (13.12)

where A is some open region of the xy-plane (with a piecewise smooth boundary),
and Poisson’s equation is

∇2u = F (x, y), (x, y) in A. (13.13)

Green’s (second) identity for both of these operators states that for functions
u(x, y) and v(x, y) that have continuous first partial derivatives and piecewise con-
tinuous second partial derivatives in A,

∫∫

A

(u∇2v − v∇2u) dA =
∫
©

β(A)

(u∇v − v∇u) · n̂ ds, (13.14a)

where n̂ is the unit outward normal vector to the boundary β(A) of A (see Appendix
C). This identity is also valid when u(x, y) and/or v(x, y) satisfy ∇2u + k2u =
δ(x − X, y − Y ) or ∇2u = δ(x − X, y − Y ). These extensions parallel those in
Theorems 12.3 and 12.4 in Section 12.3.

The three-dimensional version of Green’s identity is
∫∫∫

V

(u∇2v − v∇2u) dV =
∫∫
⊂⊃

β(V )

(u∇v − v∇u) · n̂ dS, (13.14b)

where V is a volume in space with piecewise smooth boundary β(V ). It is also
valid when u(x, y, z) and/or v(x, y, z) satisfy ∇2u+ k2u = δ(x−X, y− Y, z −Z) or
∇2u = δ(x−X, y − Y, z − Z).
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§13.2 Green’s Functions for Dirichlet Boundary Value Problems

Dirichlet problems for the two-dimensional Helmholtz equation take the form

Lu = ∇2u+ k2u = F (x, y), (x, y) in A, (13.15a)
u(x, y) = K(x, y), (x, y) on β(A). (13.15b)

For k = 0, we have the special case of Poisson’s equation. When F (x, y) has
continuous first derivatives and piecewise continuous second derivatives in A, as
does K(x, y) on β(A), this problem has a unique solution. The special case in
which A is a rectangle was discussed in Section 6.7 (see problem 6.70). In practical
situations when F (x, y) and K(x, y) may not satisfy these conditions, verification
of uniqueness is much more difficult, as is finding the solution by previous methods.
Green’s functions provide an excellent alternative.

We define the Green’s function G(x, y;X,Y ) for problem 13.15 as the solution
of

LG = ∇2G+ k2G = δ(x−X, y − Y ), (x, y) in A, (13.16a)
G(x, y;X,Y ) = 0, (x, y) on β(A). (13.16b)

It is the solution of problem 13.15 due to a unit source at the point (X,Y ) when
boundary conditions are homogeneous. In Section 13.3, we shall prove that the
solution of boundary value problem 13.15 can be expressed in the form

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
∫
©

β(A)

K(X,Y )
∂G(x, y;X,Y )

∂N
ds, (13.17)

where ∂G/∂N is the outward normal derivative of G with respect to the (X,Y )
variables along β(A). The solution is expressed in terms of integrals of the associated
Green’s function and source and boundary terms F (x, y) and K(x, y). We shall also
interpret these integrals physically. In this section, we concentrate on methods for
finding Green’s functions.

For boundary value problems associated with ODEs, we derived general for-
mulas (equations 12.33 and 12.34 in Section 12.3) for Green’s functions. This was
possible because boundaries for ODEs consist of two points. For PDEs, boundaries
consist of curves for two-dimensional problems and surfaces for three-dimensional
problems. As a result, it is impossible to find formulas for Green’s functions as-
sociated with multivariable boundary value problems. What we can do is develop
general techniques useful in large classes of problems. In this section, we illus-
trate four of these techniques for finding the Green’s function for Dirichlet problem
13.15 in the case of Poisson’s equation. These techniques may also be appropriate
for boundary value problems with Neumann or Robin conditions or mixed prob-
lems (problems with different types of boundary conditions on different parts of the
boundary). Before doing so, however, notice that if we substitute u = G(x, y;X,Y )
and v = G(x, y;R,S) into Green’s identity 13.14a,

∫∫

A

[G(x, y;R,S)∇2G(x, y;X,Y ) −G(x, y;X,Y )∇2G(x, y;R,S)] dA = 0

(since G(x, y;R,S) and G(x, y;X,Y ) satisfy boundary condition13.16b). But be-
cause G is a solution of PDE 13.16a, we may write
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0 =
∫∫

A

{G(x, y;R,S)[δ(x−X, y − Y )− k2G(x, y;X,Y )]

−G(x, y;X,Y )[δ(x−R, y − S) − k2G(x, y;R,S)]} dA
= G(X,Y ;R,S) −G(R,S;X,Y ).

In other words, the Green’s function is symmetric under the interchange of first and
second variables with third and fourth,

G(x, y;X,Y ) = G(X,Y ;x, y). (13.18)

This result is also valid when boundary condition 13.15b is replaced by either a
Neumann or a Robin condition.

Full Eigenfunction Expansion

In this method, the Green’s function is expanded in terms of orthonormal eigen-
functions of the associated eigenvalue problem

Lu+ λ2u = 0, (x, y) in A, (13.19a)
u(x, y) = 0, (x, y) on β(A). (13.19b)

We illustrate with the following example.

Example 13.1 Find the Green’s function associated with the Dirichlet problem for the two-dimen-
sional Laplacian on a rectangle A: 0 ≤ x ≤ L, 0 ≤ y ≤ L′.

Solution Separation of variables on

∇2u+ λ2u = 0, (x, y) in A, (13.20a)
u(x, y) = 0, (x, y) on β(A), (13.20b)

leads to normalized eigenfunctions

umn(x, y) =
2√
LL′

sin
nπx

L
sin

mπy

L′ ,

corresponding to eigenvalues λ2
mn = (nπ/L)2 + (mπ/L′)2 (see Section ‘The Multi-

dimensional Eigenvalue Problem’). The eigenfunction expansion ofG(x, y;X,Y )
in terms of these eigenfunctions is

G(x, y;X,Y ) =
∞∑

m=1

∞∑

n=1

cmnumn(x, y), (13.21)

and this representation satisfies the boundary condition that G vanish on the edges
of the rectangle. To calculate the coefficients cmn, we substitute this representation
into the PDE ∇2G = δ(x−X, y− Y ) for G and expand the delta function in terms
of the umn(x, y),
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∞∑

m=1

∞∑

n=1

cmn

(
−n

2π2

L2
− m2π2

L′2

)
umn(x, y)

= δ(x−X, y − Y )

=
∞∑

m=1

∞∑

n=1

[∫ L

0

∫ L′

0

δ(x−X, y − Y )umn(x, y) dy dx

]
umn(x, y)

=
∞∑

m=1

∞∑

n=1

umn(X,Y )umn(x, y).

Consequently, cmn = umn(X,Y )/(−λ2
mn), and

G(x, y;X,Y ) =
∞∑

m=1

∞∑

n=1

umn(X,Y )
−λ2

mn

umn(x, y)

=
−4
LL′

∞∑

m=1

∞∑

n=1

1
(nπ
L

)2

+
(mπ
L′

)2
sin

nπX

L
sin

mπY

L′ sin
nπx

L
sin

mπy

L′ . (13.22)

In Exercise 1 it is shown that this full eigenfunction expansion can also be obtained
using Green’s identity 13.14a. This avoids the interchange of the Laplacian and
summation operations and the eigenfunction expansion of δ(x−X, y − Y ).•

A general formula for full eigenfunction expansions can be found in Exercise 2,
but such expansions are of limited calculational utility. First, they are possible only
when the eigenvalue problem can be separated, and this requires that the boundary
of A consist of coordinate curves (or coordinate surfaces, in three-dimensional prob-
lems), Second, in the case in which the full eigenfunction expansion is available, a
partial eigenfunction expansion that converges more rapidly is also available.

Partial Eigenfunction Expansion

Like the full eigenfunction expanison, this method requires that regionA be bounded
by coordinate curves (or coordinate surfaces, in three-dimensional problems). It
differs in that separation is considered on the homogeneous problem

Lu = 0, (x, y) in A, (13.23a)
u(x, y) = 0, (x, y) on β(A), (13.23b)

and is carried out until one variable remains. An eigenfunction expansion for the
Green’s function is then found in terms of normalized eigenfunctions already deter-
mined, with coefficients that are functions of the remaining variable. We illustrate
once again with the problem in Example 13.1.

Example 13.2 Find a partial eigenfunction representation for the Green’s function in Example
13.1.

Solution Separation of variables on

∇2u = 0, (x, y) in A, (13.24a)
u(x, y) = 0, (x, y) on β(A), (13.24b)
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leads to normalized eigenfunctions fn(x) =

√
2
L

sin
nπx

L
. We expand G(x, y;X,Y )

in terms of these,

G(x, y;X,Y ) =
∞∑

n=1

an(y)fn(x). (13.25)

In actual fact, coefficients an(y) must also be functions of X and Y , but we shall
understand this dependence implicitly rather than express it explicitly. To deter-
mine the an(y), we substitute this expression into the PDE ∇2G = δ(x−X, y− Y )
for G and expand the delta function in terms of the fn(x),

∞∑

n=1

−n2π2

L2
anfn(x) +

∞∑

n=1

d2an

dy2
fn(x) = δ(x−X, y − Y )

=
∞∑

n=1

[∫ L

0

δ(x−X, y − Y )fn(x) dx

]
fn(x)

=
∞∑

n=1

fn(X)δ(y − Y )fn(x).

This equation and the boundary conditions G(x, 0;X,Y ) = 0 = G(x,L′;X,Y )
require the an(y) to satisfy

d2an

dy2
− n2π2

L2
an = δ(y − Y )fn(X), 0 < y < L′,

an(0) = 0, an(L′) = 0.

We can solve this boundary value problem most easily by using our theory of Green’s
functions for ODEs. Since a solution of the homogeneous equation that satisfies
the first boundary condition is sinh (nπy/L), and one that satisfies the second is
sinh [nπ(L′ − y)/L], equation 12.34 in Section 12.3 gives

an(y) =
1
J

[
sinh

nπy

L
sinh

nπ(L′ − Y )
L

h(Y − y) + sinh
nπY

L
sinh

nπ(L′ − y)
L

h(y − Y )
]
,

where J is the conjunct of sinh (nπy/L) and sinh [nπ(L′ − y)/L],

J =
1

fn(X)

[
sinh

nπy

L

(
−nπ
L

)
cosh

nπ(L′ − y)
L

−
(nπ
L

)
cosh

nπy

L
sinh

nπ(L′ − y)
L

]

= −nπ sinh (nπL′/L)√
2L sin (nπX/L)

.

Thus, an alternative to the double-series, full eigenfunction expansion is the single-
series, partial eigenfunction expansion

G(x, y;X,Y ) =
∞∑

n=1

−
√

2L sin
nπX

L

nπ sinh
nπL′

L

[
sinh

nπy

L
sinh

nπ(L′ − Y )
L

h(Y − y)
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+ sinh
nπY

L
sinh

nπ(L′ − y)
L

h(y − Y )

]√
2
L

sin
nπx

L

=





∞∑

n=1

−2 sin
nπX

L
sin

nπx

L
sinh

nπy

L
sinh

nπ(L′ − Y )
L

nπ sinh
nπL′

L

, 0 ≤ y ≤ Y

∞∑

n=1

−2 sin
nπX

L
sin

nπx

L
sinh

nπY

L
sinh

nπ(L′ − y)
L

nπ sinh
nπL′

L

, Y ≤ y ≤ L′.

(13.26)

It is clear that we could find an equivalent solution by expanding G in a Fourier
sine series in y. The result would be

G(x, y;X,Y ) =





∞∑

n=1

−2 sin
nπY

L′ sin
nπy

L′ sinh
nπx

L′ sinh
nπ(L−X)

L′

nπ sinh
nπL

L′

, 0 ≤ x ≤ X

∞∑

n=1

−2 sin
nπY

L′ sin
nπy

L′ sinh
nπX

L′ sinh
nπ(L− x)

L′

nπ sinh
nπL

L′

, X ≤ x ≤ L.

(13.27)

A natural question to ask is: In which problems, should each of these expres-
sions for G(x, y;X,Y ) be used? Since each is a Fourier series, rates of convergence
of the series will depend on the relative magnitudes of coefficients. The coefficient
of sin (nπx/L) in representation 13.26 for y > Y is

−2 sin
nπX

L
sinh

nπY

L
sinh

nπ(L′ − y)
L

nπ sinh
nπL′

L

,

and for large n we may drop the negative exponentials in the hyperbolic functions
and approximate this quantity with

−e
nπY/Lenπ(L′−y)/L

nπenπL′/L
sin

nπX

L
=

−1
nπ

enπ(Y −y)/L sin
nπX

L
.

Similarly, when y < Y , the coefficient can, for large n, be approximated by

−1
nπ

enπ(y−Y )/L sin
nπX

L
.

Corresponding coefficients in representation 13.27 are approximated for large n by

−1
nπ

enπ|X−x|/L′
sin

nπY

L′ .

It follows that to calculate G(x, y;X,Y ) at a value of x that is substantially different
from X, it would be wise to use representation 13.27, and, conversely, when y is
markedly different from Y , representation 13.26 would provide faster convergence.

In addition, when boundary integrals arise for the solution of Dirichlet prob-
lem 13.15 (and this occurs for nonhomogeneous boundary conditions 13.15b), it is
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advantageous to use representation 13.26 for integrations along y = 0 and y = L′,
but use representation 13.27 along x = 0 and x = L.

Splitting Technique

Sometimes it is convenient to split G into two parts, G = U+g, where U contains the
singular part of G due to the delta function in PDE 13.16a and g guarantees that G
satisfies the boundary conditions associated with L. This splitting technique permits
consideration of the singular nature of the Green’s function without the annoyance
of boundary conditions. (The technique could have been used for ODEs, but it was
unnecessary because formulas 12.33 and 12.34 in Section 12.3 were presented for
Green’s functions.) To be more specific, for the Green’s function satisfying problem
13.16, we set G = U + g, where U(x, y;X,Y ) satisfies the PDE

LU = δ(x−X, y − Y ) (13.28)

and g satisfies the boundary value problem

Lg = 0, (x, y) in A, (13.29a)
g = −U, (x, y) on β(A). (13.29b)

Because U(x, y;X,Y ) is not required to satisfy boundary conditions, it is often
called the free-space Green’s function for the operator L. Free-space Green’s
functions for the Laplace and Helmholtz operators in two and three dimensions are
listed in Table 13.1. Each is singular at the source point (X,Y ).

∇2 ∇2 + k2

Laplacian Helmholtz

xy
plane

1
2π

ln
√

(x−X)2 + (y − Y )2
1
4
Y0[k

√
(x−X)2 + (y − Y )2]

xyz
space

−1
4π
√

(x−X)2 + (y − Y )2 + (z − Z)2

− eik
√

(x−X)2+(y−Y )2+(z−Z)2

4π
√

(x−X)2 + (y − Y )2 + (z − Z)2
,

− e−ik
√

(x−X)2+(y−Y )2+(z−Z)2

4π
√

(x−X)2 + (y − Y )2 + (z − Z)2

Table 13.1

We justify the first entry here; the other three are discussed in the exercises.
The two-space Green’s function G(x, y;X,Y ) for the Laplacian is the solution of

∇2G = δ(x−X, y − Y ).

It is the effect at point (x, y) due to a unit source at (X,Y ). Because the function
should be symmetric about the source point, we switch to polar coordinates centred
at (X,Y ), and search for a function G(r; 0) satisfying

d2G

dr2
+

1
r

dG

dr
=
δ(r)
2πr

, (13.30)
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where we have used equation 13.9 for the delta function at the origin. Multiplication
by r leads to

d

dr

(
r
dG

dr

)
=
δ(r)
2π

.

Integration with respect to r from r = 0 to an arbitrary value of r gives

r
dG

dr
=

1
2π

=⇒ dG

dr
=

1
2πr

=⇒ G(r; 0) =
1
2π

ln r + C.

We take C = 0. This shows that the effect at a point due to a unit source is 1/(2π)
times the logarithm of the distance from point to source. It follows that the effect
at point (x, y) due to a source at (X,Y ) is

G(x, y;X,Y ) =
1
2π

ln
√

(x−X)2 + (y − Y )2.

A similar derivation gives the free-space Green’s function for the three-dimen-
sional Laplacian (Exercise 25). Unfortunately, the same technique does not work
for the Helmholtz operator. In Exercise 26, we provide an alternative derivation for
free-space Green’s functions associated with the Laplacian and this technique does
extend to Helmholtz operators (Exercises 28 and 29).

We now return to the splitting technique by illustrating it in the following
example.

Example 13.3 Find the Green’s function for the Dirichlet problem associated with Laplace’s equa-
tion on a circle 0 ≤ r ≤ a.

Solution The Green’s function associated with the Dirichlet problem for the
Laplacian on a circle centred at the origin with radius a satisfies

∇2G =
δ(r −R)δ(θ − Θ)

r
, 0 < r < a, −π < θ ≤ π, (13.31a)

G(a, θ;R,Θ) = 0, −π < θ ≤ π. (13.31b)

The free-space Green’s function for the two-dimensional Laplacian with singularity
at (R,Θ) is

U(r, θ;R,Θ) =
1
2π

ln
√

(r cos θ −R cosΘ)2 + (r sin θ −R sin Θ)2

=
1
4π

ln [r2 + R2 − 2rR cos (θ − Θ)]

(see Table 13.1). When we split G into G = U + g, function g must satisfy

∇2g = 0, 0 < r < a, −π < θ ≤ π, (13.32a)

g(a, θ;R,Θ) = − 1
4π

ln [a2 + R2 − 2aR cos (θ − Θ)], −π < θ ≤ π. (13.32b)

Separation of variables on the PDE, together with boundedness at r = 0, leads to
a solution of the form

g(r, θ;R,Θ) =
A0√
2π

+
∞∑

n=1

(
Anr

n cosnθ√
π

+Bnr
n sinnθ√

π

)
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(see equation 6.31a in Section 6.3). Boundary condition 13.32b requires

A0√
2π

+
∞∑

n=1

(
Ana

n cosnθ√
π

+Bna
n sinnθ√

π

)
=

−1
4π

ln [a2 + R2 − 2aR cos (θ − Θ)]

=
−1
4π

ln a2 − 1
4π

ln

[
1 +

(
R

a

)2

− 2
(
R

a

)
cos (θ − Θ)

]
.

With the result
∞∑

n=1

αn cosnφ
n

= −1
2

ln (1 + α2 − 2α cosφ), (|α| < 1), (13.33)

we may write

A0√
2π

+
∞∑

n=1

(
Ana

n cosnθ√
π

+ Bna
n sinnθ√

π

)

=
−1
4π

ln a2 +
1
2π

∞∑

n=1

(R/a)n

n
cosn(θ − Θ)

=
−1
4π

ln a2 +
1
2π

∞∑

n=1

(R/a)n

n
(cosnθ cosnΘ + sinnθ sinnΘ).

Comparison of coefficients requires

A0√
2π

=
−1
4π

ln a2,
Ana

n

√
π

=
(R/a)n

2πn
cosnΘ,

Bna
n

√
π

=
(R/a)n

2πn
sinnΘ,

and therefore

g(r, θ;R,Θ) =
−1
2π

ln a+
∞∑

n=1

rn

[
(R/a)n

2πnan
cosnθ cosnΘ +

(R/a)n

2πnan
sinnθ sinnΘ

]

=
−1
2π

ln a+
1
2π

∞∑

n=1

(rR/a2)n

n
cosn(θ − Θ).

But identity 13.33 permits evaluation of this series in closed form,

g(r, θ;R,Θ) =
−1
2π

ln a− 1
4π

ln

[
1 +

(
rR

a2

)2

− 2
(
rR

a2

)
cos (θ − Θ)

]

=
1
2π

ln a− 1
4π

ln [a4 +R2r2 − 2a2Rr cos (θ − Θ)].

Finally,

G(r, θ;R,Θ) = U + g =
1
4π

ln [r2 + R2 − 2Rr cos (θ − Θ)] +
1
2π

ln a

− 1
4π

ln [a4 +R2r2 − 2a2Rr cos (θ − Θ)]

=
1
4π

ln
[
a2 r2 +R2 − 2Rr cos (θ − Θ)
a4 + R2r2 − 2a2Rr cos (θ − Θ)

]
. (13.34)
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This result is also obtained with a partial eigenfunction expansion in Exercise 13.•

The splitting technique points out a distinct difference between Green’s func-
tions for one-dimensional problems and those for multidimensional problems. The
Green’s function g(x;X) for a one-dimensional boundary value problem (associ-
ated with a second-order ODE) is a continuous function of x (or can be made
so) with a jump discontinuity in its first derivative. Green’s functions for multi-
dimensional boundary value problems can always be represented as the sum of a
free-space Green’s function U and a regular part g, and, according to Table 13.1,
free-space Green’s functions are always singular at the source point. Thus, multi-
variable Green’s functions always have discontinuities at source points.

Method of Images

The method of images is simply physical reasoning and intelligent guesswork in
arriving at the function g in the splitting technique, and as such it works only on
Laplace’s equation with very simple geometries. When the Green’s function G for a
domain A is split into U + g, the free-space Green’s function U can be regarded as
the potential due to a unit point source interior to A. This source, by itself, induces
a nonzero potential on β(A). What is needed is a source distribution exterior to A
whose potential g will cancel the effect of U on β(A). (The fact that this distribution
is exterior to A guarantees that G = U + g satisfies ∇2G = δ interior to A.)

We illustrate with the following three-dimensional problem.

Example 13.4 Find the Green’s function associated with the three-dimensional Dirichlet problem
for Laplace’s equation in a sphere of radius a.

Solution The Green’s function satisfies

∇2G =
δ(r −R)δ(θ − Θ)δ(φ− Φ)

r2 sinφ
, 0 < r < a, 0 < φ < π, −π < θ ≤ π,(13.35a)

G(a, φ, θ;R,Φ,Θ) = 0, 0 < φ < π, −π < θ ≤ π. (13.35b)

According to Table 13.1, the free-space Green’s function with source point (X,Y,Z)
is −1/[4π

√
(x−X)2 + (y − Y )2 + (z − Z)2]. When (R,Φ,Θ) are the spherical co-

ordinates of (X,Y,Z), this function becomes

U(r, φ, θ;R,Φ,Θ) =
−1

4π
√
r2 +R2 − 2Rr[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

.

What the method of images suggests is
finding a source distribution exterior
to the sphere, the potential g for
which is such that G = U + g vanishes
on r = a. We might first consider
whether a single source of magnitude q
at a point (R∗,Φ∗,Θ∗)(R∗ > a) might
suffice. Symmetry would suggest that
such a source could eliminate U on
r = a, which is symmetric around the x

z

y

r R

R

r

( , , )

( 0, , )

( *, , )0

r0 r0

QF

qf

QF

line through the origin, and (R,Φ,Θ) Figure 13.1
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(Figure 13.1) only if (R∗,Φ∗,Θ∗) were to lie on the line also. We assume, therefore,
that Θ∗ = Θ and Φ∗ = Φ, in which case the condition that G = U + g vanish on
r = a is

0 =
−1

4π
√
a2 +R2 − 2aR[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

+
−q

4π
√
a2 + R∗2 − 2aR∗[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

or,

− q
√
a2 +R2 − 2aR[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

=
√
a2 + R∗2 − 2aR∗[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)].

Since this condition must be valid for all φ and θ, we set φ = 0 and φ = π,

−q
√
a2 + R2 − 2aR cosΦ =

√
a2 +R∗2 − 2aR∗ cosΦ,

−q
√
a2 + R2 + 2aR cosΦ =

√
a2 +R∗2 + 2aR∗ cosΦ.

These two equations imply that R∗ = a2/R and q = −a/R, and with these, U + g
vanishes identically on r = a. Thus, the Green’s function for the Laplacian inside a
sphere of radius a is

G(r, φ, θ;R,Φ,Θ) =
−1

4π
√
r2 +R2 − 2Rr[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

+
a

4πR

√
r2 +

(
a2

R

)2

− 2r
(
a2

R

)
[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

=
−1

4π
√
r2 +R2 − 2Rr[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

+
a

4π
√
R2r2 + a4 − 2a2Rr[cosφ cos Φ + sinφ sin Φ cos (θ − Θ)]

.

(13.36)

EXERCISES 13.2

1. Show that coefficients cmn in representation 13.21 can be obtained by substituting v = umn(x, y)
and u = G(x, y;X,Y ) in Green’s identity 13.14a.

2. Show that when un(x, y) are orthonormal eigenfunctions of the eigenvalue problem

∇2u+ λ2u = 0, (x, y) in A, (13.37a)
u(x, y) = 0, (x, y) on β(A), (13.37b)

associated with the Dirichlet problem
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∇2u = F (x, y), (x, y) in A, (13.38a)
u(x, y) = K(x, y), (x, y) on β(A), (13.38b)

the full eigenfunction expansion for the Green’s function is

G(x, y;X,Y ) =
∞∑

n=1

un(X,Y )un(x, y)
−λ2

n

. (13.39)

(This expansion should be compared with that in Exercise 25 of Section 12.3 for the Green’s
function of an ODE.)
In Exercises 3–8 use Exercise 2 (and its extension to three dimensions) to find
full eigenfunction expansions for the Green’s function associated with the Dirichlet
problem for Poisson’s equation on the given domain.

3. 0 ≤ r < a, −π < θ ≤ π 4. 0 ≤ r < a, 0 < θ < π

5. 0 ≤ r < a, 0 < θ < L 6. 0 < x < L, 0 < y < L′, 0 < z < L′′

7. 0 ≤ r < a, −π < θ ≤ π, 0 < z < L 8. 0 ≤ r < a, 0 ≤ φ ≤ π, −π < θ ≤ π

9. Use the method of images and the result of Example 13.4 to find the Green’s function for the
Dirichlet problem associated with Poisson’s equation in a hemisphere of radius a.

10. Use a “modified” method of images to find the Green’s function for the Dirichlet problem
associated with the two-dimensional Laplacian on a circle of radius a. Assume that g consists
of a potential due to an exterior, negative unit point source plus a constant potential.

11. Use the result of Exercise 10 and the method of images to find the Green’s function for the
Dirichlet problem associated with Poisson’s equation on a semicircle 0 < r < a, 0 < θ < π.
How does it compare with the representation in Exercise 4.

12. Use the method of images to find the Green’s function for the Dirichlet problem for the Laplacian
on the rectangle 0 < x < L, 0 < y < L′.

13. In this exercise we use a partial eigenfunction expansion to find Green’s function 13.34 for
problem 13.31.
(a) Show that the partial eigenfunction expansion for G(r, θ;R,Θ) is

G(r, θ;R,Θ) =
A0(r)√

2π
+

∞∑

n=1

[
An(r)

cosnθ√
π

+ Bn(r)
sinnθ√

π

]
.

(b) Substitute the expansion in part (a) into PDE 13.31a, and expand δ(r−R)δ(θ− Θ)/r in a
Fourier series to obtain the following boundary value problems for the coefficients:

d

dr

(
r
dA0

dr

)
=
δ(r −R)√

2π
, A0(a) = 0;

d

dr

(
r
dAn

dr

)
− n2

r
An = δ(r −R)

cosnΘ√
π

, An(a) = 0;

d

dr

(
r
dBn

dr

)
− n2

r
Bn = δ(r −R)

sinnΘ√
π

, Bn(a) = 0.

(c) The systems in part (b) are “singular” in the sense that there is only one boundary condition
and the coefficient r in the derivative term vanishes at r = 0. As a result, equations 12.33
and 12.34 in Section 12.3 cannot be used to find An and Bn. Instead, use properties 12.26a–c
from Section 12.3 and the one boundary condition to show that
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A0(r) =





ln (R/a)√
2π

, 0 ≤ r ≤ R

ln (r/a)√
2π

, R < r ≤ a,

An(r) =





cosnΘ
2
√
πn

[(
rR

a2

)n

−
( r
R

)n
]
, 0 ≤ r ≤ R

cosnΘ
2
√
πn

[(
rR

a2

)n

−
(
R

r

)n]
, R < r ≤ a,

Bn(r) =





sinnΘ
2
√
πn

[(
rR

a2

)n

−
( r
R

)n
]
, 0 ≤ r ≤ R

sinnΘ
2
√
πn

[(
rR

a2

)n

−
(
R

r

)n]
, R < r ≤ a.

(d) Find G(r, θ;R,Θ) and use identity 13.33 to reduce the function to the form in equation
13.34.

14. Use the technique of Exercise 13 to find a partial eigenfunction expansion for the Green’s
function of the Dirichlet problem for the Laplacian on the semicircle 0 < r < a, 0 < θ < π.
Show that it can be expressed in the form of Exercise 11.

15. Use the technique of Exercise 13 to find the partial eigenfunction expansion for the Green’s
function of Exercise 5.

16. Find a partial eigenfunction expansion for the Green’s function of Exercise 6 using eigenfunctions
in x and y.

17. Show that when un(x, y) are orthonormal eigenfunctions of eigenvalue problem 13.19, the full
eigenfunction expansion for the Green’s function of the boundary value problem

∇2u+ k2u = F (x, y), (x, y) in A, (13.40a)
u(x, y) = K(x, y), (x, y) on β(A), (13.40b)

is

G(x, y;X,Y ) =
∞∑

n=1

un(X,Y )un(x, y)
k2 − λ2

n

, (13.41)

provided k 6= λn for any n. (The exceptional case is discussed in Exercise 8 of Section 13.3.)
In Exercises 18–24 use Exercise 17 to state Green’s functions for problem 13.40 on
the given domain. (See Example 13.1 and Exercises 3–8 for eigenpairs.)

18. 0 < x < L, 0 < y < L′ 19. 0 ≤ r < a, −π < θ ≤ π

20. 0 ≤ r < a, 0 < θ < π 21. 0 < r < a, 0 < θ < L

22. 0 < x < L, 0 < y < L′, 0 < z < L′′ 23. 0 ≤ r < a, −π < θ ≤ π, 0 < z < L

24. 0 ≤ r < a, 0 ≤ φ ≤ π, −π < θ ≤ π

25. Derive the free-space Green’s function for the 3-dimensional Laplacian by taking the source at
the origin and using spherical coordinates centred there.
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26. In this exercise we give a derivation of free-space Green’s functions for the two-dimensional
Laplacian that can be used to find free-space Green’s functions for Helmholtz operators.
(a) Show that G(r; 0) = C ln r+D is a general solution of the homogeneous version of equation

13.30.
(b) By substituting v = G(r; 0) and u = 1 in Green’s second identity 13.14a where A is a circle

of radius ε centred at the source r = 0, show that

ε
∂G(ε; 0)
∂r

=
1
2π
.

(c) Reason that G(r; 0) must satisfy

r
∂G(r; 0)
∂r

=
1
2π

and lim
r→0

r
∂G(r; 0)
∂r

=
1
2π
.

(d) Use the results of parts (a) and (c), to find G(r; 0).

27. Use the technique of Exercise 26 to derive the free-space Green’s function in Table 13.1 for the
three-dimensional Laplacian.

28. Use the technique of Exercise 26 to derive the free-space Green’s functions in Table 13.1 for the
three-dimensional Helmholtz operator ∇2 +k2. Hint: Set G(r; 0) = H(r)/r in the homogeneous
differential equation for G(r; 0).

29. Use the technique of Exercise 26 to derive the free-space Green’s function in Table 13.1 for the
two-dimensional Helmholtz operator ∇2 + k2.
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§13.3 Solutions of Dirichlet Boundary Value Problems on Finite Regions

In this section we use Green’s functions to solve Dirichlet boundary value problems
associated with Poisson’s equation on finite regions. Results for the Helmholtz
equation are discussed in the exercises.

The Dirichlet boundary value problem for Poisson’s equation in two dimensions
is

∇2u = F (x, y), (x, y) in A, (13.42a)
u(x, y) = K(x, y), (x, y) on β(A), (13.42b)

where A is a region with finite area. The following theorem verifies representation
13.17 as the solution of this problem.

Theorem 13.1 When G(x, y;X,Y ) is the Green’s function for Dirichlet problem 13.42, the solution
is

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
∫
©

β(A)

K(X,Y )
∂G(x, y;X,Y )

∂N
ds,(13.43)

where ∂G/∂N is the outward normal derivative of G with respect to the (X,Y )
variables.

Proof If in Green’s identity 13.14a, we let v = G(x, y;X,Y ) and u = u(x, y) be
the solution of problem 13.42,

∫∫

A

(u∇2G−G∇2u) dA =
∫
©

β(A)

(u∇G−G∇u) · n̂ ds.

Because ∇2u = F and ∇2G = δ(x−X, y−Y ) in A, and u = K and G = 0 on β(A),
∫∫

A

[u(x, y)δ(x−X, y − Y ) −G(x, y;X,Y )F (x, y)] dA

=
∫
©

β(A)

K(x, y)∇G(x, y;X,Y ) · n̂ ds

or,

u(X,Y ) =
∫∫

A

G(x, y;X,Y )F (x, y) dy dx+
∫
©

β(A)

K(x, y)
∂G(x, y;X,Y )

∂n
ds.

When we interchange (x, y) and (X,Y ),

u(x, y) =
∫∫

A

G(X,Y ;x, y)F (X,Y ) dY dX +
∫
©

β(A)

K(X,Y )
∂G(X,Y ;x, y)

∂N
ds

=
∫∫

A

G(x, y;X,Y )F (X,Y ) dY dX +
∫
©

β(A)

K(X,Y )
∂G(x, y;X,Y )

∂N
ds

(because G(x, y;X,Y ) is symmetric).

It can be helpful to interpret the integral terms in soluion 13.43 physically.
From an electrostatic point of view, problem 13.42 defines potential in a region
A due to an area charge density determined by F (x, y) and a boundary potential



540 SECTION 13.3

K(x, y). (In actual fact, we are considering any cross section of a z-symmetric three-
dimensional problem.) The area integral in solution 13.43 represents that part of the
potential due to the interior charge, and the line integral is the boundary potential
contribution. The Green’s function G(x, y;X,Y ) is the potential at (x, y) due to a
unit charge at (X,Y ) when the boundary potential on β(A) vanishes (which would
be the case, say, for a grounded metallic surface). The double integral superposes
over all elemental contributions G(x, y;X,Y )F (X,Y ) dY dX of internal charge.

From a heat conduction point of view, problem 13.42 describes steady-state
temperature in a region A due to internal heat generation determined by F (x, y)
and boundary temperature K(x, y). The area integral in solution 13.43 represents
that part of the temperature due to internal sources. The Green’s function is the
temperature at (x, y) due to a unit source at (X,Y ) when the boundary temperature
is made to vanish. The line integral represents the effect of imposed boundary
temperatures.

Finally, problem 13.42 also describes static deflections of a membrane stretched
tautly over A. The double integral represents the effect due to applied forces (con-
tained in F (x, y)), and the line integral determines the effect of boundary displace-
ments.

We noted in Section 13.2 that G(x, y;X,Y ) is not continuous; it has a singu-
larity when (x, y) = (X,Y ). The discontinuity cannot be too severe, however, since
existence of the area integral in formula 13.43 (which integrates over the singular-
ity) is guaranteed by Theorem 13.1. To illustrate this point, suppose A is the circle
r < a and K = 0 on β(A). According to equation 13.43, the solution to problem
13.42 at any point (r, θ) in this case is

u(r, θ) =
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA.

For simplicity, we consider the origin, in which case

u(0, θ) =
∫∫

A

G(0, θ;R,Θ)F (R,Θ) dA.

Using equation 13.34 for G(r, θ;R,Θ),

u(0, θ) =
∫∫

A

1
2π

ln
(
R

a

)
F (R,Θ) dA,

and indeed we can see that ln (R/a) is singular at R = 0. However, the area element
dA = RdRdΘ effectively removes this singularity, and

u(0, θ) =
∫ π

−π

∫ a

0

1
2π

ln
(
R

a

)
F (R,Θ)RdRdΘ

must converge. In particular, if F (R,Θ) ≡ 1, integration by parts gives

u(0, θ) =
1
2π

∫ π

−π

∫ a

0

R ln
(
R

a

)
dRdΘ = −a

2

4
.

The three-dimensional counterpart of Theorem 13.1 is the following.
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Theorem 13.2 When G(x, y, z;X,Y,Z) is the Green’s function for the Dirichlet problem

∇2u = F (x, y, z), (x, y, z) in V , (13.44a)
u(x, y, z) = K(x, y, z), (x, y, z) on β(V ), (13.44b)

the solution of the problem is

u(x, y, z) =
∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV

+
∫∫

β(V )

K(X,Y,Z)
∂G(x, y, z;X,Y,Z)

∂N
dS. (13.45)

We now consider some examples.

Example 13.5 Find an integral representation for the solution of the Dirichlet boundary value
problem on a circle

∇2u = F (r, θ), 0 < r < a, −π < θ ≤ π, (13.46a)
u(a, θ) = K(θ), −π < θ ≤ π. (13.46b)

Solution According to formula 13.43, the solution can be represented in the form

u(r, θ) =
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA+
∫
©

β(A)

K(Θ)
∂G(r, θ; a,Θ)

∂R
ds,

where G(r, θ;R,Θ) is the Green’s function in equation 13.34

G(r, θ;R,Θ) =
1
4π

ln
[
a2 r2 + R2 − 2rR cos (θ − Θ)
a4 + r2R2 − 2a2rR cos (θ − Θ)

]
.

Now,

∂G(r, θ; a,Θ)
∂R

=
1
4π

[
2R− 2r cos (θ − Θ)

r2 +R2 − 2rR cos (θ − Θ)
− 2r2R− 2a2r cos (θ − Θ)
a4 + r2R2 − 2a2rR cos (θ − Θ)

]

|R=a

=
1
4π

[
2a− 2r cos (θ − Θ)

r2 + a2 − 2ra cos (θ − Θ)
− 2r2a− 2a2r cos (θ − Θ)
a4 + r2a2 − 2a3r cos (θ − Θ)

]

=
1

2πa
a2 − r2

r2 + a2 − 2ar cos (θ − Θ)
.

Thus,

u(r, θ) =
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA+
∫ π

−π

K(Θ)
a2 − r2

2πa[r2 + a2 − 2ar cos (θ − Θ)]
a dΘ

=
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA+
a2 − r2

2π

∫ π

−π

K(Θ)
r2 + a2 − 2ar cos (θ − Θ)

dΘ.(13.47)

When F (r, θ) ≡ 0, the solution of Laplace’s equation is

u(r, θ) =
a2 − r2

2π

∫ π

−π

K(Θ)
r2 + a2 − 2ar cos (θ − Θ)

dΘ,

Poisson’s integral formula for a circle (see equation 6.34 in Section 6.3).•
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Example 13.6 Find an integral representation for the solution of the following Dirichlet problem
on a rectangle:

∇2u = F (x, y), 0 < x < L, 0 < y < L′, (13.48a)
u(x, 0) = f(x), 0 < x < L, (13.48b)
u(L, y) = 0, 0 < y < L′, (13.48c)
u(x,L′) = 0, 0 < x < L, (13.48d)
u(0, y) = g(y), 0 < y < L′. (13.48e)

Solution The solution can be represented in the form

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
∫ L

0

−f(X)
∂G(x, y;X, 0)

∂Y
dX

+
∫ 0

L′
−g(Y )

∂G(x, y; 0, Y )
∂X

(−dY ),

where G is given by either of formulas 13.26 or 13.27. For the first line integral, we
use formula 13.26 in the form

G(x, y;X,Y ) =





∞∑

n=1

−2 sin
nπX

L
sin

nπx

L
sinh

nπY

L
sinh

nπ(L′ − y)
L

nπ sinh
nπL′

L

, 0 ≤ Y ≤ y

∞∑

n=1

−2 sin
nπX

L
sin

nπx

L
sinh

nπy

L
sinh

nπ(L′ − Y )
L

nπ sinh
nπL′

L

, y ≤ Y ≤ L′

to calculate

∂G(x, y;X, 0)
∂Y

=
∞∑

n=1

−2 sin
nπX

L
sin

nπx

L

(nπ
L

)
sinh

nπ(L′ − y)
L

nπ sinh
nπL′

L

.

A similar calculation using formula 13.27 gives

∂G(x, y; 0, Y )
∂X

=
∞∑

n=1

−2 sin
nπY

L′ sin
nπy

L′

(nπ
L′

)
sinh

nπ(L− x)
L′

nπ sinh
nπL

L′

,

and therefore

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA

−
∫ L

0

f(X)




∞∑

n=1

−2 sin
nπX

L
sin

nπx

L

(nπ
L

)
sinh

nπ(L′ − y)
L

nπ sinh
nπL′

L


 dX

−
∫ L′

0

g(Y )




∞∑

n=1

−2 sin
nπY

L′ sin
nπy

L′

(nπ
L′

)
sinh

nπ(L− x)
L′

nπ sinh
nπL

L′


 dY
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=
∫ L′

0

∫ L

0

G(x, y;X,Y )F (X,Y ) dX dY

+
2
L

∞∑

n=1

sin
nπx

L
sinh

nπ(L′ − y)
L

sinh
nπL′

L

∫ L

0

f(X) sin
nπX

L
dX

+
2
L′

∞∑

n=1

sin
nπy

L′ sinh
nπ(L− x)

L′

sinh
nπL

L′

∫ L′

0

g(Y ) sin
nπY

L′ dY .• (13.49)

Special cases of this problem that lead to solutions found in previous chapters
are contained in Exercises 1 and 2.

Example 13.7 Find an integral representation for the solution of the Dirichlet problem in a sphere:

∇2u = F (r, φ, θ), 0 < r < a, 0 < φ < π, −π < θ ≤ π, (13.50a)
u(a, φ, θ) = K(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π. (13.50b)

Solution The solution can be expressed in the form

u(r, φ, θ) =
∫∫∫

V

G(r, φ, θ;R,Φ,Θ)F (R,Φ,Θ) dV +
∫∫

β(V )

K(Φ,Θ)
∂G(r, φ, θ; a,Φ,Θ)

∂R
dS,

where the Green’s function is contained in equation 13.36. Since

∂G(r, φ, θ; a,Φ,Θ)
∂R

=
1
4π

{
a− r[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

[r2 + a2 − 2ra(cosφ cosΦ + sinφ sin Φ cos (θ − Θ))]3/2

}

− a

4π

{
ar2 − a2r[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

[a2r2 + a4 − 2a3r(cosφ cosΦ + sinφ sin Φ cos (θ − Θ))]3/2

}

=
1
4π

{
a− r[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

[r2 + a2 − 2ra(cosφ cosΦ + sinφ sin Φ cos (θ − Θ))]3/2

}

− r

4πa

{
r − a[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

[r2 + a2 − 2ra(cosφ cosΦ + sinφ sin Φ cos (θ − Θ))]3/2

}

=
a2 − r2

4πa{r2 + a2 − 2ra[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]}3/2
,

we find that

u(r, φ, θ) =
∫∫∫

V

G(r, φ, θ;R,Φ,Θ)F (R,Φ,Θ) dV

+
∫ π

−π

∫ π

0

(a2 − r2)K(Φ,Θ)a2 sinΦ
4πa{r2 + a2 − 2ra[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]}3/2

dΦ dΘ

=
∫∫∫

V

G(r, φ, θ;R,Φ,Θ)F (R,Φ,Θ) dV

+
a3 − r2a

4π

∫ π

−π

∫ π

0

K(Φ,Θ) sinΦ
{r2 + a2 − 2ra[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]}3/2

dΦ dΘ.

(13.51)
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When F (r, φ, θ) = 0, this is Poisson’s integral formula 9.41 for a sphere, but the
simplicity of the present derivation is unmistakable.•

EXERCISES 13.3

1. Use the result of Example 13.6 to solve Exercise 31 in Section 4.2.

2. Use the result of Example 13.6 to solve Exercise 48 in Section 7.2.

3. Find an integral representation for the solution of the following Dirichlet boundary value prob-
lem on a rectangle.

∇2u = F (x, y), 0 < x < L, 0 < y < L′,

u(x, 0) = 0, 0 < x < L,

u(L, y) = g(y), 0 < y < L′,

u(x,L′) = f(x), 0 < x < L,

u(0, y) = 0, 0 < y < L′.

4. Find an integral representation for the solution of the Dirichlet problem on a semicircle:

∇2u = F (r, θ), 0 < r < a, 0 < θ < π,

u(a, θ) = f(θ), 0 < θ < π,

u(r, 0) = g1(r), 0 < r < a,

u(r, π) = g2(r), 0 < r < a.

(See Exercise 11 in Section 13.2 for the Green’s function.)
In the remaining exercises, we discuss Dirichlet problems associated with the Helm-
holtz equation,

(∇2 + k2)u = F (x, y), (x, y) in A, (13.52a)
u(x, y) = K(x, y), (x, y) on β(A), (13.52b)

where k > 0 is a constant.

5. Verify that representation 13.43 is the solution of problem 13.52 when there is a Green’s function
G(x, y;X,Y ) satisfying

(∇2 + k2)G = δ(x−X, y − Y ), (x, y) in A, (13.53a)
G(x, y;X,Y ) = 0, (x, y) on β(A). (13.53b)

6. What is the result corresponding to that in Exercise 5 for three-dimensional problems?
The homogeneous Dirichlet problem for the Laplacian

∇2u = 0, (x, y) in A,
u(x, y) = 0, (x, y) on β(A),

has only the trivial solution. The homogeneous Dirichlet problem
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(∇2 + k2)u = 0, (x, y) in A,

u(x, y) = 0, (x, y) on β(A),

on the other hand, may have nontrivial solutions depending on the value of k. In
this case, it is necessary to introduce modified Green’s functions. We illustrate this
in Exercise 7 and discuss it in general in Exercise 8.

7. (a) Show that when A is the square 0 < x, y < L, the function w(x, y) =
2
L

sin
πx

L
sin

πy

L
is a

(nontrivial) solution of

∇2u+
2π2

L2
u = 0, (x, y) in A,

u(x, y) = 0, (x, y) on β(A).

(b) Prove that when the problem

∇2u+
2π2

L2
u = F (x, y), (x, y) in A,

u(x, y) = 0, (x, y) on β(A),

has a solution u(x, y), then F (x, y) must satisfy the condition
∫ L

0

∫ L

0

F (x, y)w(x, y) dy dx = 0.

(The converse is also valid; that is, when F (x, y) satsifies this condition, the nonhomogeneous
problem has a solution u(x, y). It is not unique; u(x, y)+Cw(x, y) is also a solution for any
constant C.)

(c) Because the delta function does not satisfy the condition in part (b), there can be no Green’s
function satisfying

∇2G+
2π2

L2
G = δ(x−X, y − Y ), (x, y) in A,

G(x, y;X,Y ) = 0, (x, y) on β(A).

We therefore introduce a modified Green’s function G(x, y;X,Y ) satisfying

∇2u+
2π2

L2
G = δ(x−X, y − Y )− w(x, y)w(X,Y ), (x, y) in A,

G(x, y;X,Y ) = 0, (x, y) on β(A).

Show that the right side of the PDE for G satisfies the condition in part (b).
(d) Find a partial eigenfunction expansion for G in terms of the normalized eigenfunctions√

2/L sin (nπx/L).
(e) Find an integral representation for the solution of the boundary value problem in part (b)

in terms of F (x, y) and G(x, y;X,Y ).
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8. (a) Show that when the homogeneous problem

(∇2 + k2)u = 0, (x, y) in A, (13.54a)
u(x, y) = 0, (x, y) on β(A), (13.54b)

has nontrivial solutions w(x, y), nonhomogeneous problem 13.52 has a solution only if F (x, y)
and K(x, y) satisfy the condition that for every such solution w(x, y)

∫∫

A

F (x, y)w(x, y) dA = −
∫
©

β(A)

K(x, y)
∂w(x, y)
∂n

ds, (13.55)

where ∂w/∂n is the derivative of w in the outwardly normal direction to β(A). (The converse
result is also valid; that is, when condition 13.55 is satisfied, problem 13.52 has a solution
that is unique to an additive term Cw(x, y), C an arbitrary constant.)

(b) Show that the solution of problem 13.52 can be expressed in the form

u(x, y) =
∫∫

A

G(X,Y ;x, y)F (X,Y ) dA

+
∫
©

β(A)

K(X,Y )
∂G(X,Y ;x, y)

∂N
ds+ Cw(x, y), (13.56)

where G(x, y;X,Y ) is a modified Green’s function satisfying

(∇2 + k2)G = δ(x−X, y − Y ) − w(x, y)w(X,Y ), (x, y) in A, (13.57a)
G(x, y;X,Y ) = 0, (x, y) on β(A), (13.57b)

and w(x, y) is a normalized solution of problem 13.54 (with unit weight function).
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§13.4 Solutions of Neumann Boundary Value Problems on Finite Regions

The Neumann problem for Poisson’s equation

∇2u = F (x, y), (x, y) in A, (13.58a)
∂u

∂n
= K(x, y), (x, y) on β(A), (13.58b)

is more difficult to handle than the Dirichlet problem because the corresponding
homogeneous problem,

∇2u = 0, (x, y) in A, (13.59a)
∂u

∂n
= 0, (x, y) on β(A), (13.59b)

always has nontrivial solutions u = constant. As a result, problem 13.58 does not
have a unique solution; if u(x, y) is a solution, so also is u(x, y) + constant. We
already know that for there to be a solution of problem 13.58, F (x, y) and K(x, y)
must satisfy the consistency condition

∫∫

A

F (x, y) dA =
∫
©

β(A)

K(x, y) ds. (13.60)

When problem 13.58 is a steady-state heat conduction problem, condition 13.60
implies that heat generation within A must be compensated by heat crossing its
boundary. It would therefore be futile to define the Green’s function for problem
13.58 as the solution of

∇2u = δ(x−X)δ(y − Y )), (x, y) in A, (13.61a)
∂u

∂n
= 0, (x, y) on β(A). (13.61b)

Consistency condition 13.60 is not satisfied. We take the lead of Section 12.5 and
introduce modified Green’s functions. They are functions that satisfy

∇2N = δ(x−X, y − Y ) − 1
area(A)

, (x, y) in A, (13.62a)

∂N

∂n
= 0, (x, y) on β(A). (13.62b)

To see how the area term in this PDE is a direct analogue of the situation for ODEs,
see Exercise 1. Solutions to problem 13.62 do exist since condition 13.60 is satisfied,

∫∫

A

[
δ(x−X, y − Y ) − 1

area(A)

]
dA = 1 − 1 = 0.

Some solutions are symmetric with respect to an interchange of (x, y) and (X,Y ),
others are not. According to the following theorem, symmetric ones are preferable,
but not essential.

Theorem 13.3 When consistency condition 13.60 is satisfied, the solution of Neumann problem
13.58 is

u(x, y) =
∫∫

A

N(x, y;X,Y )F (X,Y ) dA−
∫
©

β(A)

N(x, y;X,Y )K(X,Y ) ds+ C, (13.63)
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where C is an arbitrary constant and N(x, y;X,Y ) is a symmetric modified Green’s
function satisfying 13.62.
Proof In Green’s identity 13.14a on A, we let v = N(x, y;X,Y ) and u = u(x, y),
the solution of problem 13.58,

∫∫

A

(u∇2N −N∇2u) dA =
∫
©

β(A)

(u∇N −N∇u) · n̂ ds.

Because ∇2u = F in A, ∇2N = δ(x−X, y −X)− 1/area(A), and ∂u/∂n = K and
∂N/∂n = 0 on β(A),

∫∫

A

{
u(x, y)

[
δ(x−X, y − Y ) − 1

areaA

]
−N(x, y;X,Y )F (x, y)

}
dA

=
∫
©

β(A)

−N(x, y;X,Y )K(x, y) ds

or,

u(X,Y ) =
∫∫

A

N(x, y;X,Y )F (x, y) dA−
∫
©

β(A)

N(x, y;X,Y )K(x, y) ds+
C1

area(A)
,

where C1 =
∫∫

A

u(x, y) dA. When we interchange (x, y) and (X,Y ),

u(x, y) =
∫∫

A

N(X,Y ;x, y)F (X,Y ) dA−
∫
©

β(A)

N(X,Y ;x, y)K(X,Y ) ds+ C (13.64)

=
∫∫

A

N(x, y;X,Y )F (X,Y ) dA−
∫
©

β(A)

N(x, y;X,Y )K(X,Y ) ds+ C,

where we have replaced C1/area(A) by C, since u(x, y) is unique to an additive
constant.

If the modified Green’s function N(x, y;X,Y ) is not symmetric, equation 13.64
must be used for the solution in place of 13.63.

Example 13.8 Use a modified Green’s function to solve the following Neumann boundary value
problem on a rectangle.

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′,

∂V (0, y)
∂x

= 0, 0 < y < L′,

∂V (L, y)
∂x

= 0, 0 < y < L′,

∂V (x, 0)
∂y

= 0, 0 < x < L,

∂V (x,L′)
∂y

= f(x), 0 < x < L.

Solution Modified Green’s functions N(x, y;X,Y ) for this problem must satisfy
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∂2N

∂x2
+
∂2N

∂y2
= δ(x−X, y − Y ) − 1

LL′ , 0 < x < L, 0 < y < L′,

Nx(0, y) = 0, 0 < y < L′,

Nx(L, y) = 0, 0 < y < L′,

Ny(x, 0) = 0, 0 < x < L,

Ny(x,L′) = 0, 0 < x < L.

Substitution of a partial eigenfunction expansion,

N(x, y;X,Y ) =
∞∑

n=0

an(y)fn(x) =
a0(y)√
L

+
∞∑

n=1

an(y)

√
2
L

cos
nπx

L
,

into the PDE gives

∞∑

n=0

−n
2π2

L2
anfn(x) +

∞∑

n=0

d2an

dy2
fn(x)

= δ(x−X, y − Y ) − 1
LL′

=
∞∑

n=0

{∫ L

0

[
δ(x−X)δ(y − Y ) − 1

LL′

]
fn(x) dx

}
fn(x)

=
1√
L

[
δ(y − Y ) − 1

L′

]
f0(x) +

∞∑

n=1

fn(X)δ(y − Y )fn(x).

This equation, along with the boundary conditions Ny(x, 0) = 0 = Ny(x,L′), re-
quires coefficients an(y) to satisfy

d2a0

dy2
=

1√
L

[
δ(y − Y )− 1

L′

]
, 0 < y < L′,

a′0(0) = a′0(L
′) = 0,

and for n > 0,

d2an

dy2
− n2π2

L2
an = fn(X)δ(y − Y ), 0 < y < L′,

a′n(0) = a′n(L′) = 0.

Because −y2/(2
√
LL′) is a solution of d2a0/dy

2 = −1/(
√
LL′), we take

a0(y) =





Ay +B − y2

2
√
LL′

, 0 ≤ y < Y

Dy + C − y2

2
√
LL′

, Y < y ≤ L′.

Boundary conditions a′0(0) = a′0(L
′) = 0, and continuity conditions 12.26a,b from

Section 12.3 require
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A = 0, D − 1√
L

= 0, AY + B = DY + C, D −A =
1√
L
.

These yield A = 0, D = 1/
√
L, and B = Y/

√
L + C, where C is arbitrary, and

hence

a0(y) =





Y√
L

+ C − y2

2
√
LL′

, 0 ≤ y ≤ Y

y√
L

+ C − y2

2
√
LL′

, Y ≤ y ≤ L′.

Since a general solution of the differential equation d2an/dy
2 − (n2π2/L2)an = 0 is

A cosh (nπy/L) +B sinh (nπy/L), we take

an(y) =




A cosh

nπy

L
+ B sinh

nπy

L
, 0 ≤ y < Y

C cosh
nπy

L
+D sinh

nπy

L
, Y < y ≤ L.

The boundary conditions require

nπ

L
B = 0, C sinh

nπL′

L
+D cosh

nπL′

L
= 0,

and continuity conditions 12.26a,b necessitate

A cosh
nπY

L
+B sinh

nπY

L
= C cosh

nπY

L
+D sinh

nπY

L
,

(
C sinh

nπY

L
+D cosh

nπY

L

)
−
(
A sinh

nπY

L
+B cosh

nπY

L

)
=

L

nπ
fn(X).

These four equations can be solved for

A =
−L cosh

nπ(L′ − Y )
L

fn(X)

nπ sinhnπL′/L)
, B = 0, C =

−L cosh
nπL′

L
cosh

nπY

L
fn(X)

nπ sinh (nπL′/L)
,

D =
L

nπ
cosh

nπY

L
fn(X),

and hence

an(y) =





−L cosh
nπ(L′ − Y )

L
cosh

nπy

L
fn(X)

nπ sinh (nπL′/L)
, 0 ≤ y ≤ Y

−L cosh
nπL′

L
cosh

nπY

L
cosh

nπy

L
fn(X)

nπ sinhnπL′/L)
+
L cosh

nπY

L
sinh

nπy

L
fn(X)

nπ
, Y ≤ y ≤ L′

=





−L cosh
nπ(L′ − Y )

L
cosh

nπy

L
fn(X)

nπ sinh (nπL′/L)
, 0 ≤ y ≤ Y

−L cosh
nπY

L
cosh

nπ(L′ − y)
L

fn(X)

nπ sinh (nπL′/L)
, Y ≤ y ≤ L′.
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A modified Green’s function is therefore

N(x, y;X,Y ) =





Y

L
+

C√
L

− y2

2LL′ −
∞∑

n=1

2 cos
nπX

L
cosh

nπy

L
cosh

nπ(L′ − Y )
L

nπ sinh (nπL′/L)
cos

nπx

L
, 0 ≤ y ≤ Y

y

L
+

C√
L

− y2

2LL′ −
∞∑

n=1

2 cos
nπX

L
cosh

nπY

L
cosh

nπ(L′ − y)
L

nπ sinh (nπL′/L)
cos

nπx

L
, Y ≤ y ≤ L′.

Because N(x, y;X,Y ) is not symmetric, we use equation 13.64 to express the so-
lution of the original boundary value problem as a line integral along the edge
C ′ : y = L′,

V (x, y) = −
∫

C′
N(X,Y ;x, y)f(X) ds+D = −

∫ L

0

N(X,L′;x, y)f(X) dX +D,

where D is an arbitrary constant, and

N(X,Y ;x, y) =





y

L
+

C√
L

− Y 2

2LL′ −
∞∑

n=1

2 cos
nπX

L
cosh

nπY

L
cosh

nπ(L′ − y)
L

nπ sinh (nπL′/L)
cos

nπx

L
, 0 ≤ Y ≤ y

Y

L
+

C√
L

− Y 2

2LL′ −
∞∑

n=1

2 cos
nπX

L
cosh

nπy

L
cosh

nπ(L′ − Y )
L

nπ sinh (nπL′/L)
cos

nπx

L
, y ≤ Y ≤ L′.

When we use the latter of these expressions to evaluate N(X,L′;x, y) along C ′,

V (x, y) = −
∫ L

0


L

′

L
+

C√
L

− L′

2L
−

∞∑

n=1

2 cos
nπX

L
cosh

nπy

L
nπ sinh (nπL′/L)

cos
nπx

L


 f(X) dX +D.

Since f(x) must satisfy the consistency condition
∫ L

0

f(x) dx = 0,

this solution reduces to

V (x, y) = D +
∞∑

n=1

an cosh
nπy

L
cos

nπx

L
,

where

an =
2

nπ sinh (nπL′/L)

∫ L

0

f(X) cos
nπX

L
dX.

Had the nonhomogeneity been along either of the boundaries x = 0 or x = L, or
both, an eigenfunction expansion for N(x, y;X,Y ) in terms of functions g0(y) =
1/

√
L′ and gn(y) =

√
2/L′ cos (nπy/L′) would have been used (see Exercise 2).•
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EXERCISES 13.4

1. The analogue of problem 13.62 in ODEs is problem 12.55. Show that when Lg = d2g/dx2,
0 < x < L, and the boundary conditions are Neumann, equation 12.55a becomes

d2g

dx2
= δ(x−X) − 1

L
.

Assume a weight function identically equal to unity.

2. (a) Solve Example 13.8 when boundary conditions along x = L, y = 0, and y = L′ are
homogeneous and that along x = 0 is Vx(0, y) = f(y), 0 < y < L′.

(b) Find V (x, y) when f(y) = δ(y−L′/4)− δ(y− 3L′/4) and V (0, L′/2) = 0. What is the value
of V (x, y) at all points on the line y = L′/2?

3. What is the solution to Example 13.8 if the boundary condition along y = 0 is also nonhomo-
geneous, Vy(x, 0) = g(x)?

4. Verify that the steady-state heat conduction problem
∂2U

∂x2
+
∂2U

∂y2
= − 1

κ
, 0 < x < L, 0 < y < L,

Ux(0, y) =
L

4κ
, 0 < y < L,

Ux(L, y) =
−L
4κ

, 0 < y < L,

Uy(x, 0) =
L

4κ
, 0 < x < L,

Uy(x,L) =
−L
4κ

, 0 < x < L,

satisfies consistency condition 13.60 and find its solution.

5. In this problem we develop a modified Green’s function for the Neumann problem for Poisson’s
equation on a circle and solve the corresponding boundary value problem,

∇2u = F (r, θ), 0 < r < a, −π < θ ≤ π,

∂u(a, θ)
∂r

= K(θ), −π < θ < π.

(a) What is the boundary value problem characterizing N(r, θ;R,Θ) for this problem?
(b) Using a partial eigenfunction expansion identical to that in Exercise 13(a) of Section 13.2,

show that coefficient functions A0(r), An(r), and Bn(r) must satisfy
d2A0

dr2
+

1
r

dA0

dr
=
δ(r −R)√

2πr
−

√
2√
πa2

, 0 < r < a,

A′
0(a) = 0;

d2An

dr2
+

1
r

dAn

dr
− n2

r2
An =

δ(r −R) cosnθ√
πr

, 0 < r < a,

A′
n(a) = 0;

d2Bn

dr2
+

1
r

dBn

dr
− n2

r2
Bn =

δ(r −R) sinnθ√
πr

, 0 < r < a,

B′
n(a) = 0.
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(c) Solve the equations in part (b) and hence show that

N(r, θ;R,Θ) =





A√
2π

− r2

4πa2
−

∞∑

n=1

1
2πn

[(
rR

a2

)n

+
( r
R

)n
]

cosn(θ − Θ), 0 ≤ r ≤ R

A√
2π

+
ln (r/R)

2π
− r2

4πa2
−

∞∑

n=1

1
2πn

[(
rR

a2

)n

+
(
R

r

)n]
cosn(θ − Θ), R ≤ r ≤ a

where A is independent of r and θ.
(d) Use formula 13.33 in Section 13.2 to simplify the modified Green’s function to

N(r, θ;R,Θ) =
A√
2π

− r2

4πa2

+
1
4π

ln
{

[r2 +R2 − 2rR cos (θ − Θ)][a4 + r2R2 − 2ra2R cos (θ − Θ)]
a4R2

}
.

(e) Find an integral representation for the solution of the boundary value problem in part (a).

6. (a) To satisfy consistency condition 13.60, it is possible to change the boundary condition
defining modified Green’s functions instead of the PDE. Show that the functionN(x, y;X,Y )
defined by

∇2N = δ(x−X, y − Y ), (x, y) in A,

∂N

∂n
=

1
L
, (x, y) on β(A),

where L is the length of β(A), satisfies 13.60.
(b) Find the solution of problem 13.58 in terms of N(x, y;X,Y ).

7. Use a modified Green’s function of Exercise 6 to find the solution of the problem in Exercise 5.

8. (a) Show that when functions F (x, y, z) and K(x, y, z) for the three-dimensional Neumann
problem for Poisson’s equation

∇2u = F (x, y, z), (x, y, z) in V ,

∂u

∂n
= K(x, y, z), (x, y, z) on β(V ),

satisfy the consistency condition in Exercise 9 of Section 2.1, then the solution of the bound-
ary value problem is

u(x, y, z) =
∫∫∫

V

N(X,Y,Z;x, y, z)F (X,Y,Z) dV −
∫∫

β(V )

N(X,Y,Z;x, y, z)K(X,Y,Z) dS + C,

where C is an arbitrary constant and N(x, y, z;X,Y,Z) is a modified Green’s function
satisfying

∇2N = δ(x−X, y − Y, z − Z) − 1
volume(V )

, (x, y, z) in V ,

∂N

∂n
= 0, (x, y, z) on β(V ).

(b) What is the solution when N(x, y, z;X,Y,Z) is symmetric?
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9. What is the three-dimensional analogue of Exercise 6?
10. (a) The Neumann problem for the Helmholtz equation is

(∇2 + k2)u = F (x, y), (x, y) in A, (13.65a)
∂u

∂n
= K(x, y), (x, y) on β(A). (13.65b)

The homogeneous system

(∇2 + k2)u = 0, (x, y) in A, (13.66a)
∂u

∂n
= 0, (x, y) on β(A), (13.66b)

has nontrivial solutions. (This is clear when k = 0, since u = constant is a solution, and it is
also true when k 6= 0.) As a result, problem 13.65 does not have a unique solution; if u(x, y)
is a solution, then so also is u(x, y) + Cw(x, y), where w(x, y) is any solution of 13.66. In
addition, F (x) and K(x, y) must satisfy a consistency condition for there to be a solution
of 13.65 at all. Problem 13.65 has solutions if and only if

∫∫

A

w(x, y)F (x, y) dA =
∫
©

β(A)

w(x, y)K(x, y) ds (13.67)

for every solution w(x, y) of 13.66. Prove the necessity of this condition.
(b) Show that when the consistency condition is satisfied, the solution of problem 13.65 is

u(x, y) =
∫∫

A

N(x, y;X,Y )F (X,Y ) dA−
∫
©

β(A)

N(x, y;X,Y )K(X,Y ) ds+ Cw(x, y), (13.68)

where w(x, y) is the normalized solution of 13.66, C is an arbitrary constant, and
N(x, y;X,Y ) is a symmetric modified Green’s function satisfying

(∇2 + k2)N = δ(x−X, y − Y ) − w(x, y)w(X,Y ), (x, y) in A, (13.69a)
∂N

∂n
= 0, (x, y) on β(A). (13.69b)

11. State and prove the three-dimensional analogue of Exercise 10.
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§13.5 Robin and Mixed Boundary Value Problems on Finite Regions

The Robin problem for Poisson’s equation is

∇2u = F (x, y), (x, y) in A, (13.70a)

l
∂u

∂n
+ hu = K(x, y), (x, y) on β(A). (13.70b)

Its solution can be represented in integral form in terms of the nonhomogeneities
and the Green’s function for the problem.

Theorem 13.4 The solution of problem 13.70 is

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA− 1
l

∫
©

β(A)

G(x, y;X,Y )K(X,Y ) ds, (13.71)

where G(x, y;X,Y ) satisfies

∇2G = δ(x−X, y − Y ), (x, y) in A, (13.72a)

l
∂G

∂n
+ hG = 0, (x, y) on β(A). (13.72b)

Proof If in Green’s identity 13.14a on A we let v = G(x, y;X,Y ) and let u(x, y)
be the solution of 13.70,

∫∫

A

(u∇2G−G∇2u) dA =
∫
©

β(A)

(u∇G−G∇u) · n̂ ds.

Because ∇2G = δ(x−X, y−Y ), ∇2u = F , and l∂u/∂n+hu = K and l∂G/∂n+hG =
0 on β(A),
∫∫

A

[u(x, y)δ(x−X, y − Y ) −G(x, y;X,Y )F (x, y)] dA

=
∫
©

β(A)

{
u(x, y)

l
[−hG(x, y;X,Y )] − G(x, y;X,Y )

l
[K(x, y) − hu(x, y)]

}
ds

or,

u(X,Y ) =
∫∫

A

G(x, y;X,Y )F (x, y) dA− 1
l

∫
©

β(A)

G(x, y;X,Y )K(x, y) ds.

When we interchange (x, y) and (X,Y ),

u(x, y) =
∫∫

A

G(X,Y ;x, y)F (X,Y ) dA− 1
l

∫
©

β(A)

G(X,Y ;x, y)K(X,Y ) ds

=
∫∫

A

G(x, y;X,Y )F (X,Y ) dA− 1
l

∫
©

β(A)

G(x, y;X,Y )K(X,Y ) ds,

since G(x, y;X,Y ) must be symmetric (see Exercise 1).

Because G = −(l/h)∂G/∂n on β(A), we may also express the solution in the
form

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
1
h

∫
©

β(A)

∂G(x, y;X,Y )
∂N

K(X,Y ) ds, (13.73)
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where once again ∂G/∂N indicates the outward normal derivative of G with respect
to the (X,Y ) variables.

A boundary value problem is said to be mixed if all parts of the boundary are
not subjected to the same type of condition. For instance, the unknown function
may have to satisfy a Dirichlet condition on part of the boundary and a Neumann
condition on the remainder.

Example 13.9 Find an integral representation for the solution of the following mixed boundary
value problem on a semicircle:

∇2u = F (r, θ), 0 < r < a, 0 < θ < π,

u(a, θ) = K1(θ), 0 < θ < π,

∂u(r, 0)
∂θ

= 0, 0 < r < a,

∂u(r, π)
∂θ

= 0, 0 < r < a.

Solution The Green’s function for this problem is

G(r, θ;R,Θ) =
1
4π

ln
{
a4 [r2 +R2 − 2Rr cos (θ + Θ)][r2 + R2 − 2Rr cos (θ − Θ)]

[R2r2 + a4 − 2a2rR cos (θ + Θ)][R2r2 + a4 − 2a2rR cos (θ − Θ)]

}

(see Exercise 2). To solve the boundary value problem, we apply identity 13.14a
to the semicircle, denoted by A, with v = G and u = u(r, θ), the solution of the
problem,

∫∫

A

(G∇2u− u∇2G) dA =
∫
©

β(A)

(G∇u− u∇G) · n̂ ds.

With ∇2G = δ(r − R, θ − Θ)/r, ∇2u = F , and the boundary conditions for G and
u,

∫∫

A

[
G(r, θ;R,Θ)F (r, θ) − u(r, θ)

δ(r − R, θ − Θ)
r

]
r dr dθ =

∫ π

0

−K1(θ)
∂G(a, θ;R,Θ)

∂r
a dθ

or

u(R,Θ) =
∫ π

0

∫ a

0

G(r, θ;R,Θ)F (r, θ)r dr dθ +
∫ π

0

aK1(θ)
∂G(a, θ;R,Θ)

∂r
dθ.

When we interchange (r, θ) and (R,Θ), and note the symmetry in G,

u(r, θ) =
∫ π

0

∫ a

0

G(r, θ;R,Θ)F (R,Θ)RdRdΘ +
∫ π

0

aK1(Θ)
∂G(r, θ; a,Θ)

∂R
dΘ.

EXERCISES 13.5

1. Verify that the Green’s function for the Robin problem is symmetric.

2. Show that the Green’s function for the boundary value problem of Example 13.9 is

G(r, θ;R,Θ) =
1
4π

ln
{
a4 [r2 +R2 − 2Rr cos (θ + Θ)][r2 +R2 − 2Rr cos (θ − Θ)]

[R2r2 + a4 − 2a2rR cos (θ + Θ)][R2r2 + a4 − 2a2rR cos (θ − Θ)]

}
.
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3. Use a Green’s function to find an integral representation for the solution of the boundary value
problem

∂2u

∂x2
+
∂2u

∂y2
= F (x, y), 0 < x < L, 0 < y < L,

u(0, y) = f(y), 0 < y < L,

u(L, y) = 0, 0 < y < L,

uy(x, 0) = 0, 0 < x < L,

u(x,L) = 0, 0 < x < L.

4. Show that the solution of the Robin problem

(∇2 + k2)u = F (x, y), (x, y) in A, (13.74a)

l
∂u

∂n
+ hu = K(x, y), (x, y) on β(A), (13.74b)

is given by 13.71 when G(x, y;X,Y ) is the associated Green’s function.

5. Show that the solution of the three-dimensional Robin problem

∇2u = F (x, y, z), (x, y, z) in V , (13.75a)

l
∂u

∂n
+ hu = K(x, y, z), (x, y, z) on β(V ), (13.75b)

may be expressed in either of the forms

u(x, y, z) =
∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV − 1
l

∫∫

β(V )

G(x, y, z;X,Y,Z)K(X,Y,Z) dS,

and

u(x, y, z) =
∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV +
1
h

∫∫

β(V )

∂G(x, y, z;X,Y,Z)
∂N

K(X,Y,Z) dS.
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§13.6 Green’s Functions and Unbounded Regions

In this section we use the free space Green’s functions of Section 13.2 to solve
boundary value problems on unbounded domains. As is usual, the procedure has
two steps, find the appropriate Green’s function and then use Green’s second identity
to find the solution of the boundary value problem in terms of the Green’s function
and nonhomogeneities. Because integrations take place over infinite regions, it is
necessary to place restrictions on the behaviour of solutions far from sources. To
determine this behaviour for two-dimensional problems, we consider the boundary
value problem

∇2u = F (r, θ), 0 < r <∞, −π ≤ θ ≤ π. (13.76)

In Green’s identity 13.14a, we let u(r, θ) be the solution of this problem and v =
G(r, θ;R,Θ) be the two-dimensional Green’s function for the Laplacian in Table
13.1 of Section 13.2, and choose A to be a circle of radius a,

∫∫

A

(u∇2G−G∇2u) dA =
∫
©

β(A)

(u∇G−G∇u) · n̂ ds.

Since ∇2u = F (r, θ) and ∇2G = (1/r)δ(r− R)δ(θ − Θ),
∫∫

A

[
u(r, θ)

1
r
δ(r − R)δ(θ− Θ) −G(r, θ;R,Θ)F (r, θ)

]
r dr dθ

=
∫ π

−π

[
u(a, θ)

∂G(a, θ;R,Θ)
∂r

−G(a, θ;R,Θ)
∂u(a, θ)
∂r

]
a dθ.

Thus,

u(R,Θ) =
∫∫

A

G(r, θ;R,Θ)F (r, θ) dA

+
∫ π

−π

[
u(a, θ)

∂G(a, θ;R,Θ)
∂r

−G(a, θ;R,Θ)
∂u(a, θ)
∂r

]
a dθ. (13.77)

We require the second integral to vanish as a→ ∞. This will be the case if

lim
a→∞

a

[
u(a, θ)

∂G(a, θ;R,Θ)
∂r

−G(a, θ;R,Θ)
∂u(a, θ)
∂r

]
= 0.

Since a is arbitrary, we can rewrite this requirement as

lim
r→∞

r

(
u
∂G

∂r
−G

∂u

∂r

)
= 0.

If we now substitute G(r, θ;R,Θ) =
1
4π

ln [r2 +R2 − 2rR cos (θ − Θ)],

0 = lim
r→∞

r

4π

{
u

[
2r − 2R cos (θ − Θ)

r2 + R2 − 2rR cos (θ − Θ)

]
− ∂u

∂r
ln [r2 +R2 − 2rR cos (θ − Θ)]

}

=
1
4π

lim
r→∞

{
2u− r

∂u

∂r
ln r2

[
1 +

R2

r2
− 2R

r
cos (θ − Θ)

]}

=
1
2π

lim
r→∞

(
u− r ln r

∂u

∂r

)
.
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Thus, to guarantee vanishing of the terms in equation 13.77 along the artificial
boundary r = a, we assume that u(r, θ) satisfies the condition

lim
r→∞

(
u− r ln r

∂u

∂r

)
= 0. (13.78)

When this is the case, the solution can be obtained from equation 13.77 by taking
limits as a → ∞, interchanging r, θ with R,Θ, and using symmetry of the Green’s
function,

u(r, θ) =
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA, (13.79)

whereA now represents the upper half of the xy-plane. Convergence of this improper
integral also has implications regarding the behaviour of F (r, θ) at infinity.

In Exercise 1, it is shown that the analogue of condition 13.78 for three-
dimensional problems is

lim
r→∞

(
u+ r

∂u

∂r

)
= 0. (13.80)

We can now proceed to solve other boundary value problems on unbounded domains.

Example 13.10 Use Green’s functions to find an integral representation for the solution of the half-
plane Dirichlet problem

∇2u = F (x, y), −∞ < x <∞, y > 0,
u(x, 0) = K(x), −∞ < x <∞.

Solution According to Table 13.1, the infinite space Green’s function for the
two-dimen-sional Laplacian is (2π)−1 ln

√
(x−X)2 + (y − Y )2. To eliminate its

undesirable effect along the x-axis, we introduce a unit negative source at the point
(X,−Y ). The addition of these sources results in value zero along the x-axis; that
is, using the method of images, the Green’s function for the half-space problem is

G(x, y;X,Y ) =
1
2π

ln
√

(x−X)2 + (y − Y )2 − 1
2π

ln
√

(x−X)2 + (y + Y )2

=
1
4π

ln
[
(x−X)2 + (y − Y )2

(x−X)2 + (y + Y )2

]
.

We now set set v = G(x, y;X,Y ) and let u(x, y) be the solution of the boundary
value problem in Green’s second identity 13.14a, and choose the region A to be the
semicircle 0 ≤ r ≤ a, 0 ≤ θ ≤ π,

∫∫

A

(u∇2G−G∇2u) dA =
∫
©

β(A)

(u∇G−G∇u) · n̂ ds.

Interior to region A, we have ∇2G = δ(x − X, y − Y ) and ∇2u = F (x, y). If Γ
denotes the semi-circular part of β(A), then

∫∫

A

[u(x, y)δ(x−X, y − Y ) −G(x, y;X,Y )F (x, y)] dA =
∫ a

−a

K(x)
[
−∂G(x, 0;X,Y )

∂y

]
dx

+
∫

Γ

(u∇G−G∇u) · n̂ ds.
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If we assume that u(x, y) satisfies condition 13.78, then the line integral along Γ

vanishes as a→ ∞. With
∂G(x, 0;X,Y )

∂y
=

−Y
π[(x−X)2 + Y 2]

,

u(X,Y ) =
∫∫

A

G(x, y;X,Y )F (x, y) dy dx−
∫ ∞

−∞
K(x)

{
−Y

π[(x−X)2 + Y 2]

}
dx,

where A now represents the upper half of the xy-plane. When we interchange (x, y)
and (X,Y ) and use the symmetry of G(x, y;X,Y ),

u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dY dX +
y

π

∫ ∞

−∞

K(X)
(x−X)2 + y2

dX.

When F (x, y) = 0, this is Poisson’s integral formula of Exercise 8 in Section 11.4.•

EXERCISES 13.6

1. Show that for solutions of Poisson’s equation in three-space to have vanishing “boundary terms”,
they must satisfy condition 13.80.

2. Solve the boundary value problem of Example 13.10 when the boundary condition along y = 0
is Neumann, namely ∂u(x, 0)/∂y = K(x).

3. (a) Solve the Dirichlet boundary value problem exterior to a circle,

∇2u = F (r, θ), r > a, −π ≤ θ ≤ π,

u(a, θ) = K(θ), −π < θ ≤ π.

Hint: First convince yourself that the Green’s function of Exercise 10 in Section 13.2 for the
interior of a circle is also that for the exterior of the circle.

(b) Does the solution become Poisson’s integral formula of Exercise 13 in Section 6.3 when
F (r, θ) = 0?

4. (a) Solve the first-quadrant Dirichlet problem

∇2u = F (x, y), 0 < x <∞, 0 < y <∞,

u(x, 0) = K(x), 0 < x <∞,

u(0, y) = H(y), 0 < y <∞.

(b) Does the solution become that of part (e) in Exercise 24 in Section 11.4 when F (x, y) = 0?

5. (a) Repeat part (a) of Exercise 4 if u(x, y) must satisfy the Neumann boundary condition
∂u(x, 0)/∂y = K(x) along y = 0.

(b) Does the solution become that of Example 11.22 in Section 11.4 when F (x, y) = 0?

6. Solve the Dirichlet problem

∇2u = F (r, φ, θ), r > a, 0 < φ < π, −π < θ ≤ π,

u(a, φ, θ) = K(φ, θ), 0 < φ < π, −π < θ ≤ π,

exterior to a sphere of radius a. Does the result become that of Exercise 44 in Section 9.1 when
F (r, φ, θ) = 0?
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7. Solve the half-space Dirichlet problem

∇2u = F (x, y, z), −∞ < x <∞, −∞ < y <∞, z > 0,
u(x, y, 0) = K(x, y), −∞ < x <∞, −∞ < y <∞.

8. Solve the half-space Neumann problem

∇2u = F (x, y, z), −∞ < x <∞, −∞ < y <∞, z > 0,
uz(x, y, 0) = K(x, y), −∞ < x <∞, −∞ < y <∞.

9. Solve the infinite strip Dirichlet problem

∇2u = F (x, y), −∞ < x <∞, 0 < y < L′,

u(x, 0) = K(x), −∞ < x <∞,

u(x,L′) = H(x), −∞ < x <∞.

10. Repeat Exercise 9 if the boundary conditions are Neumann.
In Exercises 11–12 use the method of images to find the Green’s function for Pois-
son’s equation on the region described with the given boundary conditions.

11. The semi-infinite strip 0 < x <∞, 0 < y < L′, with:
(a) Dirichlet conditions on all three edges y = 0, y = L′, and x = 0;
(b) Dirichlet conditions on edges y = 0 and y = L′, and a Neumann condition along x = 0;
(c) Neumann conditions along y = 0 and y = L′, and a Dirichlet condition along x = 0.

12. The infinite slab −∞ < x <∞, −∞ < y <∞, 0 < z < L′′ with:
(a) Dirichlet conditions on both faces z = 0 and z = L′′;
(b) Neumann conditions on both faces z = 0 and z = L′′;
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§13.7 Green’s Functions for Heat Conduction Problems

Green’s functions can also be defined for initial boundary value problems; they
encompass the character of Green’s functions for boundary value problems and also
the causal features of the initial value problems in Section 12.6.

The causal Green’s function for the one-dimensional heat conduction problem

∂2U

∂x2
=

1
k

∂U

∂t
− g(x, t)

κ
, 0 < x < L, t > 0, (13.81a)

−l1
∂U

∂x
+ h1U = f1(t), x = 0, t > 0, (13.81b)

l2
∂U

∂x
+ h2U = f2(t), x = L, t > 0, (13.81c)

U(x, 0) = f(x), 0 < x < L, (13.81d)

is defined as the solution of the corresponding problem with homogeneous initial
and boundary conditions when a unit of heat is inserted at position X and time T ,

∂2U

∂x2
=

1
k

∂U

∂t
− δ(x−X)δ(t− T )

κ
, 0 < x < L, t > T, (13.82a)

−l1
∂U

∂x
+ h1U = 0, x = 0, t > T, (13.82b)

l2
∂U

∂x
+ h2U = 0, x = L, t > T, (13.82c)

U(x, t;X,T ) = 0, 0 < x < L, t < T. (13.82d)

For t > T , it can also be characterized as the solution of

∂2G

∂x2
=

1
k

∂G

∂t
, 0 < x < L, t > T, (13.83a)

−l1
∂G

∂x
+ h1G = 0, x = 0, t > T, (13.83b)

l2
∂G

∂x
+ h2G = 0, x = L, t > T, (13.83c)

G(x, T+;X,T ) =
k

κ
δ(x−X), 0 < x < L; (13.83d)

that is, the solution of 13.82 is h(t−T )G(x, t;X,T ) whenG(x, t;X,T ) satisfies 13.83.
What this means is that the effect of a unit heat source at position X and time T
on a rod with zero temperature is equivalent to the effect of suddenly raising the
temperature of the rod at point X to k/κ at time T . The causal Green’s function
for 13.81 is h(t − T )G(x, t;X,T ), where G(x, t;X,T ) satisfies 13.83. In essence,
then, G(x, t;X,T ) is the causal Green’s function for problem 13.81; we must simply
remember to set it equal to zero for t < T . Because of this, we shall customarily
call G(x, t;X,T ), itself, the causal Green’s function.

Example 13.11 Find the causal Green’s function for problem 13.81 in the case that l1 = 0 = h2.

Solution Separation of variables on problem 13.83 with l1 = h2 = 0 leads, for
t > T , to a solution of the form
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G(x, t;X,T ) =
∞∑

n=1

Cne
−(2n−1)2π2kt/(4L2)fn(x),

where fn(x) =
√

2/L sin [(2n− 1)πx/(2L)]. If δ(x − X) is given an eigenfunction
expansion in terms of the {fn(x)}, the initial condition requires

∞∑

n=1

Cne
−(2n−1)2π2kT/(4L2)fn(x) =

k

κ

∞∑

n=1

[∫ L

0

δ(x−X)fn(x) dx

]
fn(x)

=
k

κ

∞∑

n=1

fn(X)fn(x).

It follows, then, that

Cne
−(2n−1)2π2kT/(4L2) =

k

κ
fn(X)

and

G(x, t;X,T ) =
∞∑

n=1

k

κ
e−(2n−1)2π2k(t−T )/(4L2)fn(X)fn(x)

=
2k
κL

∞∑

n=1

e−(2n−1)2π2k(t−T )/(4L2) sin
(2n− 1)πX

2L
sin

(2n− 1)πx
2L

.•

The solution of problem 13.81 can be expressed in terms of the causal Green’s
function for the problem as follows,

U(x, t) =
∫ t

0

∫ L

0

G(x, t;X,T )g(X,T ) dX dT +
κ

k

∫ L

0

G(x, t;X, 0)f(X) dX

+ κ

∫ t

0

[
G(x, t;L, T )

f2(T )
l2

+G(x, t; 0, T )
f1(T )
l1

]
dT . (13.84a)

The first term is the contribution of the internal heat source from t = 0 to present
time, the second term is due to the initial temperature distribution in the rod,
and the last integral represents the effects of heat transfer at the ends of the rod.
Boundary conditions 13.83b,c can be used to rewrite the last integral in the form

U(x, t) =
∫ t

0

∫ L

0

G(x, t;X,T )g(X,T ) dX dT +
κ

k

∫ L

0

G(x, t;X, 0)f(X) dX

+ κ

∫ t

0

[
−∂G(x, t;L, T )

∂X

f2(T )
h2

+
∂G(x, t; 0, T )

∂X

f1(T )
h1

]
dT (13.84b)

(see Exercise 11). This form must be used when l1 = l2 = 0.

Example 13.12 Solve the heat condution problem in Example 7.3 of Section 7.2.

Solution The Green’s function for this problem was obtained in the previous
example. With g(x, t) ≡ 0, and f2(t) replaced by −f2(t)/κ, we use formulas 13.84a,b
to write
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U(x, t) =
κ

k

∫ L

0

G(x, t;X, 0)f(X) dX + κ

∫ t

0

[
−G(x, t;L, T )

f2(T )
κl2

+
∂G(x, t; 0, T )

∂X

f1(T )
h1

]
dT

=
κ

k

∫ L

0

[
2k
κL

∞∑

n=1

e−(2n−1)2π2kt/(4L2) sin
(2n− 1)πX

2L
sin

(2n− 1)πx
2L

]
f(X) dX

−
∫ t

0

[
2k
κL

∞∑

n=1

e−(2n−1)2π2k(t−T )/(4L2) sin
(2n− 1)π

2
sin

(2n− 1)πx
2L

]
f2(T ) dT

+ κ

∫ t

0

[
2k
κL

∞∑

n=1

e−(2n−1)2π2k(t−T )/(4L2)

(
(2n− 1)π

2L

)
sin

(2n− 1)πx
2L

]
f1(T ) dT .

When we interchange orders of summation and integration,

U(x, t) =
2
L

∞∑

n=1

[∫ L

0

f(X) sin
(2n− 1)πX

2L
dX

]
e−(2n−1)2πkt/(4L2) sin

(2n− 1)πx
2L

+
2k
L

∞∑

n=1

{∫ t

0

[(
(2n− 1)π

2L

)
f1(T ) +

(−1)n

κ
f2(T )

]

× e−(2n−1)2π2k(t−T )/(4L2)dT

}
sin

(2n− 1)πx
2L

,

and this is solution 7.46 in Section 7.2.•

The causal Green’s function for the two-dimensional heat conduction problem

∇2U =
1
k

∂U

∂t
− g(x, y, t)

κ
, (x, y) in A, t > 0, (13.85a)

l
∂U

∂n
+ hU = F (x, y, t), (x, y) on β(A), t > 0, (13.85b)

U(x, y, 0) = f(x, y), (x, y) in A, (13.85c)

is defined as the solution of

∇2U =
1
k

∂U

∂t
− δ(x−X, y − Y )δ(t− T )

κ
, (x, y) in A, t > T, (13.86a)

l
∂U

∂n
+ hU = 0, (x, y) on β(A), t > T, (13.86b)

U(x, y, t;X,Y, T ) = 0 (x, y) in A, t < T. (13.86c)

It is also given by h(t− T )G(x, y, t;X,Y, T ) where G(x, y, t;X,Y, T ) satisfies

∇2G =
1
k

∂G

∂t
, (x, y) in A, t > T, (13.87a)

l
∂G

∂n
+ hG = 0, (x, y) on β(A), t > T, (13.87b)

G(x, y, T+;X,Y, T ) =
k

κ
δ(x−X, y − Y ) (x, y) in A. (13.87c)

The solution of problem 13.85 can then be expressed in the form
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U(x, y, t) =
∫ t

0

∫∫

A

G(x, y, t;X,Y, T )g(X,Y, T ) dAdT

+
κ

k

∫∫

A

G(x, y, t;X,Y, 0)f(X,Y ) dA

+
κ

l

∫ t

0

∫
©

β(A)

G(x, y, t;X,Y, T )F (X,Y, T ) ds dT (13.88a)

or

U(x, y, t) =
∫ t

0

∫∫

A

G(x, y, t;X,Y, T )g(X,Y, T ) dAdT

+
κ

k

∫∫

A

G(x, y, t;X,Y, 0)f(X,Y ) dA

− κ

h

∫ t

0

∫
©

β(A)

∂G(x, y, t;X,Y, T )
∂N

F (X,Y, T ) ds dT . (13.88b)

EXERCISES 13.7
In Exercises 1–4 find the causal Green’s function for problem 13.81 when the values
for l1, l2, h1, and h2 are as specified.

1. l1 = l2 = 0, h1 = h2 = 1 2. h1 = h2 = 0, l1 = l2 = 1

3. l2 = h1 = 0, l1 = h2 = 1 4. l1 = 0, h1 = 1, l2h2 6= 0
In Exercises 5–9 use formulas 13.84a,b to solve the initial boundary value problem.

5. Exercise 8 in Section 4.3 6. Exercise 16 in Section 4.3
7. Exercise 1 in Section 7.2 8. Exercise 7 in Section 7.2

9. Exercise 15 in Section 7.2
10. (a) What is the causal Green’s function for problem 13.81?

(b) Use the representation in part (a) to show that G(x, t;X,T ) satisfies the reciprocity principle

G(x, t;X,T ) = G(X, t;x, T ).

What does this mean physically?
(c) Use the representation in part (a) to show that G(x, t;X,T ) satisfies the time-translation

property

G(x, t− T ;x, T ) = G(x, t;X,T + T )

provided t− T − T > 0. What does this mean physically?

11. Use the result in Exercise 10(b) to show that solution 13.84a can be expressed in form 13.84b.
In Exercises 12–15 use formulas 13.88a,b to solve the two-dimensional heat con-
duction problem.

12. Exercise 1 in Section 7.3 13. Exercise 2(a) in Section 7.3

14. Exercise 2(a) in Section 9.2

15. Parts (a) and (b) of Exercise 3 in Section 9.2

16. What are the three-dimensional analogues of equations 13.85–13.88?
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§13.8 Green’s Functions for the Wave Equation

The causal Green’s function G(x, t;X,T ) for the one-dimensional vibration problem

∂2y

∂x2
=

1
c2
∂2y

∂t2
− F (x, t)

ρc2
, 0 < x < L, t > 0, (13.89a)

−l1
∂y

∂x
+ h1y = f1(t), x = 0, t > 0, (13.89b)

l2
∂y

∂x
+ h2y = f2(t), x = L, t > 0, (13.89c)

y(x, 0) = f(x), 0 < x < L, (13.89d)
yt(x, 0) = g(x), 0 < x < L, (13.89e)

is defined as the solution of

∂2y

∂x2
=

1
c2
∂2y

∂t2
− δ(x−X)δ(t− T )

ρc2
, 0 < x < L, t > T, (13.90a)

−l1
∂y

∂x
+ h1y = 0, x = 0, t > T, (13.90b)

l2
∂y

∂x
+ h2y = 0, x = L, t > T, (13.90c)

y(x, t;X,T ) = 0, 0 < x < L, t < T. (13.90d)

It is also given by h(t− T )G(x, t;X,T ), where G(x, t;X,T ) satisfies

∂2G

∂x2
=

1
c2
∂2G

∂t2
, 0 < x < L, t > T, (13.91a)

−l1
∂G

∂x
+ h1G = 0, x = 0, t > T, (13.91b)

l2
∂G

∂x
+ h2G = 0, x = L, t > T, (13.91c)

G(x, T+;X,T ) = 0, 0 < x < L, (13.91d)

Gt(x, T+;X,T ) =
δ(x−X)

ρ
, 0 < x < L. (13.91e)

In other words, the effect of an instantaneous unit force at position X and time T
is equivalent to the effect of giving the point at X an instantaneous initial velocity
1/ρ. Although the causal Green’s function for 13.89 is h(t− T )G(x, y;X,T ), where
G(x, t;X,T ) satisfies 13.91, we shall customarily call G(x, t;X,T ) itself the Green’s
function.

Problem 13.91 is easily solved by separation of variables.

Example 13.13 Find the causal Green’s function for problem 13.89 when l1 = l2 = 0.

Solution Separation of variables on 13.91a–d leads, for t > T , to

G(x, t;X,T ) =
∞∑

n=1

An sin
nπc(t− T )

L
fn(x),

where fn(x) =
√

2/L sin (nπx/L). If δ(x−X) is expanded in terms of the {fn(x)},
initial condition 13.91e requires
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∞∑

n=1

nπc

L
Anfn(x) =

1
ρ

∞∑

n=1

[∫ L

0

δ(x−X)fn(x) dx

]
fn(x) =

1
ρ

∞∑

n=1

fn(X)fn(x).

It follows, then, that
nπc

L
An =

1
ρ
fn(X), and

G(x, t;X,T ) =
∞∑

n=1

L

nπcρ
fn(X) sin

nπc(t− T )
L

fn(x)

=
L

ρπc

∞∑

n=1

1
n

sin
nπc(t− T )

L
fn(X)fn(x).•

The solution of problem 13.89 can be expressed in terms of its Green’s function
as follows,

y(x, t) =
∫ t

0

∫ L

0

G(x, t;X,T )F (X,T ) dX dT

+ ρ

∫ L

0

[
g(X)G(x, t;X, 0)− f(X)

∂G(x, t;X, 0)
∂T

]
dX

+ ρc2
∫ t

0

[
G(x, t;L, T )

f2(T )
l2

+G(x, t; 0, T )
f1(T )
l1

]
dT . (13.92a)

The first integral contains the effect of past external forces, and the second integral
contains that of the initial displacement and velocity. The last integral is due to
boundary disturbances. Boundary conditions 13.91b,c can be used to rewrite the
last integral in the form

y(x, t) =
∫ t

0

∫ L

0

G(x, t;X,T )F (X,T ) dX dT

+ ρ

∫ L

0

[
g(X)G(x, t;X, 0)− f(X)

∂G(x, t;X, 0)
∂T

]
dX

+ ρc2
∫ t

0

[
−f2(T )

h2

∂G(x, t;L, T )
∂X

+
f1(T )
h1

∂G(x, t; 0, T )
∂X

]
dT . (13.92b)

This form must be used when l1 = l2 = 0.

Example 13.14 Solve the vibration problem of Example 7.4 in Section 7.2.

Solution The Green’s function for this problem was derived in Example 13.13.
According to formula 13.92b, then,

y(x, t) = ρc2
∫ t

0

−∂G(x, t;L, T )
∂X

g(T ) dT

= ρc2
∫ t

0

[
−L
ρπc

∞∑

n=1

1
n

sin
nπc(t− T )

L
f ′

n(L)fn(x)

]
g(T ) dT

= −Lc
π

∞∑

n=1

1
n

[∫ t

0

sin
nπc(t− T )

L
g(T ) dT

]
f ′

n(L)fn(x).

When g(t) = A sinωt and ω 6= nπc/L for any integer n,
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∫ t

0

sin
nπc(t− T )

L
A sinωT dT =

AL2

n2π2c2 − ω2L2

(
nπc

L
sinωt− ω sin

nπct

L

)
,

and therefore

y(x, t) = −Lc
π

∞∑

n=1

AL2

n(n2π2c2 − ω2L2)

(
nπc

L
sinωt− ω sin

nπct

L

)√
2
L

(nπ
L

)
(−1)n

√
2
L

sin
nπx

L

= 2cA
∞∑

n=1

(−1)n

n2π2c2 − ω2L2

(
ωL sin

nπct

L
− nπc sinωt

)
sin

nπx

L
.

When g(t) = A sin (mπct/L) for some integer m,

∫ t

0

sin
nπc(t− T )

L
g(T ) dT =





AL

πc(n2 −m2)

(
n sin

mπct

L
−m sin

nπct

L

)
, n 6= m

A

2mπc

(
L sin

mπct

L
−mπct cos

mπct

L

)
, n = m

and

y(x, t) =
Lc

−π

∞∑

n=1
n6=m

AL

nπc(n2 −m2)

(
n sin

mπct

L
−m sin

nπct

L

)
f ′

n(L)fn(x)

− Lc

π

[
A

2m2πc

(
L sin

mπct

L
−mπct cos

mπct

L

)]
f ′

m(L)fm(x)

=
2A
π

∞∑

n=1
n6=m

(−1)n

n2 −m2

(
m sin

nπct

L
− n sin

mπct

L

)
sin

nπx

L

+
(−1)mA

mπL

(
mπct cos

mπct

L
− L sin

mπct

L

)
sin

mπx

L
.•

The causal Green’s function for the two-dimensional vibration problem

∇2z =
1
c2
∂2z

∂t2
− F (x, y, t)

ρc2
, (x, y) in A, t > 0, (13.93a)

l
∂z

∂n
+ hz = K(x, y, t), (x, y) on β(A), t > 0, (13.93b)

z(x, y, 0) = f(x, y), (x, y) in A, (13.93c)
zt(x, y, 0) = g(x, y), (x, y) in A, (13.93d)

is defined as the solution of

∇2z =
1
c2
∂2z

∂t2
− δ(x−X, y − Y )δ(t− T )

ρc2
, (x, y) in A, t > T, (13.94a)

l
∂z

∂n
+ hz = 0, (x, y) on β(A), t > T, (13.94b)

z(x, y, t;X,Y, T ) = 0, (x, y) in A, t > T. (13.94c)

It is also given by h(t− T )G(x, y, t;X,Y, T ), where G(x, y, t;X,Y, T ) satisfies
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∇2G =
1
c2
∂2G

∂t2
, (x, y) in A, t > T, (13.95a)

∂G

∂n
+ hG = 0, (x, y) on β(A), t > T, (13.95b)

G(x, y, T+;X,Y, T ) = 0, (x, y) in A, (13.95c)

Gt(x, y, T+;X,Y, T ) =
δ(x−X, y − Y )

ρ
, (x, y) in A. (13.95d)

The solution of problem 13.93 can be expressed in the form

z(x, y, t) =
∫ t

0

∫∫

A

G(x, y, t;X,Y, T )F (X,Y, T ) dAdT

+ ρ

∫∫

A

[
g(X,Y )G(x, y, t;X,Y, 0) − f(X,Y )

∂G(x, y, t;X,Y, 0)
∂T

]
dA

+
ρc2

l

∫ t

0

∫
©

β(A)

G(x, y, t;X,Y, T )K(X,Y, T ) ds dT (13.96a)

or,

z(x, y, t) =
∫ t

0

∫∫

A

G(x, y, t;X,Y, T )F (X,Y, T ) dAdT

+ ρ

∫∫

A

[
g(X,Y )G(x, y, t;X,Y, 0) − f(X,Y )

∂G(x, y, t;X,Y, 0)
∂T

]
dA

− ρc2

h

∫ t

0

∫
©

β(A)

K(X,Y, T )
∂G(x, y, t;X,Y, T )

∂N
ds dT . (13.96b)

EXERCISES 13.8
In Exercises 1–3 find the causal Green’s function for problem 13.89 when values
for l1, l2, h1, and h2 are as specified.

1. h1 = h2 = 0, l1 = l2 = 1 2. l2 = h1 = 0, l1 = h2 = 1

3. l2 = h1 = 1, l1 = h2 = 0
In Exercises 4–6 use formulas 13.92a,b to solve the initial boundary value problem.

4. Exercise 17 in Section 4.3 (see also Exercise 19 in Section 7.2)

5. Exercise 24(a) in Section 7.2

6. Exercise 25 in Section 7.2

7. A taut string initially at rest along the x-axis has its ends fixed at x = 0 and x = L.
(a) Find displacements in the string for an arbitrary forcing function F (x, t).
(b) Simplify the solution in part (a) when F (x, t) is a time-independent, constant force F0

concentrated at x = x0.
(c) Simplify the solution in part (b) further if x0 = L/2.
(d) What is the solution in part (b) if x0 is a node of the mth normal mode of vibration of the

string?

8. (a) What is the causal Green’s function for problem 13.89?
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(b) Use the representation in part (a) to show that G(x, t;X,T ) satisfies the reciprocity principle

G(x, t;X,T ) = G(X, t;x, T ).

What does this mean physically?
(c) Use the representation in part (a) to show that G(x, t;X,T ) satisfies the time-translation

property

G(x, t;x, T ) = G(x, t+ T ;X,T + T )

provided T > 0. What does this mean physically?
In Exercises 9–10 use formulas 13.96a,b to solve the two-dimensional vibration
problem.

9. Exercise 6 in Section 7.3 10. Exercise 22 in Section 9.2
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CHAPTER 14 FINITE DIFFERENCES SOLUTIONS

§14.1 Introduction

In Chapters 1–13, we developed what are called analytic techniques for solving ini-
tial, boundary value problems; solutions were often in the form of infinite series.
These series are considered to be exact solutions to their respective problems, al-
though this may be somewhat of a misnomer. If we could sum the series in closed
form, then certainly we would have an exact solution (d’Alembert solutions, for
example). In general, the likelihood that we can do this is small, and as a result, we
cannot evaluate, exactly, the solution to the initial, boundary value problem at a
given point and time. Instead, we approximate the solution by truncating the series
after sufficiently many terms. Thus, series solutions are not really exact solutions,
they are approximations to them. It is worthwhile noting, however, that it is usually
possible to ascertain a maximum error in making such truncations. Henceforth we
shall call these series solutions analytic solutions.

In the remaining chapters, we discuss three techniques for approximating solu-
tions to initial, boundary value problems, namely, finite differences, weighted resid-
uals, and finite elements, and these techniques are clearly approximation schemes
from the outset. Unlike treatments of previous topics which have been exhaustive,
discussions here are overviews; full treatments of finite differences, weighted residu-
als, and finite elements are books unto themselves. Our hope is to give the reader an
introductory exposition that conveys basic ideas upon which the reader can build
with further readings. We concentrate on the methodology of these approximations,
but not on their computer implementation.

There are many problems intractable to our analytic techniques that can be
handled by finite differences, weighted residuals, and finite elements. One clear
restriction on our analytic techniques is the shape of spatial regions. They have
always been bounded by coordinate lines or surfaces. For instance, problems in
the plane have been rectangles (in Cartesian coordinates), and circles, semi-circles,
quarter circles, annuli, etc. (in polar coordinates); and this was out of necessity.
Finite differences, weighted residuals, and finite elements can handle problems on
arbitrarily shaped regions, and finite elements does it most efficiently.
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§14.2 Finite Differences and Finite Difference Equations

Finite Differences

Finite differences can be used to approximate derivatives, and when such differences
are used in place of derivatives in a PDE, the result is called a partial difference
equation, henceforth shortened to pde, (lower case for difference equation and
upper case for differential equation). As this is not a text on numerical analysis,
we do not show all possible finite difference approximations to a given derivative.
Instead, we develop only finite differences that are used in subsequent sections.

The derivative of a function f(x) is defined as the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

. (14.1)

When the limiting operation is removed, the result is an approximation to f ′(x),
the accuracy of the approximation depending on the size of h, the smaller h, the
better the approximation,

f ′(x) ≈ f(x+ h)− f(x)
h

. (14.2a)

When h > 0, the right side of this equation is called the forward finite difference
approximation to f ′(x). When h < 0, it is called the backward finite difference
approximation. Because we always take h > 0 in this chapter, the backward
difference formula is usually expressed in the form

f ′(x) ≈ f(x)− f(x− h)
h

. (14.2b)

The right side of

f ′(x) ≈ f(x+ h/2)− f(h− h/2)
h

, (14.3)

is called the central finite difference approximation for f ′(x). In general, it is
a more accurate estimate for f ′(x) than the forward and backward differences. To
see why, it is necessary to analyze these approximations with Taylor’s remainder
formula. When a function f(x) has a continuous second derivative on the interval
between x and x+ h, the remainder formula states that there is a value z between
x and x+ h such that

f(x+ h) = f(x) + f ′(x)h+
f ′′(z)

2!
h2.

The difficulty with this result is that it guarantees the existence of z, but does not
provide a method for finding it. When this equation is solved for f ′(x), the result
is

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(z)

2!
h.

The error in using equation 14.2a to approximate f ′(x) is therefore

|f ′′(z)|
2

h.
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It is called the truncation error in doing so. Essentially the Taylor series for f(x)
has been truncated by Taylor’s remainder formula in arriving at the formula. If
M is the maximum value of |f ′′(x)| on the interval between x and x + h, we can
say that the maximum truncation error in using forward difference formula 14.2a to
approximate f ′(x) is

Mh

2
. (14.4)

What we say is that the local truncation error is of order h and we write O(h).
order This simply means that the truncation error of forward difference formula
14.2a is less than some constant times h (in this case, the constant is M/2). When
we do not know f(x), we cannot calculate M , and it might seem that quantity
14.4 is of no value. Certainly, we cannot determine the exact error, but knowing
that the error is O(h), we can say the following. If h is cut in half, the truncation
error is one half its previous value; if h is reduced to one-tenth its value, the error
is one-tenth its previous value. Get the idea? The truncation error of backward
difference formula 14.2b is also O(h).

To find the order of the truncation error for central difference 14.3, we once
again use Taylor’s remainder formula to write

f(x+ h/2) = f(x) + f ′(x)
(
h

2

)
+
f ′′(x)

2!

(
h

2

)2

+
f ′′′(z1)

3!

(
h

2

)3

,

f(x− h/2) = f(x) + f ′(x)
(
−h

2

)
+
f ′′(x)

2!

(
−h

2

)2

+
f ′′′(z2)

3!

(
−h

2

)3

.

When these are subtracted,

f(x+ h/2)− f(x− h/2) = f ′(x)h+
1
48

[f ′′′(z1) + f ′′′(z2)]h3,

or,

f ′(x) =
f(x+ h/2)− f(x− h/2)

h
− 1

48
[f ′′′(z1) + f ′′′(z2)]h2.

This shows that central difference formula 14.3 is O(h2). When h is decreased to
one-tenth its value, the error is one-hundredth its previous value. Now you see why
central differences are better approximations for f ′(x) than forward or backward
differences.

One way to find a finite difference formula for the second derivative f ′′(x) is to
use formula 14.3a three times,

f ′′(x) ≈ f ′(x+ h/2)− f ′(x− h/2)
h

≈ 1
h

{[
f(x+ h) − f(x)

h

]
−
[
f(x)− f(x− h)

h

]}

=
f(x+ h) − 2f(x) + f(x− h)

h2
. (14.5)

This is a central difference formula to approximate f ′′(x). It is O(h2) (see
Exercise 1).
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Finite Difference Equations

In Section 14.3, we encounter what are called first- and second-order, homogeneous,
constant-coefficient, linear difference equations. We summarize their solutions here.
A first-order, linear, homogeneous difference equation for a discrete function
f(n) of variable n = 1, 2, . . ., is an equation of the form

f(n+ 1) = λf(n). (14.6a)

We consider only the case that λ is a constant. If we use the notation fn = f(n),
then this equation can be expressed in the form

fn+1 = λfn. (14.6b)

By substituting fn = µn, it is straightforward to show that solutions of this equation
are

fn = Cλn, (14.7)

where C is a constant. If f(n) is known for any particular value of n, then the value
of C can be calculated.

A second-order, linear, homogeneous difference equation for f(n) is an
equation of the form

pf(n+ 2) + qf(n+ 1) + rf(n) = 0, (14.8a)

or, with subscript notation,

pfn+2 + qfn+1 + rfn = 0. (14.8b)

Once again we only consider the case that coefficients p, q, and r are constants.
Substitution of fn = µn leads to what is called the characteristic equation of the
difference equation, namely,

pµ2 + qµ+ r = 0. (14.9)

The nature of the roots of this quadratic equation dictates the form for solutions of
the difference equation.
1. When characteristic equation 14.9 has real, distinct roots µ1 and µ2, solutions of

equation 14.8 are of the form

fn = Aµn
1 + Bµn

2 , (14.10)

where A and B are constants.
2. When characteristic equation 14.9 has a single (real) root µ (of multiplicity 2),

solutions of equation 14.8 are of the form

fn = (A+ Bn)µn, (14.11)

where A and B are constants.
3. When characteristic equation 14.9 has a pair of complex conjugate roots Re±θi,

solutions of equation 14.8 are of the form

fn = Rn(A cosnθ +B sinnθ), (14.12)
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where A and B are constants.

Values for A and B can be calculated if f is known at two values of n.
Many readers find it helpful to view difference equations in the context of

sequences, fn is the nth term of a sequence. For example, if fn = n2/(2n+ 1), the
first few terms of the sequence are

f1 =
1
3
, f2 =

4
5
, f3 =

9
7
, f4 =

16
9
, . . . .

This is what is called an explicitly defined sequence. It is straightforward to
calculate any term of such a sequence simply by substituting the appropriate value
of n into the explicit definition. Difference equations represent sequences that are
defined recursively. For instance, the following defines a sequence whose first term
is 3, and does so recursively,

f1 = 3, fn+1 =
f1
2
, n ≥ 1;

each term of the sequence is one-half the previous term. Iteration of the difference
equation (or recursive formula) gives an explicit definition of the sequence, namely,

fn =
3

2n−1
.

Formula 14.7 is an explicit formula for all sequences satisfying recursive definition
14.6 (provided λ is constant); each term is defined in terms of its predecessor.
Constant C is determined by specifying any term of the sequence. In this context,
it is often important to ask whether the sequence has a limit for large n. Clearly, a
recursive sequence satisfying 14.6 has limit 0 when |λ| < 1, has limit C when λ = 1,
and has no limit for any other value of λ (unless trivially C = 0).

When the nth term of a sequence satisfies recursive definition 14.8, it is a linear
combination of the two terms immediately preceding it. In situation 1., it has a
limit when −1 < µ1, µ2 ≤ 1. In case 2., it has a limit when −1 < µ < 1. In case 3.,
it has limit 0 when R < 1.

Example 14.1 Find the nth term of the sequence defined recursively by

f1 = 0, f2 = 4, fn+1 =
2
3
fn +

1
3
fn−1, n ≥ 2.

Solution The characteristic equation is

0 = µ2 − 2µ
3

− 1
3

=
1
3
(3µ2 − 2µ− 1) =

1
3
(3µ+ 1)(µ− 1),

with solutions µ = 1 and µ = −1/3. According to formula 14.10,

fn = A(1)n +B

(
−1

3

)n

= A+B

(
−1

3

)n

.

For f1 = 0 and f2 = 4, we must have

0 = A− B

3
, 4 = A+

B

9
.

These require A = 3 and B = 9, and therefore
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fn = 3 + 9
(
−1

3

)n

= 3 + (−1)n32−n.

This sequence has limit 3.•

Example 14.2 Find the nth term of the sequence defined recursively by

f1 = 2, f2 = −3, fn+1 = −6fn − 9fn−1, n ≥ 2.

Determine whether the sequence as a limit.

Solution The characteristic equation is µ2 + 6µ+ 9 = 0 with solution µ = −3 of
multiplicity 2. According to formula 14.11, the nth term of the sequence is of the
form

fn = (A+Bn)(−3)n.

To determine A and B, we use the facts that f1 = 2 and f2 = −3,

2 = (A+ B)(−3), −3 = (A+ 2B)(−3)2.

These require A = −1 and B = 1/3, and therefore

fn =
(
−1 +

n

3

)
(−3)n = (n− 3)(−1)n3n−1.

This sequence does not have a limit.•

Example 14.3 Find all solutions of the difference equation

fn+2 =
3
5
fn+1 −

1
4
fn.

Is there a limit as n→ ∞?

Solution The characteristic equation

0 = µ2 − 3µ
5

+
1
4

=
1
20

(20µ2 − 12µ+ 5),

has solutions

µ =
12 ±

√
144 − 400
40

=
3 ± 4i

10
.

Since the exponential form of (3+4i)/10 is (1/2)eθi, where θ = Tan−1(4/3), solutions
of the difference equation are of the form

fn =
1
2n

(A cosnθ +B sinnθ).

Since R = 1/2, the limit of fn as n→ ∞ is 0.•

EXERCISES 14.2

1. Show that the truncation error associated with central difference formula 14.5 is O(h2).

In Exercises 2–5 find the solution of the first-order difference equation (or the
general term of the sequence). Determine whether limn→∞ fn exists.
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2. f1 = 2, fn+1 = 3fn, n ≥ 1 3. f1 = 1, fn+1 =
1
3
fn, n ≥ 1

4. f1 = −2, fn+1 = −2
3
fn, n ≥ 1 5. f1 = 4, fn+1 =

3
2
fn, n ≥ 1

6. A first-order linear difference equation of the form

f1 = a, fn+1 = λfn + d, n ≥ 1,

where d and λ are constants, is said to be nonhomogeneous with constant coefficients. Show
that solutions are of the form

fn =




aλn−1 + d

(
1 − λn−1

1 − λ

)
, λ 6= 1

a+ (n− 1)d, λ = 1.

In Exercises 7–10 use the result of Exercise 6 to find the solution of the first-order
difference equation (or the general term of the sequence). Determine whether
limn→∞ fn exists.

7. c1 = 0, cn+1 =
5
3
cn − 2, n ≥ 1 8. c1 = −1, cn+1 = −1

2
cn + 4, n ≥ 1

9. c1 = 2, cn+1 =
5
12
cn − 1

3
, n ≥ 1 10. c1 = −2, cn+1 = −cn + 5, n ≥ 1

In Exercises 11–15 find the solution of the second-order difference equation (or the
general term of the sequence). Determine whether limn→∞ fn exists.

11. c1 = 1, c2 = 2, cn+2 =
cn+1 + cn

2
, n ≥ 1

12. c1 = 0, c2 = 2, cn+2 = 2cn+1 + 2cn, n ≥ 1

13. c1 = 1, c2 = 1, cn+2 =
2
3
cn+1 −

1
9
cn, n ≥ 1

14. c1 = −1, c2 = 1, cn+2 = −10
3
cn+1 −

25
9
cn, n ≥ 1

15. c1 = 1, c2 = 2, cn+2 = −2cn+1 − 2cn, n ≥ 1

16. Find an explicit formula for the nth term of the Fibonacci sequence

f1 = 1, f2 = 1, fn+2 = fn+1 + fn, n ≥ 1.

17. Find an explicit formula for the nth term of the sequence

c1 = a, c2 = b, cn+2 =
cn+1 + cn

2
, n ≥ 1,

where a and b are arbitrary numbers. Does the sequence have a limit?

18. Show that when roots of characteristic equation 14.9 have moduli (or absolute values in the
case of real roots) less than 1, the solution of equation 14.8 has limit 0 as n→ ∞.

19. Show that the solution of equation 14.8 has a nonzero limit if and only if characteristic equation
14.9 has exactly one root equal to 1 and a second root with absolute value less than 1.
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§14.3 The Classic Explicit Partial Difference Equation for Parabolic PDEs

We have considered the following homogeneous, one-dimensional heat conduction
problem many times

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (14.13a)

U(0, t) = 0, t > 0, (14.13b)
U(L, t) = 0, t > 0, (14.13c)
U(x, 0) = f(x), 0 < x < L. (14.13d)

Separation of variables leads to the infinite series solution

U(x, t) =
∞∑

n=1

Cne
−n2π2kt/L2

sin
nπx

L
, (14.14a)

where

Cn =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (14.14b)

To use finite differences to approximate the solution of this initial, boundary
value problem, we first replace the partial differential equation (PDE) in continuous
variables x and t with a partial difference equation (pde) in discrete counterparts of
x and t. We do this by dividing the x-axis between x = 0 and x = L into N equal
subintervals of length h = ∆x = L/N by the points

x0 = 0, x1 = h, x2 = 2h, · · · , xN−1 = (N − 1)h, xN = L.

In addition, we discretize time by
choosing a time step s = ∆t. These
choices discretize that part of the
xt-plane bounded by 0 < x < L, t > 0
as shown in Figure 14.1. Finding the
solution U(x, t) to problem 14.13
interior to this region is replaced by
finding approximations to U(x, t) at
the mesh points (xn, tp) = (nh, ps).
We denote the approximations of
U(x, t) at (xn, tp) by Un,p = U(xn, tp).

t

xx x x L1 n N-1

t

t

1

p

tD

xD

( , )xn tp

These approximations must satisfy a Figure 14.1
partial difference equation consistent
with PDE 14.13a. When we replace ∂U/∂t at (x, t) with a forward difference at
(xn, tp), and ∂2U/∂x2 with a central difference, the resulting partial difference equa-
tion is

U(xn, tp + s)− U(xn, tp)
s

= k

[
U(xn + h, tp) − 2U(xn, tp) + U(xn − h, tp)

h2

]
.(14.15)

With our subscript notation U(xn, tp) = Un,p, this becomes

Un,p+1 − Un,p =
ks

h2
(Un+1,p − 2Un,p + Un−1,p) . (14.16a)
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This partial difference equation replaces PDE 14.13a; it is to be satisfied at each
of the interior mesh points in Figure 14.1. This means for p = 0, . . . and n =
1, . . . , N − 1. It is usually called the classic explicit scheme. To replace boundary
conditions 14.13b,c, we extend values of n to 0, . . . , N , and demand that

U0,p = 0, p ≥ 0, (14.16b)
UN,p = 0, p ≥ 0. (14.16c)

We replace initial condition 14.13d for the PDE with the following initial conditions
for the pde,

Un,0 = fn = f(nh) = f(xn), n = 1, . . . , N − 1. (14.16d)

If f(0) = f(L) = 0, then conditions 14.16b,c are natural. If f(0) 6= 0 and/or f(L) 6=
0, it may be advisable to modify conditions 14.16b,c, thus creating nonhomogeneous
boundary conditions. In summary, we have replaced initial boundary value problem
14.13 for U(x, t) with initial boundary value problem 14.16 for Un,p.

The truncation error in replacing the partial derivative ∂U/∂t with a forward
difference is O(s), and the error in replacing ∂2U/∂x2 with a central difference is
O(h2). We say that the truncation error in replacing PDE 14.13a with pde 14.16a
is O(h2, s). Because pde 14.16a approximates PDE 14.13a more and more closely as
h→ 0 and s→ 0, we say that classic explicit scheme 14.16a is consistent with the
one-dimensional heat equation 14.13a. This is a necessary condition for a partial
difference scheme to replace a partial differential equation, but as we shall see, it is
not sufficient. Other factors must be taken into account in determining whether a
particular pde is a suitable finite difference approximation for a PDE.

In practice, we do not find exact solutions of initial boundary value problems
associated with pdes, simply because in applications wherein finite difference tech-
niques are required, it is impossible to do so. Instead, we iterate the pde to find
approximate solutions. Nevertheless, in the remainder of this section we derive the
exact solution to problem 14.16. We do this for two reasons. Firstly, to demonstrate
the complexity of discussions even in this most simple problem, and secondly, and
more importantly, to illustrate that choices for h and s are not independent of each
other. This leads to the important idea of stability for pdes replacing PDEs.

The reader will have no difficulty seeing the similarity of the derivation to
separation of variables for PDEs. We begin by searching for solutions of homo-
geneous pde 14.16a and homogeneous boundary conditions 14.16b,c of the form
Un,p = XnTp; that is, we search for functions Un,p that are the products of function
Xn of n, and functions Tp of p. When we substitute this into the pde, we obtain

XnTp+1 −XnTp =
ks

h2
(Xn+1Tp − 2XnTp +Xn−1Tp).

Division by XnTp gives

Tp+1 − Tp

Tp
=
ks

h2

(
Xn+1 − 2Xn +Xn−1

Xn

)
= λ− 1,

where λ is a constant independent of p and n. (We could have used λ instead of
λ− 1; λ− 1 facilitates notation in the remainder of the discussion.) This separates
the pde into two ordinary difference equations,



580 SECTION 14.3

Tp+1 = λTp, (14.17)

and

Xn+1 −
[
2 +

h2

ks
(λ− 1)

]
Xn +Xn−1 = 0. (14.18a)

Boundary conditions 14.16b,c add two boundary conditions to the second of these,
namely

X0 = 0, XN = 0. (14.18b)

According to Section 14.2, a general solution of the difference equation in Tp is

Tp = Cλp, (14.19)

where C is a constant (independent of p). The characteristic equation associated
with the difference equation in Xn is

µ2 −
[
2 +

h2

ks
(λ− 1)

]
µ+ 1 = 0.

Taking for granted that Xn must involve sine and/or cosine functions, it follows
that µ must be complex (see Section 14.2). This implies that

[
2 +

h2

ks
(λ− 1)

]2
− 4 < 0. (14.20)

If we set µ = Reθi, then

R2e2θi −
[
2 +

h2

ks
(λ− 1)

]
Reθi + 1 = 0.

When we equate real and imaginary parts, we get

R2 cos 2θ −
[
2 +

h2

ks
(λ− 1)

]
R cos θ + 1 = 0, (14.21a)

R2 sin 2θ −
[
2 +

h2

ks
(λ− 1)

]
R sin θ = 0. (14.21b)

The second of these implies that

sin θ = 0, or, 2R cos θ −
[
2 +

h2

ks
(λ− 1)

]
= 0. (14.22)

The first of these requires θ = jπ, where j is an integer, and when this is substituted
into equation 14.21a,

R2 −
[
2 +

h2

ks
(λ− 1)

]
R(−1)j + 1 = 0.

Equation 14.20 renders this impossible. Thus, we must take the second alternative
in equation 14.22. When this is solved for cos θ and substituted into 14.21a,
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0 = R2
(
2 cos2 θ − 1

)
−
[
2 +

h2

ks
(λ− 1)

]
R cos θ + 1

=
1
2

[
2 +

h2

ks
(λ− 1)

]2
− R2 − 1

2

[
2 +

h2

ks
(λ− 1)

]2
+ 1

= −R2 + 1.

Consequently, R must be 1, in which case µ = eθi, where θ is defined by the equation

2 cos θ −
[
2 +

h2

ks
(λ− 1)

]
= 0, and

Xn = A cosnθ +B sinnθ.

Boundary conditions 14.16b,c require

0 = X0 = A, 0 = XN = A cosNθ + B sinNθ.

With A = 0, the second of these implies that Nθ = `π, where ` is a positive integer,
and

Xn = B sin
nπ`

N
.

Separated solutions of 14.16a,b,c are now known to be

Un,p = Cλp sin
nπ`

N
,

where

2 cos
`π

N
= 2 +

h2

ks
(λ− 1) =⇒ λ` = 1 − 2ks

h2

(
1 − cos

`π

N

)
.

Using familiar terminology, we say that the λ` are eigenvalues of system 14.18 and
the Xn are corresponding eigenfunctions. For any integer n,

sin
(N + n)π`

N
= sinπ` cos

nπ`

N
+ cosπ` sin

nπ`

N
= (−1)` sin

nπ`

N
.

This shows that, unlike Sturm-Liouville systems where there is an infinity of eigen-
functions, there is only N−1 linearly independent eigenfunctionsXn = sin (nπ`/N),
` = 1, 2, . . . , N − 1, of system 14.18 for each value of n. To satisfy initial conditions
14.16d, we use superposition and take

Un,p =
N−1∑

`=1

C`

[
1 − 2ks

h2

(
1 − cos

`π

N

)]p

sin
nπ`

N
.

The initial conditions then require coefficients C` to satisfy

Un,0 = fn =
N−1∑

`=1

C` sin
nπ`

N
, n = 1, . . . , N − 1.

If we multiply this equation by sin (nπq/N) and add over values of n, we obtain
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N−1∑

n=1

fn sin
nπq

N
=

N−1∑

n=1

N−1∑

`=1

C` sin
nπ`

N
sin

nπq

N

=
N−1∑

`=1

C`

N−1∑

n=1

sin
nπ`

N
sin

nπq

N

=
N−1∑

`=1

C`

{
1
2

N−1∑

n=1

[
cos

nπ(`− q)
N

− cos
nπ(`+ q)

N

]}
.

As for the sine functions, when n is an integer,

cos
(N + n)π`

N
= cosπ` cos

nπ`

N
− sin π` sin

nπ`

N
= (−1)` cos

nπ`

N
.

In other words, only the functions cos (nπ`/N), n = 0, . . . , N − 1 are linearly inde-
pendent. With this in mind, when ` 6= q, the set of N−1 functions cos [nπ(`− q)/N ]
is the same as the set of functions cos [nπ(`+ q)/N ]. In other words, we must have
` = q, in which case

N−1∑

n=1

fn sin
nπq

N
= Cq

N−1∑

n=1

sin2 nπq

N
.

Thus,

Cq =
1

N−1∑

n=1

sin2 nπq

N

N−1∑

n=1

fn sin
nπq

N
.

Now, with the notation that Re z represents the real part of the complex number z,
we may use geometric series to write

N−1∑

n=1

sin2 nπq

N
=

N−1∑

n=1

1
2

(
1 − cos

2nπq
N

)
=
N − 1

2
− 1

2

N−1∑

n=1

cos
2nπq
N

=
N − 1

2
− 1

2

N−1∑

n=1

Re[e2nπqi/N ] =
N − 1

2
− 1

2
Re

N−1∑

n=1

e2nπqi/N

=
N − 1

2
− 1

2
Re




e2πqi/N

[
1 − (e2πqi/N )N−1

]

1 − e2πqi/N





=
N − 1

2
− 1

2
Re
{

(e2πqi/N − e2πqi)(1− e−2πqi/N )
(1 − e2πqi/N )(1− e−2πqi/N )

}

=
N − 1

2
− 1

2
Re
{
e2πqi/N − e2πqi − 1 + e2πqi(1−1/N)

(1 − e2πqi/N )(1− e−2πqi/N )

}

=
N − 1

2
− 1

2

{
cos (2πqN) − 1 − 1 + cos [2πq(1 − 1/N)]

2[1 − cos (2πq/N)]

}

=
N − 1

2
− 1

2
(−1) =

N

2
.
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Thus, the solution of initial boundary value problem 14.16 is

Un,p =
N−1∑

`=1

C`

[
1 − 2ks

h2

(
1 − cos

`π

N

)]p

sin
nπ`

N
, (14.23a)

where

C` =
2
N

N−1∑

j=1

fj sin
`πj

N
. (14.23b)

In order that the solution not become unbounded in time, we require that
∣∣∣∣1 − 2ks

h2

(
1 − cos

`π

N

)∣∣∣∣ < 1, for ` = 1, . . . , N − 1.

This simplifies to

0 <
ks

h2

(
1 − cos

`π

N

)
< 1.

Given the interval h = ∆x, this places a restriction on the time step s = ∆t; that
is,

s <
h2

k

(
1 − cos

`π

N

) , for ` = 1, . . . , N − 1.

Since the smallest value of 1− cos (`π/N) occurs when ` is largest, we can say that

1 − cos
`π

N
≤ 1 − cos

(N − 1)π
N

< 1 − cosπ = 2.

Consequently, boundedness is guaranteed if

s ≤ h2

2k
=⇒ ∆t ≤ (∆x)2

2k
. (14.24)

Thus, even for an exact solution of the finite difference initial boundary value prob-
lem, ∆x and ∆t cannot be specified independently.

Now that we have the solution of the finite difference problem corresponding
to problem 14.13, it is worthwhile comparing solutions for a specific f(x). If the
initial temperature is f(x) = x(L− x), then the solution of problem 14.13 is

U(x, t) =
∞∑

n=1

Cne
−n2π2kt/L2

sin
nπx

L
,

where

Cn =
2
L

∫ L

0

x(L− x) sin
nπx

L
dx =

4L2[1 + (−1)n+1]
n3π3

.

Thus,

U(x, t) =
∞∑

n=1

4L2[1 + (−1)n+1]
n3π3

e−n2π2kt/L2
sin

nπx

L

=
8L2

π3

∞∑

n=1

1
(2n− 1)3

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

. (14.25)
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It is plotted for t = 5000 s with L = 1 m, and k = 12.4× 10−6 m2/s in Figure 14.2.
If we choose N = 10 subintervals for the finite difference mesh, then ∆x = 1/10.
Condition 14.24 requires

∆t ≤ (1/10)2

2(12.4× 10−6)
≈ 403.2.

If we select ∆t = 10 in order to compare the finite difference solution to the analytic
solution, then

Un,p =
9∑

`=1

C`

[
1 − 2(12.4× 10−6)(10)

(1/10)2

(
1 − cos

`π

10

)]p

sin
nπ`

10
,

where

C` =
2
10

9∑

j=1

j

10

(
1 − j

10

)
sin

jπ`

10
.

Thus,

Un,p =
1

500

9∑

`=1

9∑

j=1

j(10− j) sin
jπ`

10

[
1 − 24.8 × 10−3

(
1 − cos

`π

10

)]p

sin
nπ`

10
. (14.26)

When the points Un,500, n = 0, . . . , 10 are plotted and joined by straight lines, the
graph is also shown in Figure 14.2. It is indistinguishable from the previous plot.
Exercise 1 compares these solution numerically. It also investigates what happens
as the time step ∆t is made larger, but always satisfying criteria 14.24.

Suppose we choose ∆t = 1000, thus, violating condition 14.24, with p = 5 to
obtain the temperature at t = 5000. Then

Un,5 =
1

500

9∑

`=1

9∑

j=1

j(10− j) sin
jπ`

10

[
1 − 2.48

(
1 − cos

`π

10

)]5
sin

nπ`

10
.

This is plotted in Figure 14.3. It is erratic.

U

x

0.15

0.10

0.05

1

U

x

-0.1

0.1

0.2

0.3

1

Figure 14.2 Figure 14.3

EXERCISES 14.3

1. (a) Tabulate solution 14.25 at t = 5000 for x = 0.1, 0.2, . . . , 0.9. To compare finite differences
(numerically as opposed to graphically as in Figure 14.2), tabulate solution 14.26 for n =
1, 2, . . . , 9.
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(b) What function replaces solution 14.26 if ∆t is chosen as 50 rather than 10. Repeat part (a)
with this function. Do approximations deteriorate with the larger time step?

(c) Repeat part (b) with time step ∆t = 200.
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§14.4 Numerical Solution of Partial Difference Equations for Parabolic PDEs

In spite of our calculations in Section 14.3, it is usually impossible to find exact
solutions of initial boundary value problems for pdes. Instead, the pde is iterated
numerically to find approximations to the unknown function at mesh points. We
consider the procedure here for problem 14.16, a difference problem consistent with
heat conduction problem 14.13. When we express the classic explicit scheme 14.16a
in the form

Un,p+1 = Un,p +
ks

h2
(Un+1,p − 2Un,p + Un−1,p) , (14.27)

it defines the solution of the difference equation at
position xn and time tp+1 in terms of its values
at positions xn−1, xn, and xn+1, all at time tp. In
other words, once we know the solution at time tp,
we can advance it to time tp+1. With values speci-
fied at time t0 = 0 by initial conditions 14.16d, we
can find values at t1; we can then move forward to
time t2, and so on. We have shown this pictorially
in Figure 14.4; values at the open circles give the
value at the shaded circle.

n p

n p n p n p

, +1

+1,-1 ,,

To illustrate, suppose that the initial tempera- Figure 14.4
ture is f(x) = x(L− x), and that we choose a mesh
with N = 10. According to our results in Section 14.3, when L = 1 and k = 12.4×
10−6, we should choose ∆t no larger than 400. Suppose we opt for s = ∆t = 10.
Then equation 14.27 becomes

Un,p+1 = Un,p +
k

10
(Un+1,p − 2Un,p + Un−1,p) . (14.28a)

We add boundary conditions and an initial condition to complete the initial bound-
ary value problem,

U0,p = 0, p ≥ 0, (14.28b)
U10,p = 0, p ≥ 0, (14.28c)

Un,0 =
n

10

(
1 − n

10

)
=
n(10− n)

100
, n = 1, . . . , 9. (14.28d)

Results:
Convergence and Stability

Because pde 14.27 is consistent with heat equation 14.13a, truncation errors in
replacing derivatives with finite differences approach zero as h and s approach zero.
When the above procedure is used to approximate the solution of the pde, errors
due to calculations are also incurred. Suppose that U(x, t) is the solution of problem
14.13, and suppose for the purposes of this discussion only, that U(xn, tp) represents
values of this function at mesh points (xn, tp), not values Un,p. Differences between
values U(xn, tp) and Un,p encompass both truncation and calculation errors. We say
that problem 14.16 represents a convergent method if differences between these
values approach zero as h and s approach zero; that is,
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lim
h,s→0

|U(xn, tp) − Un,p| = 0, p = 1, . . . , n = 1, . . . , N − 1. (14.29)

As the mesh size decreases, approximate solutions of initial boundary value problem
14.16 must approach values of the solution to problem 14.13 at every mesh point.
It is difficult to determine directly whether a given partial difference problem is
convergent. Fortunately, it is not necessary to do so (directly). It follows if the
numerical procedure associated with the problem is stable, a concept that we now
discuss.

Stability is an important aspect of any numerical procedure. We describe it with
respect to problem 14.16. Suppose Un,p is a solution of the problem for some given
function f(x). Suppose that Vn,p is the solution to the same problem corresponding
to a small perturbation ε(x) of f(x). Differences |Un,p − Vn,p| represent how the
difference in initial values is propagated in time. The numerical procedure is said
to be stable if these differences are bounded as t increases. If values of h and
s must be functionally related for bounded differences, the method is said to be
conditionally stable. We suspect that this is the case for classic explicit scheme
14.16 due to the fact that h and s had to satisfy condition condition 14.24 in Section
14.3.

Convergence and stability go hand-in-hand for consistent systems. This is
known as the Lax Equivalence Theorem.

Theorem 14.1 (Lax Equivalence) Given a well-posed initial boundary value problem associated
with a parabolic PDE, a consistent finite difference initial boundary value problem
is stable if, and only if, it is convergent.

Once a consistent finite difference scheme is known to be stable, then it must
converge to the solution of the associated PDE at mesh points. A common technique
to test stability of a pde is called Von Neumann stability. It is a necessary
condition for numerical stability, in general, and is often sufficient (although we
shall not demonstrate that here). The method assumes that the error at each mesh
point can be expressed in the form

En,p = E(xn, tp) = eγtpeiβxn = eγpseiβnh. (14.30)

With β real, eiβnh = cosβnh+ i sin βnh is an error introduced at time t = 0 with
modulus unity. In general, γ is allowed to be complex, (but most often it is real),
and the modulus |eγps| is an amplification factor that represents how errors are
propagated in time. The pde is said to be Von Neumann stable if

|eγs| ≤ 1, (14.31)

for all choices of γ, and this implies that |eγps| ≤ 1 for all p. As we shall show, eγs

depends on β, s, and h, so that a finite difference scheme is Von Neumann stable if
condition 14.31 is valid for all β, s and h. If a condition on h and s must be satisfied
in order for inequality 14.31 to hold, a scheme is said to be conditionally stable.

We now confirm that the classic explicit scheme is conditionally stable. We do
this by substituting 14.30 into pde 14.16a,

eγ(p+1)seiβnh = eγpseiβnh +
ks

h2
[eγpseiβ(n+1)h − 2eγpseiβnh + eγpseiβ(n−1)h].

When we divide by eγpseiβnh, we obtain
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eγs = 1 +
ks

h2
(eiβh − 2 + e−iβh) = 1 +

2ks
h2

(cosβh− 1) = 1 − 4ks
h2

sin2 βh

2
.

For Von Neumann stability of the classic explicit scheme, condition 14.31 requires
∣∣∣∣1 − 4ks

h2
sin2 βh

2

∣∣∣∣ ≤ 1.

This reduces to
2ks
h2

≤ 1
sin2 (βh/2)

.

This will be satisfied for all β, if

2ks
h2

≤ 1, or, ∆t ≤ (∆x)2

2k
.

This is condition 14.24 that we saw in Section 14.3; it shows that the classic explicit
scheme is conditionally stable.

There is one aspect of the pde for heat conduction that does not emulate its
counterpart for the PDE. We have seen that information is transmitted instanta-
neously by the PDE for heat conduction. An insertion of any amount of heat at
any point is immediately felt at every other point. Such is not the case for the
pde. Information is transmitted with finite velocity. To see this suppose the initial
temperature for the rod represented by problem 14.16 is zero at every node except
at some interior node near the centre of the rod, call it
node xi, where temperature is equal to one.
After the first time step, temperature is non-
zero at nodes xi−1, xi, and xi+1; after the
second time step, temperature is nonzero at
nodes xi−2, xi−1, xi, xi+1, and xi+2. We
have shown this in Figure 14.5 where the
x’s represent nonzero temperatures at the
various time steps. What this shows is that
the effect of the initial temperature is trans-

t

xx xxi ii

t1

-1-2 +1 +2xi xi

t2

mitted with finite speed ∆x/∆t. Figure 14.5

EXERCISES 14.4
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§14.5 Nonhomogeneous Parabolic Problems

The nonhomogeneous initial boundary value problem associated with heat conduc-
tion problem 14.13 is

∂U

∂t
= k

∂2U

∂x2
+
kg(x, t)

κ
, 0 < x < L, t > 0, (14.32a)

U(0, t) = f1(t), t > 0, (14.32b)
U(L, t) = f2(t), t > 0, (14.32c)
U(x, 0) = f(x), 0 < x < L. (14.32d)

A source term g(x, t) has been added to the PDE, and end temperatures are no
longer zero. The corresponding finite difference initial value problem is

Un,p+1 = Un,p +
ks

h2
(Un+1,p − 2Un,p + Un−1,p) +

ksgn,p

κ
,

p = 0, . . . , n = 1, . . . , N − 1, (14.33a)
U0,p = f1,p = f1(tp), p ≥ 0, (14.33b)
UN,p = f2,p = f2(tp), p ≥ 0, (14.33c)
Un,0 = fn = f(xn), n = 1, . . . , N − 1. (14.33d)

EXERCISES 14.5
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§14.6 Neumann and Robin Boundary Conditions

Finite differences can be adapted to handle problems 14.13 and 14.32 when boundary
conditions are Neumann and/or Robin. Dirichlet boundary conditions are used as
input values for the pde; for Neumann and/or Robin boundary conditions, values
of the unknown function are calculated (approximately) at the ends of the rod and
then input. For instance, suppose boundary condition 14.32b is Neumann,

Ux(0, t) = g(t), t > 0,

so that heat flux across the end x = 0 of the rod is prescribed. If we replace the
partial derivative with a central difference at each time step tp, we obtain

U(h, tp) − U(−h, tp)
2h

= g(tp) = gp,

or with our subscript notation,

U1,p = U−1,p + 2hgp.

This equation defines temperature U−1,p = U(−h, tp), at a fictitious point (−h, tp)
outside the rod for each time step tp. Now, pde 14.16a is to be satisfied for p = 0, . . . ,
and n = 1, . . . , N − 1. If we also evaluate it at n = 0, we get

U0,p+1 = U0,p +
ks

h2
(U1,p − 2U0,p + U−1,p) .

If we substitute U−1,p = U1,p − 2hgp, we obtain

U0,p+1 = U0,p +
ks

h2
(U1,p − 2U0,p + U1,p − 2hgp) ,

or,

U0,p+1 = U0,p +
2ks
h2

(U1,p − U0,p − hgp) . (14.34)

This equation approximates temperature at the end x = 0 of the rod at each time
step so that it can be input to calculate temperature at the first mesh point at the
next time step. Exercise 1 verifies that when the boundary condition at x = L is
Neumann,

Ux(L, t) = g(t), t > 0,

approximate values of the end of the rod at each time step are

UN,p+1 = UN,p +
2ks
h2

(UN−1,p − UN,p + hgp) . (14.35)

When the boundary condition at x = 0 is Robin,

−l1Ux(0, t) + h1U(0, t) = g(t), t > 0,

Exercise 2 derives the following expression for temperature at the end x = 0 of the
rod at each time step

U0,p+1 = U0,p +
2ks
h2

[
U1,p −

(
1 +

hh1

l1

)
U0,p +

hgp

l1

]
. (14.36)
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Similarly, for a Robin boundary condition at x = L,

l2x(L, t) + h2U(L, t) = g(t), t > 0,

Exercise 3 derives the expression for temperature at the end x = L of the rod at
each time step

UN,p+1 = UN,p +
2ks
h2

[
UN−1,p −

(
1 +

hh2

l2

)
UN,p +

hgp

l2

]
. (14.37)

EXERCISES 14.6

1. Verify equation 14.35.

2. Derive equation 14.36.

3. Derive equation 14.37.
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§14.7 Other Partial Difference Equations for Parabolic PDEs

Because the grid spacing h = ∆x and the time step s = ∆t must satisfy condition
14.24, the classic explicit partial difference equation 14.16a is conditionally stable. If
h is chosen very small in order to ensure accuracy of approximations, then smight be
exceedingly small, resulting in huge numbers of calculations incurred in advancing
initial values to large values of time. Other partial difference equations have been
developed in an attempt to decrease the number of calculations. We discuss the
stability of a few of them here. A method is called explicit if evaluation of Un,p

at time step tp+1 is in terms of Un,p at previous times. For example, evaluation of
Un,p+1 in the classic explicit scheme 14.16a is in terms of Un+1,p, Un,p, and Un−1,p,
all at time tp.

The Richardson Explicit Approximation

When the forward time difference of the classic explicit approximation is replaced
by a central difference, the result is called the Richardson explicit scheme, or
sometimes the leapfrog scheme. It is

Un,p+1 = Un,p−1 +
2ks
h2

(Un+1,p − 2Un,p + Un−1,p) , (14.38)

shown pictorially in Figure 14.6. Values at the open circles are used to calculate
values at the shaded circle. Although more accurate in time (O(h2, s2)), we demon-
strate that the method is unstable, and should not therefore be used. When we
substitute En,p = eγpseiβnh into the Richardson scheme to see how errors are prop-
agated, we obtain

eγ(p+1)seiβnh = eγ(p−1)seiβnh +
2ks
h2

[eγpseiβ(n+1)h − 2eγpseiβnh + eγpseiβ(n−1)h].

Division by eγ(p−1)seiβnh gives

e2γs = 1 +
2kseγs

h2
(eiβh − 2 + e−iβh) = 1 +

4kseγs

h2
(cosβh− 1) = 1 − 8kseγs

h2
sin2 βh

2
.

This is a quadratic equation in eγs with solutions

eγs =
−8ks
h2

sin2 βh

2
±
√

64k2s2

h4
sin4 βh

2
+ 4

2
= −4ks

h2
sin2 βh

2
±
√

1 +
16k2s2

h4
sin4 βh

2
.

Since

∣∣∣∣∣−
4ks
h2

sin2 βh

2
−
√

1 +
16k2s2

h4
sin4 βh

2

∣∣∣∣∣ > 1, we cannot guarantee Von Neu-

mann’s condition 14.31, and therefore Richardson’s explicit scheme is unstable.

n p

n p n p n p

, +1

+1,-1 ,,

n p, -1

n p

n p n p

, +1

+1,-1 ,

n p, -1

Figure 14.6 Figure 14.7
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The DuFort-Frankel Explicit Approximation

If we replace Un,p in the Richardson model by the average (Un,p+1 +Un,p−1)/2, we
obtain

Un,p+1 = Un,p−1 +
2ks
h2

(Un+1,p − Un,p+1 − Un,p−1 + Un−1,p) .

Reorganization gives
(

1 +
2ks
h2

)
Un,p+1 =

2ks
h2

(Un+1,p + Un−1,p) +
(

1 − 2ks
h2

)
Un,p−1. (14.39)

This is the DuFort-Frankel explicit scheme. It gives values of Un,p at one time
step in terms of values at two previous time steps, shown pictorially in Figure 14.7.
Because the technique uses three time steps, it requires initial values at t = 0 and
t = s to proceed to time t = 2s. Values at t = 0 are given, and values at t = s could
be obtained using say the classic explicit scheme.

To discuss stability of the scheme, we substitute En,p = eγpseiβnh into the pde,
(

1 +
2ks
h2

)
eγ(p+1)seiβnh =

2ks
h2

[eγpseiβ(n+1)h + eγpseiβ(n−1)h] +
(

1 − 2ks
h2

)
eγ(p−1)seiβnh.

Division by eγ(p−1)seiβnh gives
(

1 +
2ks
h2

)
e2γs =

2kseγs

h2
(eiβh + e−iβh) + 1 − 2ks

h2
=

4kseγa

h2
cosβh+ 1 − 2ks

h2
.

This is a quadratic in eγs with solutions

eγs =

4ks
h2

cosβh±

√
16k2s2

h4
cos2 βh+ 4

(
1 − 4k2s2

h4

)

2
(

1 +
2ks
h2

)

=

2ks
h2

cosβh±
√

1 − 4k2s2

h4
+

4k2s2

h4
cos2 βh

1 +
2ks
h2

=

2ks
h2

cosβh±
√

1 − 4k2s2

h4
sin2 βh

1 +
2ks
h2

. (14.40)

In Exercise 1, the modulus of this quantity is shown to be less than or equal to one
for all β, h and s so that the DuFort-Frankel approximation is (unconditionally)
stable.

The following two approximations are implicit methods.

The Backward Implicit Approximation

If the central difference for the second derivative in the classic explicit scheme
is centred at (xn, tp+1) instead of (xn, tp), then
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Un,p+1 − Un,p =
ks

h2
(Un+1,p+1 − 2Un,p+1 + Un−1,p+1) ,

or,
(

1 +
2ks
h2

)
Un,p+1 −

ks

h2
(Un+1,p+1 + Un−1,p+1) = Un,p. (14.41)

This is the backward implicit scheme; it is O(h2, s). The pictorial representation
in Figure 14.8 indicates that three values of Un,p at time step tp+1 are defined by
the scheme in terms of one value at time step tp. Hence the adjective implicit.
The disadvantage of this method is that at each step forward, it is necessary to
solve N − 1 linear equations for values of Un,p at mesh points. The advantage
of the method is that it is (unconditionally) stable. To show this, we substitute
En,p = eγpseiβnh into the pde,
(

1 +
2ks
h2

)
eγ(p+1)seiβnh − ks

h2
[eγ(p+1)seiβ(n+1)h + eγ(p+1)seiβ(n−1)h] = eγpseiβnh.

Division by eγpseiβnh gives
(

1 +
2ks
h2

)
eγs − kseγs

h2
(eiβh + e−iβh) = 1,

or,
(

1 +
2ks
h2

)
eγs − 2kseγs

h2
cosβh = 1.

We can solve this for eγs,

eγs =
1

1 +
2ks
h2

− 2ks
h2

(
1 − 2 sin2 βh

2

) =
1

1 +
4ks
h2

sin2 βh

2

.

Clearly, |eγs| is less than or equal to one for all values of β, h and s, and therefore
the scheme is (unconditionally) stable.

n pn p n p, +1 +1,-1 ,

n p,

+1 +1 n pn p n p, +1 +1,-1 ,

n p,

+1 +1

p n p+1,-1 ,n

Figure 14.8 Figure 14.9

The Crank-Nicolson Implicit Approximation

If the central difference for the second derivative in the classic explicit scheme is
replaced by the average of central differences at time step tp and at time step tp+1,
the result is

Un,p+1 = Un,p +
ks

2h2
[(Un+1,p − 2Un,p + Un−1,p) + (Un+1,p+1 − 2Un,p+1 + Un−1,p+1)] .

This can be rearranged into
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2
(

1 +
ks

h2

)
Un,p+1 −

ks

h2
(Un+1,p+1 + Un−1,p+1)

= 2
(

1 − ks

h2

)
Un,p +

ks

h2
(Un+1,p + Un−1,p). (14.42)

This is the Crank-Nicolson implicit scheme; it is O(h2, s2). The pictorial rep-
resentation in Figure 14.9 indicates that three values of Un,p at time step tp+1

are defined by the scheme in terms of three values at time step tp. Hence the
method is implicit. But it is (unconditionally) stable. To show this, we substitute
En,p = eγpseiβnh into the pde,

2
(

1 +
ks

h2

)
eγ(p+1)seiβnh − ks

h2
[eγ(p+1)seiβ(n+1)h + eγ(p+1)seiβ(n−1)h]

= 2
(

1 − ks

h2

)
eγpseiβnh +

ks

h2
[eγpseiβ(n+1)h + eγpseiβ(n−1)h].

Division by eγpseiβnh gives

2
(

1 +
ks

h2

)
eγs − kseγs

h2
(eiβh + e−iβh) = 2

(
1 − ks

h2

)
+
ks

h2
(eiβh + e−iβh),

or,

2
(

1 +
ks

h2

)
eγs − 2kseγs

h2
cosβh = 2

(
1 − ks

h2

)
+

2ks
h2

cosβh.

The solution for eγs is

eγs =
2
(

1 − ks

h2

)
+

2ks
h2

(
1 − 2 sin2 βh

2

)

2
(

1 +
ks

h2

)
− 2ks

h2

(
1 − 2 sin2 βh

2

) =
1 − 2ks

h2
sin2 βh

2

1 +
2ks
h2

sin2 βh

2

.

The absolute value of this quantity is clearly less than one for all values of h, s, and
β, and therefore the method is (unconditionally) stable.

EXERCISES 14.7

1. Show that quantity 14.40 has modulus less than or equal to one for all β, h, and s.
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§14.8 Two-dimensional Heat Equation

The homogeneous, two-dimensional heat conduction PDE in some region R of the
xy-plane is

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
. (14.43)

Suppose that R is the square 0 ≤ x ≤ L, 0 ≤ y ≤ L, and we discretize this region
with a mesh using N equal subdivisions h = ∆x = ∆y = L/N in both the x
and y directions. With a time step s = ∆t, we discretize the region 0 < x < L,
0 < y < L, t > 0 in which equation 14.43 is to hold. If Un,m,p = U(xn, ym, tp)
denotes approximate valuess for U(x, y, t) at mesh points (xn, ym, tp), the classic
explicit partial difference equation corresponding to scheme 14.27 is

Un,m,p+1 = Un,m,p +
ks

h2

(
Un+1,m,p + Un,m+1,p − 4Un,m,p

+ Un−1,m,p + Un,m−1,p

)
, (14.44)

n = 1, . . . , N − 1, m = 1, . . . , N − 1, p = 1, . . .. It uses a forward difference in
time and central differences in x and y. To determine the stability of this pde, we
substitute En,m,p = eγpseiβ(nh+mq), where q = ∆y,

eγ(p+1)seiβ(nh+mq) = eγpseiβ(nh+mq) +
ks

h2
{eγpseiβ[(n+1)h+mq] + eγpseiβ[nh+(m+1)q]

− 4eγpseiβ(nh+mq) + eγpseiβ[(n−1)h+mq] + eγpseiβ[nh+(m−1)q]}.

When we divide by eγpseiβ(nh+mq), we obtain

eγs = 1 +
ks

h2
(eiβh + eiβq − 4 + e−iβh + e−iβq) = 1 +

2ks
h2

(cosβh+ cosβq − 2)

= 1 − 4ks
h2

(
sin2 βh

2
+ sin2 βq

2

)
.

For Von Neumann stability, condition 14.31 requires
∣∣∣∣1 − 4ks

h2

(
sin2 βh

2
+ sin2 βq

2

)∣∣∣∣ ≤ 1.

This reduces to
2ks
h2

≤ 1
sin2 (βh/2) + sin2 (βq/2)

.

This will be satisfied for all β, if

2ks
h2

≤ 1
2
, or, ∆t ≤ (∆x)2

4k
. (14.45)

In other words, pde 14.44 is conditionally stable.

Dufort-Frankel Scheme

If we replace the forward time difference with a central difference, and Un,m,p

with the average (Un,m,p+1 + Un,m,p−1)/2, we obtain the Dufort-Frankel explicit
scheme



SECTION 14.8 597

Un,m,p+1 − Un,m,p−1

2s
=

k

h2

(
Un+1,m,p + Un,m+1,p − 2(Un,m,p+1 + Un,m,p−1)

+ Un−1,m,p + Un,m−1,p

)
,

or,
(

1 +
4ks
h2

)
Un,m,p+1 =

(
1 − 4ks

h2

)
Un,m,p−1 +

2ks
h2

(Un+1,m,p + Un−1,m,p)

+
2ks
h2

(Un,m+1,p + Un,m−1,p). (14.46)

It is unconditionally stable (Exercise 2). Because it uses values at three time levels,
it is necessary to find values at time t = s in order to initiate the scheme. These
can be obtained by the classic explicit scheme.

Backward Implicit Scheme

If central differences for second derivatives in the classic explicit scheme are
centred at (xn, ym, tp+1) instead of (xn, ym, tp), the result is the backward implicit
scheme

Un,m,p+1 = Un,m,p +
ks

h2
(Un+1,m,p+1 + Un,m+1,p+1 − 4Un,m,p+1 + Un−1,m,p+1 + Un,m−1,p+1) ,

or,
(

1 +
4ks
h2

)
Un,m,p+1 = Un,m,p +

ks

h2
(Un+1,m,p+1 + Un,m+1,p+1

+ Un−1,m,p+1 + Un,m−1,p+1). (14.47)

Like its one-dimensional counterpart, it is unconditionally stable (Exercise 3).

Crank-Nicolson Implicit Scheme

If central differences for second derivatives in the classic explicit scheme are replaced
by averages of central differences at time step tp and at time step tp+1, the result is
the Crank-Nicolson implicit scheme

Un,m,p+1 = Un,m,p +
ks

2h2

[
(Un+1,m,p + Un,m+1,p − 4Un,m,p + Un−1,m,p + Un,m−1,p)

+ (Un+1,m,p+1 + Un,m+1,p+1 − 4Un,m,p+1 + Un−1,m,p+1 + Un,m−1,p+1)
]
.

Rearrangement gives

2
(

1 +
2ks
h2

)
Un,m,p+1 −

ks

h2
(Un+1,m,p+1 + Un,m+1,p+1 + Un−1,m,p+1 + Un,m−1,p+1)

= 2
(

1 − 2ks
h2

)
Un,m,p +

ks

h2
(Un+1,m,p + Un,m+1,p + Un−1,m,p + Un,m−1,p). (14.48)

It is also unconditionally stable (Exercise 4).
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Irregular Shaped Regions

Finite differences, and even more so finite elements, show their indispensability
when PDEs are to be considered on regions whose boundaries are not coordinate
curves (in the plane) and coordinate surfaces (in space). For example, suppose PDE
14.43 is to describe heat flow in the elliptical plate of Figure 14.10. None of our
analytic techniques are applicable to this problem. Finite differences can be adapted
to irregular boundaries, with some difficulties, but the difficulties have more to do
with computer implementation than with the theoretical aspects of the adaptation.

y
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y
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80

L

L

Figure 14.10 Figure 14.11

When the region is a rectangle (Figure 14.11), a central difference for the Laplacian
at node 0 closest to boundary x = L utilizes the boundary data at node 5. When
the boundary is curved (Figure 14.12), a discretization of the region with the usual
array of points results in very few mesh points on the boundary of the region.
A central difference at 0 has node 5 (and node 6) outside the region. We need to
replace the “central” difference formula for the Laplacian at node 0 with a difference
formula that utilizes boundary data at nodes 1 and 2 in place of nodes 5 and 6.
More generally, we need a difference formula that accommodates two horizontal and
two vertical nodes at differing distances from node 0. We have shown this in Figure
14.13 where all four surrounding nodes are at different distances from node 0.
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Suppose we denote the values of the function U(x, y) at the five nodes by U(0), . . .,
U(4). We seek an approximation to the Laplacian of U(x, y) at node 0 as a linear
combination of U(0), . . . , U(4),

(Uxx + Uyy)|node 0 =
4∑

i=0

αiU(i). (14.49)

To find suitable constants αi, we represent U(x, y) at nodes 1, 2, 3, and 4 in Taylor
series at node 0. If we extend the notation U(i), to include derivatives, such as
Ux(0), then
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U(1) = U(0) + Ux(0)h1 +
1
2
Uxx(0)h2

1 +
1
3!
Uxxx(0)h3

1 + · · · ,

U(2) = U(0) + Uy(0)h2 +
1
2
Uyy(0)h2

2 +
1
3!
Uyyy(0)h3

2 + · · · ,

U(3) = U(0)− Ux(0)h3 +
1
2
Uxx(0)h2

3 −
1
3!
Uxxx(0)h3

3 + · · · ,

U(4) = U(0)− Uy(0)h4 +
1
2
Uyy(0)h2

4 −
1
3!
Uyyy(0)h3

4 + · · · .

When we substitute these into equation 14.49, and gather like terms, the result is

(Uxx + Uyy)node 0 = (α0 + α1 + α2 + α3 + α4)U(0) + (α1h1 − α3h3)Ux(0) + (α2h2 − α4h4)Uy(0)

+
1
2
(α1h

2
1 + α3h

2
3)Uxx(0) +

1
2
(α2h

2
2 + α4h

2
4)Uyy(0) + · · · .

For the the right side to agree with the left, we require

α0 + α1 + α2 + α3 + α4 = 0,
α1h1 − α3h3 = 0,
α2h2 − α4h4 = 0,
α1h

2
1 + α3h

2
3 = 2,

α2h
2
2 + α4h

2
4 = 2.

The solution of these equations is

α0 = −2
(

1
h1h3

+
1

h2h4

)
, α1 =

2
h1(h1 + h3)

, α2 =
2

h2(h2 + h4)
,

α3 =
2

h3(h1 + h3)
, α4 =

2
h4(h2 + h4)

.

Thus, a difference formula for the Laplacian of U(x, y) at node 0 in Figure 14.13 in
terms of values of the function at the five nodes is

(Uxx + Uyy)|node 0 = −2
(

1
h1h3

+
1

h2h4

)
U(0) +

2U(1)
h1(h1 + h3)

+
2U(2)

h2(h2 + h4)

+
2U(3)

h3(h1 + h3)
+

2U(4)
h4(h2 + h4)

. (14.50)

The reader can perhaps appreciate that the computer implementation of this for-
mula at each node of the region of Figure 14.43, wherein it is required, could be a
programming nightmare.

EXERCISES 14.8

1. Generalize pde 14.44 to a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′. What is the stability condition
replacing inequality 14.45?

2. Verify that the Dufort-Frankel scheme 14.46 is stable.
3. Verify that the backward implicit scheme 14.47 is stable.
4. Verify that the Crank-Nicolson scheme 14.48 is stable.
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§14.9 Two-dimensional Heat Equation in Polar and Spherical Coordinates

The homogeneous, two-dimensional heat equation in polar, or cylindrical, coordi-
nates when heat is only a function of time and the radial coordinate r is

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
. (14.51)

For a similar situation in spherical coordinates, the PDE for U(r, t) is

∂U

∂t
= k

(
∂2U

∂r2
+

2
r

∂U

∂r

)
. (14.52)

Both of these, and the Cartesian equation, are contained in

∂U

∂t
= k

(
∂2U

∂r2
+
a

r

∂U

∂r

)
. (14.53)

When a = 0 we have the Cartesian equation; for a = 1, we have the polar or
cylindrical equation; and for a = 2, we have the spherical equation. The pde
associated with equation 14.53 using a forward time difference and central spatial
differences is
Un,p+1 − Un,p

s
= k

[(
Un+1,p − 2Un,p + Un−1,p

h2

)
+

a

nh

(
Un+1,p − Un−1,p

2h

)]
,

or,

Un,p+1 =
(

1 − 2ks
h2

)
Un,p +

ks

h2

[
(Un+1,p + Un−1,p) +

a

2n
(Un+1,p + Un−1,p)

]
. (14.54)

In Exercise 1, it is shown that for both a = 1 and a = 2, this pde is conditionally
stable with stability bound

∆t ≤ (∆r)2

2k
. (14.55)

Certainly we could develop backward implicit and Crank-Nicolson implicit methods
as alternatives to pde 14.54, both of which are unconditionally stable. If the region
of consideration contains r = 0 (the origin in polar and spherical coordinates and
the z-axis in cylindrical coordinates), pde 14.54 has a singularity (n = 0). It can be
modified, however, to accommodate this value. First we note that radial symmetry
of the solution requires Ur(0, t) to be equal to zero. Furthermore,

lim
r→0

Ur(r, t)
r

= lim
r→0

Ur(r, t) − Ur(0, t)
r

= Urr(0, t).

Consequently, by taking limits of PDE 14.53 as r → 0, we obtain

∂U(0, t)
∂t

= k

[
∂2U(0, t)
∂r2

+ a
∂2U(0, t)
∂r2

]
= k(1 + a)

∂2U(0, t)
∂r2

.

Finite differences now give

U0,p+1 − U0,p

s
= k(1 + a)

(
U1,p − 2U0,p + U−1,p

h2

)
.
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To eliminate the term U−1,p, we use the finite difference equivalent of Ur(0, t) = 0,
namely,

U1,p − U−1,p

2h
= 0.

Thus,

U0,p+1 − U0,p

s
= k(1 + a)

(
U1,p − 2U0,p + U1,p

h2

)
,

or,

U0,p+1 =
[
1 − 2ks(1 + a)

h2

]
U0,p +

2ks(1 + a)
h2

U1,p. (14.56)

A Von Neumann stability analysis (Exercise 2) shows that this equation is condi-
tionally stable with

∆t ≤ (∆r)2

2k(1 + a)
. (14.57)

With a = 1 and a = 2, stability has deteriorated at r = 0.
In summary, we use pde 14.56 when r = 0, and equation 14.54 at all other

points.

EXERCISES 14.9

1. Verify stability requirement 14.55 for pde 14.54.
2. Verify stability requirement 14.57 for pde 14.56.
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§14.10 Partial Difference Equations for the Wave Equation

The homogeneous initial boundary value problem for transverse vibrations of a finite
string (or longitudinal vibrations of a bar) is

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0, (14.58a)

y(0, t) = 0, t > 0, (14.58b)
y(L, t) = 0, t > 0, (14.58c)
y(x, 0) = f(x), 0 < x < L, (14.58d)
yt(x, 0) = g(x), 0 < x < L. (14.58e)

Separation of variables leads to the infinite series solution

y(x, t) =
∞∑

n=1

(
An cos

nπct

L
+Bn sin

nπct

L

)
sin

nπx

L
, (14.59a)

where

An =
2
L

∫ L

0

f(x) sin
nπx

L
dx, Bn =

2
nπc

∫ L

0

g(x) sin
nπx

L
dx. (14.59b)

To find an initial boundary value problem associated with a finite difference equation
to replace problem 14.58, we discretize that part of the xt-plane bounded by 0 <
x < L and t > 0 as in Figure 14.1. When both partial derivatives in the PDE are
replaced by central difference formulas, a consistent pde is obtained. Its truncation
error is O(h2, s2). With the usual notation y(xn, tp) = yn,p, the pde is

yn,p+1 − 2yn,p + yn,p−1

s2
= c2

(
yn+1,p − 2yn,p + yn−1,p

h2

)
, (14.60)

or,

yn,p+1 = 2
(

1 − c2s2

h2

)
yn,p − yn,p−1 +

c2s2

h2
(yn+1,p + yn−1,p) . (14.61a)

It must be satisfied for p = 1, . . . and
n = 1, . . . , N − 1. It is shown pictorially
in Figure 14.14. Values at two previous
time steps are advanced to the next
time step. To replace boundary condi-
tions 14.58b,c, we extend values of n to
0, . . . , N , and demand that

n p

n p n p n p

, +1

+1,-1 ,,

n p, -1

Figure 14.14

y0,p = 0, p ≥ 0, (14.61b)
yN,p = 0, p ≥ 0. (14.61c)

We replace initial condition 14.58d for the PDE with the following initial conditions
for the pde,

yn,0 = fn = f(xn), n = 1, . . . , N − 1. (14.61d)
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For initial condition 14.58e, we can use the same approach as for a Neumann bound-
ary condition in Section 14.6. We replace the partial time derivative with a central
difference at each node xn,

y(xn, s) − y(xn,−s)
2s

= g(xn) = gn,

or with our subscript notation,

yn,1 = yn,−1 + 2sgn.

This equation defines displacement yn,−1 = y(xn,−s), at a fictitious time (xn,−s)
before t = 0 at each node xn. Now, pde 14.61a is to be satisfied for p = 1, . . . , and
n = 1, . . . , N − 1. If we also evaluate it at p = 0, we get

yn,1 − 2yn,0 + yn,−1 =
c2s2

h2
(yn+1,0 − 2yn,0 + yn−1,0) .

If we substitute yn,−1 = yn,1 − 2sgn, we obtain

yn,1 − 2yn,0 + yn,1 − 2sgn =
c2s2

h2
(yn+1,0 − 2yn,0 + yn−1,0) ,

or,

yn,1 = yn,0

(
1 − c2s2

h2

)
+
c2s2

2h2
(yn+1,0 + yn−1,0) + sgn. (14.62)

This equation approximates displacement at the first time step t = s for each node
so that it can be input into the pde to calculate displacement at the second time
step for each node.

To investigate the stability of pde 14.61a, we substitute En,p = eγpseiβnh,

eγ(p+1)seiβnh = 2
(

1 − c2s2

h2

)
eγpseiβnh − eγ(p−1)seiβnh +

c2s2

h2
[eγpseiβ(n+1)h + eγpseiβ(n−1)h].

Division by eγ(p−1)seiβnh gives

e2γs = 2
(

1 − c2s2

h2

)
eγs − 1 +

c2s2

h2
(eiβh + e−iβh)eγs

= 2
(

1 − c2s2

h2

)
eγs − 1 +

2c2s2eγs

h2
cosβh

= 2
(

1 − c2s2

h2

)
eγs − 1 +

2c2s2eγs

h2

(
1 − 2 sin2 βh

2

)
.

Thus, eγs must satisfy the quadratic equation

e2γs − 2
(

1 − 2c2s2

h2
sin2 βh

2

)
eγs + 1 = 0,

with solutions

eγs =
2
(

1 − 2c2s2

h2
sin2 βh

2

)
±

√
4
(

1 − 2c2s2

h2
sin2 βh

2

)2

− 4

2

= 1 − 2c2s2

h2
sin2 βh

2
±

√(
1 − 2c2s2

h2
sin2 βh

2

)2

− 1.
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If we let R =
2c2s2

h2
sin2 βh

2
, then

eγs = 1 −R±
√

(1− R)2 − 1.

If (1 − R)2 − 1 < 0, then

|eγs| = |(1 − R)±
√

1 − (1 −R)2i| =
√

(1−R)2 + 1− (1− R)2 = 1.

If (1 − R)2 − 1 ≥ 0, stability condition 14.31 requires

|1 −R±
√

(1− R)2 − 1| ≤ 1 or, − 1 ≤ 1 − R±
√
R2 − 2R ≤ 1.

This is equivalent to

−2 ≤ −R ±
√
R2 − 2R ≤ 0 or, 0 ≤ R±

√
R2 − 2R ≤ 2.

Since the left inequality is satisfied, we require

R±
√
R2 − 2R ≤ 2 or, ±

√
R2 − 2R ≤ 2 −R.

Squaring gives

R2 − 2R ≤ R2 − 4R+ 4 which leads to R ≤ 2.

For stability we therefore require

2c2s2

h2
sin2 βh

2
≤ 2, or,

c2s2

h2
≤ 1

sin2 (βh/2)
.

This will be satisfied for all β if we demand that c2s2/h2 be less than 1; that is

c2s2

h2
≤ 1.

Stability is therefore guaranteed if

s ≤ h

c
or, ∆t ≤ ∆x

c
. (14.63)

In other words, pde 14.61a is conditionally stable. Condition 14.63 is often called
the Courant-Friedrichs-Lewy condition; it says that the velocity ∆x/∆t at
which information is propagated by the pde must be greater than the velocity c at
which information is propagated by the one-dimensional wave equation.

In Section 14.3, we solved the difference equation for the heat equation. We
could do the same for problem 14.61, but calculations become formidable. It is,
however, instructive to begin the procedure in that it once again yields condition
14.63. The calculations are in Exercise 4.

Neumann and/or Robin boundary conditions can be handled as in Section 14.6.

Other explicit schemes can be developed for the wave equation, but they seem
to have little use. Implicit methods can also be derived. We mention one of them.
If we replace the second partial derivative ∂2y/∂x2 with the average of central
differences at time steps p − 1 and p + 1 (a Crank-Nicolson approximation), we
obtain
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yn,p+1 − 2yn,p + yn,p−1

s2

= c2
[
(yn+1,p+1 − 2yn,p+1 + yn−1,p+1) + (yn+1,p−1 − 2yn,p−1 + yn−1,p−1)

2h2

]
,

or,

c2s2

2h2
(yn+1,p+1 + yn−1,p+1)

= 2yn,p −
(

1 +
c2s2

h2

)
yn,p−1 +

c2s2

2h2
(yn+1,p−1 + yn−1,p−1) . (14.64)

This scheme is stable (see Exercise 5).

EXERCISES 14.10

1. Modify pde 14.61a if gravity also acts on the string.

2. Modify pde 14.61a if a damping force proportional to velocity also acts on the string.

3. Modify pde 14.61a if a restoring force proportional to displacement also acts on the string.

4. (a) Show that if solutions of 14.61a,b,c are sought in the form yn,p = XnTp, then Xn and Tp

must satisfy

Tp+1 − (λ+ 2)Tp + Tp−1 = 0,

and

Xn+1 −
(

2 +
h2λ

c2s2

)
Xn +Xn−1 = 0, X0 = 0, XN = 0.

(b) Show that Xn = B sin
nπ`

N
, where B is an arbitrary constant, and ` is a positive integer.

Furthermore, possible values for λ are λ` =
2c2s2

h2

(
cos

`π

N
− 1
)

.

(c) Use the difference equation for Tp to derive condition 14.63.

5. Verify that implicit scheme 14.64 is stable.
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§14.11 Partial Difference Equations for Elliptic PDEs

Application of finite differences to Laplace’s equation and Poisson’s equation re-
sults in a situation quite different from that for the heat and vibration equations.
Consider first Laplace’s equation

∂2V

∂x2
+
∂2V

∂y2
= 0, (14.65)

on a square 0 ≤ x ≤ L, 0 ≤ y ≤ L. We discretize the square with points (xn, ym) =
(nh,mh), where h = ∆x = ∆y = L/N , using therefore equal subdivisions in both
directions. When second partial derivatives are replaced by central differences, the
result is the pde

(Vn+1,m − 2Vn,m + Vn−1,m) + (Vn,m+1 − 2Vn,m + Vn,m−1)
h2

= 0,

or,

Vn,m =
1
4

(Vn+1,m + Vn−1,m + Vn,m+1 + Vn,m−1) . (14.66)

We have shown the situation pictorially
in Figure 14.15. The value of Vn,m at any
node is the average of its values at the
four adjacent nodes. We cannot “advance”
the solution from the x-axis, say, as we did
for time-dependent problems. Because pde
14.66 must be satisfied at each interior node,
it must be satisfied for n,m = 1, . . . , N − 1.

y

x

V

n,m
n+1,m

n,m+1

n-1,m

n,m-1

V
V

V

V

In other words, we have a set of (N − 1)2 Figure 14.15
linear equations. Of these, (N − 3)2 are homo-
geneous (when n,m = 2, . . . , N − 2) because they do not involve boundary points.
When boundary conditions are nonhomogeneous, Dirichlet, there are 2(N − 1) +
2(N −3) = 4N −8 nonhomogeneous equations. This linear system of equations can
be solved in many ways, one of which is not Gaussian elimination (the number of
equations is simply too large). Discussions on useful techniques and their computer
implementations can be found in many references devoted to this aspect of the
problem.

Scheme 14.66 is the simplest five-point finite difference approximation for La-
place’s equation on a square with equal subdivisions in both directions. Its trunca-
tion error is O(h2, h2), and it can be shown that no other five-point approximation
to Laplace’s equation on a square can be more accurate. It can be generalized in
various ways, such as using unequal spacings, replacing the square with a rectangle,
and using more accurate difference formulas. Suppose, for instance, that the square
is replaced by a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′, thus forcing unequal subdivi-
sions. With N equal subdivisions in the x-direction, h1 = ∆x = L/N , and M equal
subdivisions in the y-direction, h2 = ∆y = L′/M , and central differences, equation
14.66 is replaced by

Vn+1,m − 2Vn,m + Vn−1,m

h2
1

+
Vn,m+1 − 2Vn,m + Vn,m−1

h2
2

= 0,
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or,

Vn,m =
h2

1(Vn,m+1 + Vn,m−1) + h2
2(Vn+1,m + Vn−1,m)

2(h2
2 + h2

2)
. (14.67)

When L = L′ and h = h1 = h2, this reduces, as it should, to equation 14.66.

EXERCISES 14.11

1. Modify pde 14.66 in the case that Laplace’s equation 14.65 is replaced by Poisson’s equation
with nonhomogeneity f(x, y).

2. Modify pde 14.67 in the case that Laplace’s equation 14.65 is replaced by Poisson’s equation
with nonhomogeneity f(x, y).

3. Explain why pde 14.66 supports the maximum-minimum principle for Laplace’s equation dis-
cussed in Section 6.7.
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CHAPTER 15 Weighted Residuals

§15.1 Introduction

Consider solving Poisson’s equation

∇2V =
∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (15.1)

on some region R in the xy-plane such as that in Figure 15.1. With finite differences,
the partial differential equation for V (x, y) is replaced by a partial difference equa-
tion for approximations Vn,m = V (xn, ym) at a predetermined set of mesh points
(xn, ym) (see Section 14.11). Emphasis is shifted from an exact solution at every
point in the region to a set of approximations at mesh points. With finite elements,
region R is approximated by a set of subregions of various shapes such as triangles
and rectangles, and V (x, y) is approximated by a polynomial in x and y on each
subregion. Emphasis is shifted to approximating polynomials on subregions, and
these subregions are called finite elements. For each finite element, there is a poly-
nomial approximation to the solution of the PDE for that element. The flexibility
in choosing the subdivision of region R into finite elements, and the opportunity
to choose different types of approximating polynomials, gives the method its power
and versatility, a fact that we can only hint at in the space of one chapter (Chapter
16).

There is a multitude of ways to develop the theory associated with finite ele-
ments, and many of these approaches are discipline dependent. We have chosen an
approach that is somewhat general in nature (not directed at any particular branch
of engineering), but at the same time is not so abstract as to lose the reader after
initial discussions. We approach finite elements through what is called the method
of weighted residuals, henceforth shortened to MWR. It is important to understand
from the outset that the MWR is a stand alone method for approximating solutions
to PDEs (and ODEs). It is a technique that we use in finite elements, but it is not
an inherent part of finite elements. Because of this, we devote this chapter to a
discussion of MWR prior to introducing finite elements in Chapter 16.

y

x

R

Figure 15.1
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§15.2 The Method of Weighted Residuals

The method of weighted residuals is a very general method for approximating so-
lutions to initial, boundary value problems in PDEs (or ODEs). In the case of a
PDE, we represent the PDE symbolically by

L(U) = F, (15.2)

where L is a partial differential operator (which may be linear or nonlinear), U is
the unknown function, and F is a given function of the independent variables. For
instance, in equation 15.1, L is the Laplacian ∇2; for the one-dimensional wave
equation

∂2y

∂t2
= c2

∂2y

∂x2
,

L is
∂2

∂t2
− c2

∂2

∂x2
; and for the two-dimensional heat conduction equation

∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
,

L is
∂

∂t
− k

(
∂2

∂x2
+

∂2

∂y2

)
.

Accompanying each of these PDEs will be initial and/or boundary conditions.
In the MWR, the unknown function U in equation 15.2 is approximated by a

linear combination of N preselected functions φn of the independent variables,

UN =
N∑

n=1

cnφn, (15.3)

where the coefficients cn are to be determined. The functions φn are called various
names depending on the discipline using them, such as basis functions, shape
functions, or interpolation functions. We use the terminology basis functions;
they are required to be linearly independent and constitute a complete set of func-
tions. Recall that a set of functions is complete for some space of functions if every
function in the space can be expressed as an infinite series of the complete set of
functions. (For example, the eigenfunctions of a Sturm-Liouville system on the in-
terval a ≤ x ≤ b form a complete set for the space of piecewise smooth functions
on the interval. Functions xn, n = 0, 1, 2 . . . form a complete set for the space of
continuous functions.) By adopting a set of complete functions, we are assured that
the solution of the boundary value problem can be represented to any degree of
accuracy by choosing sufficiently many terms in summation 15.3.

If basis functions φn do not satisfy equation 15.2, then neither does linear
combination 15.3. As a result, if we substitute it into the PDE, the result will not
be F . Alternatively, if we calculate L(

∑N
n=1 cnφn) − F , it will not be zero; it will

be a function of the independent variables and the coefficients cn. We denote this
function by R,

R = L

[
N∑

n=1

cnφn

]
− F, (15.4)
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and call it the residual of UN . Our intuition tells us that the smaller the value of
R, the better the linear combination of basis functions approximates the solution
of the PDE. As a result, coefficients cn should be chosen so that R is in some
sense minimized. The MWR is an attempt to do this, but it is not immediately
obvious how, or in what sense, minimization occurs. The method suggests that N
linearly independent test functions wm be chosen, and demands that integrals of the
products of the wm and R over the domain of the problem vanish. If we generically
denote the domain by A, and the integral as a double integral, although it could
equally well be a definite integral or a triple integral, then we have the conditions

∫∫

A

Rwm dA = 0, m = 1, . . . , N. (15.5)

Integrations in equations 15.5 lead to a system of N equations in the N unknown
coefficients cn. These equations will be linear when opertor L is linear, and they
will be nonlinear when L is nonlinear. To see them more explicitly in the case that
L is linear, we substitute expression 15.4 into equations 15.5,

∫∫

A

[
L

(
N∑

n=1

cnφn

)
− F

]
wm dA = 0, m = 1, . . . , N,

or,

N∑

n=1

[∫∫

A

L(φn)wm dA

]
cn =

∫∫

A

Fwm dA, m = 1, . . . , N. (15.6)

Once integrals are evaluated, these are indeed N linear, nonhomogeneous equations
in the unknown coefficients cn. We could represent the system in matrix form

DC = B, (15.7a)

where

D =
(∫∫

A

L(φn)wm dA

)

N×N

, C = (cn)N×1, B =
(∫∫

A

Fwm dA

)

N×1

. (15.7b)

Various names are given to the MWR depending on the choice of weight func-
tions wm. We discuss four of them here; there are others (including the least squares
method).

Collocation Method

In the collocation method, N points, (xm, ym), called collocation points are chosen
in the domain of the problem, and weight functions are Dirac-delta functions at
these points,

wm = δ(x− xm, y − ym), m = 1, . . . , N. (15.8)

In this case, equations 15.6 become

N∑

n=1

[L(φn)]|(xm,ym)cn = F (xm, ym), m = 1, . . . , N. (15.9)
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The method forces the residual to be zero at the collocation points.

Subdomain or Integral Method

In the subdomain (or integral) method, N subdomains Am of domain A for the
problem are chosen; these subdomains may be distinct, or they may overlap, but in
any case, they completely cover the domain for the problem. Weight functions wm

are chosen, such that wm is equal to unity at every point in subdomain Am, and is
zero otherwise; that is,

wm =
{

1, when evaluated at a point in Am

0, when evaluated at a point not in Am. (15.10)

In this case, equations 15.6 become

N∑

n=1

[∫∫

Am

L(φn) dA
]
cn =

∫∫

Am

F dA, m = 1, . . . , N. (15.11)

The method requires that the integral of the residual to be zero over each subdomain.

Moment Method

In the moment method, weight functions are chosen to be

wm = xm, m = 0, 1, 2, . . . , N − 1. (15.12)

With weight functions being only functions of x, the moment method is restricted
to ordinary differential equations. If a ≤ x ≤ b is the interval of consideration,
equations 15.6 become

N∑

n=1

[∫ b

a

L(φn)xm dx

]
cn =

∫ b

a

Fxm dx, m = 0, . . . , N − 1. (15.13)

Galerkin Method

In the Galerkin method, weight functions wm are chosen to be the basis functions
φn, so that equations 15.5 become

∫∫

A

Rφm dA = 0, m = 1, . . . , N. (15.14)

More explicitly, equations 15.6 become

N∑

n=1

[∫∫

A

L(φn)φm dA

]
cn =

∫∫

A

Fφm dA, m = 1, . . . , N. (15.15)

Before applying these techniques to boundary value problems associated with
ODEs and PDEs, some comments are appropriate.

1. The simplicity of the collocation method lies in the fact that no integrations are
necessary; the difficulty of the method is the optimum choice of collocation points.
For one-dimensional problems, it is customary to distribute collocation points evenly
throughout the interval of the problem. Special conditions, however, might suggest
a concentration of collocation points in some part of the interval. In addition, a
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method called orthogonal collocation has been developed to remove arbitrariness in
the choice of collocation points. Basis function are orthogonal polynomials, such as
the Legendre polynomials, and collocation points are chosen as the zeros of these
polynomials.

2. Next in simplicity after collocation is the subdomain method. Integrations in equa-
tions 15.11 are generally simpler than those in equations 15.13 and 15.15.

3. The only condition that we have placed on basis functions is that they be linearly
independent and from a complete set of functions. Polynomials xn, n = 0, 1, . . ., or
combinations of them, can always be chosen, but other considerations might suggest
a better choice. For instance, symmetry of the problem might suggest a subset of
these polynomials, perhaps only the even ones. Alternatively, the physical nature
of a problem might indicate a completely different set of basis functions. Finally, an
analytic solution of a simplified version of the problem might suggest more suitable
basis functions. For example, in Section 15.4, we will approximate eigenvalues and
eigenfunctions of the Sturm-Liouville system

X ′′ + λ(1 − x2)X = 0, 0 < x < 1, X(0) = 0, X ′(1) = 0.

We know from Chapter 5 that when the differential equation is X ′′ + λX = 0,
eigenfunctions are Xn(x) = sin (2n− 1)πx/2. It would be reasonable to use these
as basis functions to approximate eigenfunctions of the more complicated system.
Galerkin’s method is particularly efficient when eigenfunctions are used because of
their orthogonality. Integrations become relatively simple, and instead of getting
a system of N linear equations each containing all of the coefficients, we obtain N
linear equations each containing only one coefficient.

4. No mention has yet been made of boundary and/or initial conditions. It is advan-
tageous to choose basis functions so that approximation 15.3 satisfies some or all
of the boundary conditions. After all, the accuracy with which linear combination
15.3 approximates the solution of an initial boundary value problem does not just
depend on how well it fits the PDE; it depends on how well it approximates initial
and boundary conditions as well. Ensuing discussions will indicate how initial and
boundary conditions are incorporated into these methods.

5. Interior methods are ones for which approximating functions 15.3 satisfy the
boundary conditions, but not the PDE. In this case, the residual, which accounts
only for the fact that approximations do not satisfy the differential equation, is of-
ten called the equation residual. In boundary methods, approximations satisfy
the PDE, and maybe some, but not all of the boundary conditions. In this case,
we have what is called a boundary residual. Finally, mixed methods are those
in which approximations satisfy neither PDE nor all of the boundary conditions.
In this situation, there will be both an equation residual and a boundary residual.
Initial boundary value problems may also have an initial residual.

When dealing with boundary value problems associated with ODEs, it is cus-
tomary, but not mandatory, to use an interior method, by requiring approximations
to satisfy the boundary conditions of the problem. This is usually quite straight-
forward when boundary conditions are Dirichlet, but it is also possible, albeit more
difficult, when boundary conditions are Neumann and/or Robin. On the other hand,
when dealing with PDEs, it can be difficult to require approximations to satisfy Neu-
mann and Robin boundary conditions, but it is essential that approximations satisfy
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Dirichlet boundary conditions.
6. As mentioned earlier, equations 15.6 for coefficients cn are linear because operator
L is linear. When L is a nonlinear operator, equations for the cn will also be
nonlinear, but they will be algebraic. In other words, the MWR replaces finding the
exact solution of a boundary value problem associated with an ODE or PDE with
solving an algebraic system of equations for an approximation to the exact solution.

7. Since the MWR approximates the solution of an initial boundary value problem,
there is always the question of accuracy. Once coefficients in approximation 15.3
have been calculated and substituted into formula 15.4, the residual is minimized
for the criterion chosen, be it collocation, subdomain, moment, or Galerkin. One
is tempted to say that the smaller the value of the residual at a point, the better
the approximation at that point. But we have no justification for such a claim. We
have provided no direct relationship between the value of the residual at a point
and the accuracy of the approximation to the solution of the initial boundary value
problem at that point. There must be a connection, however, otherwise the MWR
would be on a very fragile foundation. We feel that, in some sense, the size of
the residual is a measure of the accuracy of the approximation on a point-by-point
basis. The problem is “In what sense?” Various norms of the residual can be
introduced in order to convert from a point-by-point assessment of accuracy to an
overall assessment, and this leads discussions into the field of functional analysis.
Such discussions are beyond the scope of our presentation of fundamental concepts
of the MWR, except to mention one possible approach. If the residual is identically
equal to zero, then the approximation is not an approximation, it is an exact solution
of the differential equation. The mean square residual, defined as the integral

∫∫

A

R2 dA, (15.16)

is a measure of how close the residual is to zero over the entire domain A of the
problem. It should, in some sense, be a measure of the overall accuracy of an
approximation; the smaller the value of the integral, the better the approximation.
This is not particularly definitive, but what it does do is give us a criterion by which
to compare various approximations. Smaller integrals should correspond to better
approximations.

8. Contrast how analytic methods, finite differences, weighted residuals, and finite el-
ements approximate solutions to initial, boundary value problems. The analytic
solution provides a sequence of approximations, its sequence of partial sums. Any
given partial sum approximates the exact solution over the entire domain of the
problem. Finite differences provide approximations to the exact solution at a set of
mesh points. Approximations between mesh points can be obtained by interpola-
tion. In weighted residuals, like analytic solutions, each function UN approximates
the exact solution over the entire domain of the problem. Finite elements, on the
other hand, yield different approximations for different subdomains of the problem.
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§15.3 Method of Weighted Residuals and Ordinary Differential Equations

Our objective is to apply the MWR to boundary value problems and initial boundary
value problems associated with PDEs, but because it so much easier to see the
principles involved when the technique is applied to ODEs, we apply the MWR
to ODEs in this and the next section. We begin with a very simple problem so
that ideas are not obscured by excessive calculations. Indeed, the example is so
simple that it can be solved exactly, and this gives us the opportunity to compare
approximations yielded by the MWR to exact results. The problem is

d2Y

dx2
+ Y = x, 0 < x < 1, (15.17a)

Y (0) = 1, (15.17b)
Y (1) = 3, (15.17c)

with exact solution

Y (x) = cosx+ (2 csc 1− cot 1) sinx+ x. (15.18)

The first decision to be made when using weighted residuals is whether to use
an interior method, a boundary method, or a mixed method. For ODEs, it is usually
best to use an interior method, but in our second example, we will illustrate a mixed
method, and in Section 15.4, we find eigenvalues of a Sturm-Liouville system with
a boundary method. Having made the decision to use an interior method on this
problem, we must choose basis functions that satisfy the boundary conditions. With
nothing to suggest an alternative, we choose polynomials in x. Different approaches
lead to different forms for the polynomials, but they are equally acceptable.

Approach 1
The polynomial

N+1∑

n=0

cnx
n (15.19)

has N + 2 unknown coefficients, but this will be reduced to N when we require the
approximation to satisfy the boundary conditions Y (0) = 1 and Y (1) = 3. It is not
a requirement of the MWR that approximations satisfy the boundary conditions of
the problem, but it is once we have chosen to use an interior method. Satisfaction
of the boundary conditions requires

1 = c0, 3 =
N+1∑

i=0

ci = c0 + c1 + · · · + cN+1.

When the second of these is solved for c1, the resulting polynomial approximation
is

YN (x) = 1 + (2 − c2 − · · · − cN+1)x+ c2x
2 + · · · + cN+1x

N+1

= 1 + 2x+ c2(x2 − x) + c3(x3 − x) + · · · + cN+1(xN+1 − x)

= 1 + 2x+
N∑

n=1

bnx(1− xn). (15.20)
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Approach 2
Approach 1 takes a general polynomial and subjects it to the boundary conditions.
But notice that the first function 1+2x in the approximation satisfies the boundary
conditions of the problem and the remaining functions x(1−xn), and these we regard
as the basis functions, satisfy homogeneous versions of the boundary conditions.
Based on these remarks, an alternative approach is more intuitive. It is a general
method for all types of boundary conditions, but it is probably less work only when
boundary conditions are Dirichlet. The idea is to write the N th approximation in
the form

YN (x) = φ0(x) +
N∑

n=1

cnφn(x), (15.21)

and demand that φ0(x) satisfy the boundary conditions of the problem, and the
φn(x), i = 1, . . . , N satisfy homogeneous versions of the boundary conditions. Ob-
viously, YN (x) will then satisfy the boundary conditions of the problem. Function
φ0(x) is not regarded as a basis function, the φn(x), n = 1, . . . , N are. For the
present problem, an obvious choice for φ0(x) that satisfies φ0(0) = 1 and φ0(1) = 3,
but not the only one, is φ0(x) = 1 + 2x. Functions xn do not satisfy homogeneous
versions of the boundary conditions, but xn(1 − x), n = 1, 2, . . ., do. We could
therefore choose basis functions as φn(x) = xn(1− x), and take

YN (x) = 1 + 2x+
N∑

n=1

cnx
n(1 − x). (15.22)

We will work with approximations in form 15.20, but equally acceptable ap-
proximations could be developed with representation 15.22. The first approximation
is Y1(x) = 1 + 2x+ b1x(1 − x), and the equation residual associated with it is

R = −2b1 + [1 + 2x+ b1x(1 − x)] − x = b1(−x2 + x− 2) + x+ 1.

We employ each of the collocation, subdomain, Galerkin, and moment methods to
determine b1. When we choose a single collocation point at the midpoint x = 1/2,
collocation requires

0 = b1

(
−1

4
+

1
2
− 2
)

+
1
2

+ 1 =⇒ b1 =
6
7
.

The first collocation approximation is therefore Y1(x) = 1 + 2x+
6
7
x(1 − x). The

subdomain method, with one subdomain 0 ≤ x ≤ 1, requires

0 =
∫ 1

0

[b1(−x2 + x− 2) + x+ 1] dx = −11b1
6

+
3
2

=⇒ b1 =
9
11
.

The first subdomain approximation is Y1(x) = 1 + 2x+
9
11
x(1 − x). The moment

method gives the same first approximation. Galerkin’s method requires
∫ 1

0

[b1(−x2 + x− 2) + x+ 1]x(1 − x) dx = −3b1
10

+
1
4

=⇒ b1 =
5
6
.

The first Galerkin approximation is Y1(x) = 1 + 2x+
5
6
x(1− x). We have tabulate

the exact solution and the three approximations below for comparisons.
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x Exact Collocation Subdomain Galerkin
or moment

0.1 1.268 1.277 1.274 1.275
0.2 1.525 1.537 1.531 1.533
0.3 1.768 1.780 1.772 1.775
0.4 2.000 2.006 1.996 2.000
0.5 2.209 2.214 2.205 2.208
0.6 2.405 2.406 2.396 2.400
0.7 2.582 2.580 2.572 2.575
0.8 2.741 2.737 2.731 2.733
0.9 2.880 2.877 2.874 2.875

Table 15.6

To improve on the Galerkin, subdomain, and moment approximations, our only
choice is to take more terms in summation 15.20. We can also refine the collocation
method by opting for more terms in this summation, but, what is sometimes done
is to maintain the one term approximation and choose more collocation points, find
the value of b1 for each collocation point, and then combine all values of b1 in some
way such as least squares to obtain an optimum value. We shall not pursue this
procedure.

We now add a second term to Y1(x) to see how much better the approximation
becomes. The second approximation is Y2(x) = 1 + 2x+ b1x(1 − x) + b2x(1 − x2),
with residual

R = −2b1 − 6xb2 + [1 + 2x+ b1x(1 − x) + b2x(1 − x2)] − x

= b1(−x2 + x− 2) − b2(x3 + 5x) + x+ 1.

Collocation with collocation points x = 1/3 and x = 2/3 requires

0 = b1

(
−1

9
+

1
3
− 2
)
− b2

(
1
27

+
5
3

)
+

1
3

+ 1 = −16b1
9

− 46b2
27

+
4
3
,

0 = b1

(
−4

9
+

2
3
− 2
)
− b2

(
8
27

+
10
3

)
+

2
3

+ 1 = −16b1
9

− 98b2
27

+
5
3
.

The solution of these equations is b1 = 0.584135 and b2 = 0.173077, and the second
collocation approximation is

Y2(x) = 1 + 2x+ 0.584135x(1− x) + 0.173077x(1− x2).

The subdomain method with subdomains 0 ≤ x ≤ 1/2 and 1/2 ≤ x ≤ 1 requires

0 =
∫ 1/2

0

[b1(−x2 + x− 2) − b2(x3 + 5x) + x+ 1] dx = −11b1
12

− 41b2
64

+
5
8
,

0 =
∫ 1

1/2

[b1(−x2 + x− 2)− b2(x3 + 5x) + x+ 1] dx = −11b1
12

− 135b2
64

+
7
8
.

The solution is b1 = 0.562863 and b2 = 0.170213, and the second subdomain ap-
proximation is
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Y2(x) = 1 + 2x+ 0.562863x(1− x) + 0.170213x(1− x2).

The moment method requires

0 =
∫ 1

0

[b1(−x2 + x− 2)− b2(x3 + 5x) + x+ 1] dx = −11b1
6

− 11b2
4

+
3
2
,

0 =
∫ 1

0

[b1(−x2 + x− 2)− b2(x3 + 5x) + x+ 1]x dx = −11b1
12

− 28b2
15

+
5
6
.

The solution is b1 = 0.563945 and b2 = 0.169492, and the second moment approxi-
mation is

Y2(x) = 1 + 2x+ 0.563945x(1− x) + 0.169492x(1− x2).

Galerkin’s method requires

0 =
∫ 1

0

[b1(−x2 + x− 2) − b2(x3 + 5x) + x+ 1]x(1 − x) dx = −3b1
10

− 9b2
20

+
1
4
,

0 =
∫ 1

0

[b1(−x2 + x− 2) − b2(x3 + 5x) + x+ 1]x(1 − x2) dx = −9b1
20

− 76b2
105

+
23
60
.

The solution is b1 = 0.577236 and b2 = 0.170732, and the second Galerkin approxi-
mation is

Y2(x) = 1 + 2x+ 0.577236x(1− x) + 0.170732x(1− x2).

These approximations are tabulated below. The improvement over the first approx-
imations is apparent.

x Exact Collocation Subdomain Moment Galerkin

0.1 1.268 1.270 1.268 1.268 1.269
0.2 1.525 1.527 1.523 1.523 1.525
0.3 1.768 1.770 1.765 1.765 1.769
0.4 2.000 1.998 1.992 1.992 2.000
0.5 2.209 2.211 2.205 2.205 2.208
0.6 2.405 2.407 2.400 2.400 2.404
0.7 2.582 2.584 2.579 2.579 2.582
0.8 2.741 2.743 2.739 2.739 2.742
0.9 2.880 2.882 2.880 2.880 2.881

MSR 0.029 0.042 0.042 0.034

Table 15.2

We indicated in item 7 of Section 15.2 that the mean square residual is a guide
to the accuracy of an approximation. Values are given in the last line of the table.

In the previous example, we used an interior method to approximate the solu-
tion of the boundary value problem, approximations satisfied both boundary condi-
tions. In the next example, we consider the same differential equation, but make one
of the boundary conditions Neumann. We again find approximations that satisfy
both boundary conditions, but we also show that approximations that satisfy only
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one of the boundary conditions can be developed (a mixed method). We shall see
that the interior method is easier to employ and gives better approximation. How-
ever, the mixed method becomes important in two- and three-dimensional problems
when it is difficult to find basis functions that satisfy the boundary conditions, and
we will have at least illustrated the approach in a simpler setting.

Example 15.1 The exact solution of the boundary value problem

d2Y

dx2
+ Y = x, 0 < x < 1, (15.23a)

Y (0) = 2, (15.23b)
Y ′(1) = 1, (15.23c)

is

Y (x) = 2 cosx+ 2 tan1 sin x+ x. (15.24)

Use an interior method, and a mixed method wherein approximations satisfy only
the first boundary condition to approximate this solution. Compare approximations
to the exact solution.

Solution Interior Method For an interior method, Approach 1 subjects the
polynomial

N+1∑

n=0

cnx
n. (15.25)

to the boundary conditions of the problem,

2 = c0, 1 = c1 + 2c2 + · · · + (N + 1)cN+1.

This results in

YN (x) = 2 + [1 − 2c2 − 3c3 − · · · − (N + 1)cN+1]x+ c2x
2 + · · · + cN+1x

N+1

= 2 + x+ c2(x2 − 2x) + c3(x3 − 3x) + · · · + cN+1[xN+1 − (N + 1)x]

= 2 + x+
N∑

n=1

bnx(xn − n− 1). (15.26)

Notice once again that the function 2 + x satisfies both nonhomogeneous boundary
conditions, and basis functions x(xn − n − 1) satisfy homogeneous versions of the
boundary conditions. The second approximation is

Y2(x) = 2 + x+ b1(x2 − 2x) + b2(x3 − 3x),

with equation residual

R = (2b1 + 6b2x) + [2 + x+ b1(x2 − 2x) + b2(x3 − 3x)] − x

= 2 + b1(x2 − 2x+ 2) + b2(x3 + 3x).

We could use collocation, subdomains, or Galerkin’s method to find b1 and b2, but
because Galerkin’s method is the only one available for the mixed method, we opt
for it here also,
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0 =
∫ 1

0

[2 + b1(x2 − 2x+ 2) + b2(x3 + 3x)](x2 − 2x) dx = −4b1
5

− 89b2
60

− 4
3
,

0 =
∫ 1

0

[2 + b1(x2 − 2x+ 2) + b2(x3 + 3x)](x3 − 3x) dx = −89b1
60

− 20b2
7

− 5
2
.

The solution of these equations is b1 = −1.18439 and b2 = −0.260102 so that the
second Galerkin approximation is

Y2(x) = 2 + x− 1.18439(x2 − 2x) − 0.260102(x3 − 3x).

We tabulate the exact solution and this approximation after we discuss a mixed
method for finding approximations.

Mixed Method
A mixed method for this problem uses approximations that fail to satisfy the

differential equation and at least one boundary condition. Suppose we once again
use polynomial basis functions and demand that they satisfy boundary condition
Y (0) = 2, but not Y ′(1) = 1. Boundary condition Y ′(1) = 1 will be incorporated at
a later stage by introducing what is called a boundary residual. It is not evident how
to do this once basis functions have been specified and residuals have been formed.
Instead, we write

YN (x) = 2 +
N∑

n=1

cnφn(x),

where basis functions φn(x) are unspecified (except that they must satisfy φn(0) =
0). The equation residual for YN (x) is

R = 2 − x+
N∑

n=1

cn(φ′′n + φn).

With as yet, unspecified weight functions wm(x), the MWR requires

0 =
∫ 1

0

[
2 − x+

N∑

n=1

cn(φ′′n + φn)

]
wm dx

=
∫ 1

0

(2− x)wm dx+
N∑

n=1

cn

[∫ 1

0

φ′′nwm dx+
∫ 1

0

φnwm dx

]
.

We use integration by parts on the first integral in the summation to write

0 =
∫ 1

0

(2− x)wm dx+
N∑

n=1

cn

[
{φ′nwm}1

0 −
∫ 1

0

φ′nw
′
m dx+

∫ 1

0

φnwm dx

]
. (15.27)

Concentrate, for the moment, on the term {φ′nwm}1
0. We can eliminate it at x = 0

by choosing only weight functions that satisfy wm(0) = 0. Now consider φ′nwm at
x = 1. Because approximation YN (x) has not been made to satisfy the boundary
condition Y ′(1) = 1, we define a boundary residual at x = 1,
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R|x=1 =
N∑

n=1

cnφ
′
n(1)− 1. (15.28)

We implicitly demand that when multiplied by weight functions wm(1), the result
be zero [

N∑

n=1

cnφ
′
n(1)− 1

]
wm(1) = 0. (15.29)

We have said that we demand this implicitly. What we mean by this is that we use
it to remove the term φ′nwm at x = 1 in equation 15.27, but not explicitly as one
of the conditions to determine coefficients cn. As a result, approximations YN (x)
will not satisfy the boundary condition Y ′(1) = 1, they will only approximate it.
Substitution of these two requirements into equation 15.27 results in

0 =
∫ 1

0

(2 − x)wm dx+ wm(1) +
N∑

n=1

cn

∫ 1

0

[φnwm − φ′nw
′
m] dx. (15.30)

Once basis functions φn(x) and weight functions wm(x) are chosen, it is these equa-
tions that determine coefficients cn. Suppose we choose polynomial basis functions
φn(x) = xn which satisfy Y (0) = 0 , but not Y ′(1) = 0, so that

YN (x) = 2 +
N∑

n=1

cnx
n.

Weight functions associated with the collocation and subdomain methods do not
satisfy the requirement that wm(0) = 0. Weight functions wm = xm associated with
the moment method do satisfy this requirement, and these are the same weight
functions for Galerkin’s method. Suppose we consider the third approximation
Y3(x) = 2+c1x+c2x2 +c3x3 (chosen because the interior method contained a cubic
term). Conditions 15.30 with m = 1, 2, 3 demand that

0 =
∫ 1

0

(2 − x)w1 dx+ w1(1) + c1

∫ 1

0

(φ1w1 − φ′1w
′
1) dx+ c2

∫ 1

0

(φ2w1 − φ′2w
′
1) dx

+ c3

∫ 1

0

(φ3w1 − φ′3w
′
1) dx

=
5
3
− 2c1

3
− 3c2

4
− 4c3

5
,

0 =
∫ 1

0

(2 − x)w2 dx+ w2(1) + c1

∫ 1

0

(φ1w2 − φ′1w
′
2) dx+ c2

∫ 1

0

(φ2w2 − φ′2w
′
2) dx

+ c3

∫ 1

0

(φ3w2 − φ′3w
′
2) dx

=
17
12

− 3c1
4

− 17c2
15

− 4c3
5
,

0 =
∫ 1

0

(2 − x)w3 dx+ w3(1) + c1

∫ 1

0

(φ1w3 − φ′1w
′
3) dx+ c2

∫ 1

0

(φ2w3 − φ′2w
′
3) dx

+ c3

∫ 1

0

(φ3w3 − φ′3w
′
3) dx

=
13
10

− 4c1
5

− 4c2
3

− 58c3
35

.
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The solution of these is c1 = 4.30172, c2 = −1.5885, and c3 = −0.0167087, and
therefore

Y3(x) = 2 + 4.30172x− 1.5885x2 − 0.0167087x3.

The exact solution and the two approximations Y2(x) and Y3(x) are tabulated be-
low. Clearly the interior method with both boundary conditions satisfied gives bet-
ter approximations. As predicted, Y3(x) does not satisfy the Neumann boundary
condition of the problem, Y ′(1) = 1; it only approximates it, Y ′

3(1) = 1.075.•

x Exact Y2(x) Y3(x)

0.1 2.401 2.403 2.414
0.2 2.779 2.780 2.797
0.3 3.131 3.131 3.147
0.4 3.455 3.453 3.465
0.5 3.748 3.746 3.752
0.6 4.009 4.007 4.006
0.7 4.236 4.235 4.227
0.8 4.428 4.428 4.416
0.9 4.583 4.585 4.573

Table 15.3

Choosing Basis Functions

The choice of basis functions is perhaps the most important step in the MWR. A
wise choice may lead to good approximations to the solution of the boundary value
problem; an unwise choice may lead to poor approximations. So far in this sec-
tion, we have favoured interior methods wherein approximations satisfy boundary
conditions because they are easier to apply, and generally provide better approxi-
mations. We have dealt exclusively with polynomial basis functions, but in Section
15.4, we find that trigonometric functions can also be appropriate. Before leav-
ing you to the exercises, we would like to point out two fundamentally different
ways to apply an interior MWR with polynomial basis functions to boundary value
problems associated with ODEs where boundary conditions are nonhomogeneous.
In the two examples discussed here, it was straightforward to apply the bound-
ary conditions directly to a polynomial

∑N+1
i=0 cnx

n to reduce it to a polynomial
with N undetermined coefficients. The reason for this was that both boundary
conditions were Dirichlet in problem 15.20, and in problem 15.23, one boundary
condition was Dirichlet and the other was Neumann. When Robin conditions are
present, this process can be much more complicated. An alternative is to transform
nonhomogeneities from the boundary conditions into the ODE and deal only with
homogeneous boundary conditions. We finish this section with a procedure for do-
ing this. We develop transformations that remove nonhomogeneities from all nine
combinations of boundary conditions, Dirichlet, Neumann, and Robin, and then
provide polynomial approximations for each such combination.

In previous chapters, we consistently wrote boundary conditions for a function
Y (x) on the interval 0 < x < L in the form

−l1Y ′(0) + h1Y (0) = m1, (15.31a)
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l2Y
′(L) + h2Y (L) = m2, (15.31b)

and we did this for a good reason. By solving problems with boundary conditions
in this form, we were able to specialize results to Neumann and Dirichlet boundary
conditions simply by choosing h’s and l’s to be zero. There seems to be no such
advantage in this chapter, so we will write these conditions in the form

−Y ′(0) + h1Y (0) = m1, (15.32a)
Y ′(L) + h2Y (L) = m2. (15.32b)

Suppose that we have an ODE L(Y ) = F (x) on the interval 0 < x < L subject
to nonhomogeneous boundary conditions at x = 0 and x = L. Our objective here
is to develop transformations that move the nonhomogeneities from the boundary
conditions to the ODE for all nine combinations of boundary conditions. With the
exception of a Neumann condition at both ends, this can be accomplished with a
linear transformation on the dependent variable. We illustrate when the boundary
condition is Robin at x = 0 and Dirichlet at x = L.

−Y ′(0) + h1Y (0) = m1, Y (L) = m2,

and tabulate the remaining eight possibilities. Consider finding constants a and b so
that the change of dependent variable Z(x) = Y (x) + ax+ b results in a boundary
value problem for Z(x) with homogeneous boundary conditions. These require a
and b to satisfy

0 = −Z ′(0) + h1Z(0) = −[Y ′(0) + a] + h1[Y (0) + b]
= [−Y ′(0) + h1Y (0)]− a+ h1b = m1 − a+ h1b,

0 = Z(L) = Y (L) + aL+ b = m2 + aL+ b.

The solution is

a =
m1 − h1m2

1 + h1L
, b = −m2 + Lm1

1 + h1L
.

Hence, the transformation Z(x) = Y (x) +
(
m1 − h1m2

1 + h1L

)
x− m2 + Lm1

1 + h1L
leads to a

boundary value problem for Z(x) with homogeneous boundary conditions. Table
15.4 gives the transformation for all nine combinations of boundary conditions. (See
Exercise 19 for further verification.)

If we are willing to make these transformations, we need only consider problems
with homogeneous boundary conditions

B0(Y )(0) = 0, (15.33a)
BL(Y )(L) = 0. (15.33b)

B0 is one of the differential operators 1, d/dx, or −d/dx + h1, thus representing
a Dirichlet, Neumann, or Robin condition at x = 0. Operator BL is 1, d/dx, or
d/dx + h2. Accepting this, we now determine polynomial basis functions for the
nine sets of boundary conditions. Realize, however, that they are not unique; there
may be other equally acceptable sets of polynomial basis functions.
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Types of Boundary Boundary Transformation
Conditions Conditions

Dirichlet Y (0) = m1, Z(x) = Y (x) +
(
m1 −m2

L

)
x−m1

Dirichlet Y (L) = m2

Dirichlet Y (0) = m1, Z(x) = Y (x)−m2x−m1
Neumann Y ′(L) = m2

Dirichlet Y (0) = m1,
Z(x) = Y (x) +

(
h2m1 −m2

1 + h2L

)
x−m1

Robin Y ′(L) + h2Y (L) = m2

Neumann Y ′(0) = m1, Z(x) = Y (x)−m1x+ (m1L−m2)
Dirichlet Y (L) = m2

Neumann Y ′(0) = m1,
Z(x) = Y (x) +

(
m1 −m2

2L

)
x2 −m1x

Neumann Y ′(L) = m2

Neumann Y ′(0) = m1,
Z(x) = Y (x) −m1x+

m1(1 + h2L) −m2

h2Robin Y ′(L) + h2Y (L) = m2

Robin −Y ′(0) + h1Y (0) = m1,
Z(x) = Y (x) +

(
m1 − h1m2

1 + h1L

)
x− m2 + Lm1

1 + h1LDirichlet Y (L) = m2

Robin −Y ′(0) + h1Y (0) = m1,
Z(x) = Y (x) −m2x− m1 +m2

h1Neumann Y ′(L) = m2

Robin −Y ′(0) + h1Y (0) = m1,
Z(x) = Y (x) +

(
h2m1 − h1m2

h2 + h1(1 + h2L)

)
x− m2 +m1(1 + h2L)

h2 + h1(1 + h2L)Robin Y ′(L) + h2Y (L) = m2

Table 15.4

We discuss polynomial basis functions for one set of boundary conditions, and
tabulate results for the other eight sets. In particular, suppose that the boundary
condition at x = 0 is Neumann and that at x = L is Robin

Y ′(0) = 0, Y ′(L) + h2Y (L) = 0.

The functions xn, n = 0, 1, . . . form a complete set of linearly independent basis
functions for the space of continuous functions, but they do not satisfy the bound-
ary conditions. Because the function x2(L−x)2 satisfies both boundary conditions,
it follows that the polynomials xn[x2(L − x)2] = xn+2(L − x)2, n = 0, 1, . . . also
satisfy the boundary conditions. Do they form a complete set? The lowest de-
gree polynomial in the set is a quartic. As a result, the set must be augmented
with any lower degree polynomials that also satisfy the boundary conditions. It is
straightforward to show that no nontrivial linear polynomial satisfies both boundary
conditions. For a quadratic Y (x) = a+ bx+ cx2 to satisfy the boundary conditions,
we must have

0 = Y ′(0) = b, 0 = Y ′(L) + h2Y (L) = (b+ 2cL) + h2(a+ bL+ cL2).

The second implies that a = −(2L + h2L
2)c/h2, and if we set c = 1, a quadratic

polynomial satisfying the boundary conditions is
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φ1(x) = x2 − L

h2
(2 + h2L).

For a cubic Y (x) = a+ bx+ cx2 + dx3 to satisfy the boundary conditions,

0 = Y ′(0) = b, 0 = Y ′(L) + h2Y (L) = (b+ 2cL+ 3dL2) + h2(a+ bL+ cL2 + dL3).

The second implies that a = −c(2L+ h2L
2)/h2 − d(3L2 + h2L

3)/h2, and if we set
c = d = 1, then a cubic polynomial satisfying the boundary conditions is

Y (x) =
2L+ h2L

2

h2
− 3L2 + h2L

3

h2
+ x2 + x3

=
[
x2 − L

h2
(2L+ h2L)

]
+
[
x3 − L2

h2
(3 + h2L)

]
.

Since the first function on the right is φ1(x), we eliminate it and take

φ2(x) = x3 − L2

h2
(3 + h2L).

These two functions together with

φn(x) = xn−1(L− x)2, n ≥ 3,

then form a complete set of polynomial basis functions that satisfy both boundary
conditions. Table 15.5 gives polynomial basis functions for the other eight combi-
nations of boundary conditions (see Exercise 20).
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Types of Boundary Boundary Basis Polynomials
Conditions Conditions

Dirichlet Y (0) = 0,
φn(x) = xn(L− x), n ≥ 1

Dirichlet Y (L) = 0
Dirichlet Y (0) = 0, φ1(x) = x(2L− x)
Neumann Y ′(L) = 0 φn(x) = xn−1(L− x)2, n ≥ 2
Dirichlet Y (0) = 0,

φ1(x) = x

(
x− 2L+ h2L

2

1 + h2L

)

Robin Y ′(L) + h2Y (L) = 0
φn(x) = xn−1(L− x)2, n ≥ 2

Neumann Y ′(0) = 0, φ1(x) = L2 − x2

Dirichlet Y (L) = 0 φn(x) = xn(L− x), n ≥ 2
Neumann Y ′(0) = 0, φ1(x) = 1
Neumann Y ′(L) = 0 φ2(x) = 3Lx2 − 2x3

φn(x) = xn−1(L− x)2 n ≥ 3
Neumann Y ′(0) = 0,

φ1(x) = x2 − L

h2
(2 + h2L)

Robin Y ′(L) + h2Y (L) = 0 φ2(x) = x3 − L2

h2
(3 + h2L)

φn(x) = xn−1(L− x)2, n ≥ 3
Robin −Y ′(0) + h1Y (0) = 0,

φ1(x) = x2 − h1L
2x

1 + h1L
− L2

1 + h1L

Dirichlet Y (L) = 0 φ2(x) = x3 − h1L
3x

1 + h1L
− L3

1 + h1L
φn(x) = xn−1(L− x)2, n ≥ 3

Robin −Y ′(0) + h1Y (0) = 0,
φ1(x) = x2 − 2Lx− 2L

h1

Neumann Y ′(L) = 0 φ2(x) = x3 − 3L2x− 3L2

h1
φn(x) = xn−1(L− x)2, n ≥ 3

Robin −Y ′(0) + h1Y (0) = 0,
φ1(x) = x2 − (L2 + 2L/h2)x

L+ 1/h1 + 1/h2
− (L2 + 2L/h2)/h1

L+ 1/h1 + 1/h2

Robin Y ′(L) + h2Y (L) = 0 φ2(x) = x3 − (L3 + 3L2/h2)x
L+ 1/h1 + 1/h2

− (L3 + 3L2/h2)/h1

L+ 1/h1 + 1/h2

φn(x) = xn−1(L− x)2, n ≥ 3

Table 15.5

EXERCISES 15.3

1. In each part of this exercise, a boundary value problem in Y (x) on the interval 0 ≤ x ≤ 1 is to
be approximated by a polynomial. Use Approach 1 to find the form of the polynomial if the
boundary conditions are as specified.
(a) Y (0) = 2, Y ′(L) = 1
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(b) Y ′(0) = 0, Y ′(L) = 0
(c) −Y ′(0) + Y (0) = 0, Y (L) = 3
(d) Y (0) = 1, Y ′(L) + hY (L) = 0

2. We mentioned that Approach 2 for finding an approximating polynomial is advantageous only
when boundary conditions are Dirichlet. Demonstrate that Approach 2 to part (a) of Exercise
1, with one Dirichlet and one Neumann condition, does not prove advantageous.

3. The nonlinear problem below describes steady-state temperature in a rod with thermal conduc-
tivity that is a linear function of temperature,

d

dx

[
(1 + U)

dU

dx

]
= 0, 0 < x < 1,

U(0) = 0, U(1) = 1.

There is no heat generation in the rod, and end temperatures are constant.
(a) Show that the exact solution of the problem is U(x) = −1 +

√
1 + 3x.

(b) Derive the following polynomial approximations that satisfy the boundary conditions

UN (x) = x+
N∑

n=1

bn(xn+1 − x).

(c) Find first approximations using (i) collocation, (ii) subdomains, and the (iii) Galerkin
method. Tabulate the exact solution and the approximations at x = 0.1, 0.25, 0.50, 0.75, 0.90
for comparison purposes.

(d) Find second approximations using (i) collocation, (ii) subdomains, (iii) moments, and
(iv) the Galerkin method. Tabulate the exact solution and the approximations.

4. Find second approximations for the problem in Exercise 3 by first using Table 15.4 to make
the second boundary condition homogeneous, and then using Table 15.5 for basis functions.
Employ:
(a) collocation,
(b) subdomains,
(c) moments,
(d) Galerkin’s method.
Do you get the same second approximations as in Exercise 3?

5. The initial value problem

dT

dt
= −0.03(T − 20), T (0) = 100,

describes temperature T (t) of a cup of coffee subject to Newton’s law of cooling with heat
transfer coefficient k = 0.03. The coffee is initially at temperature 100◦ C and the environment
is at a constant temperature 20◦C.
(a) Find the analytic solution of the problem.
(b) Find a quadratic approximation T2(t) = 100 + c1t+ c2t

2 using collocation, subdomains,
and Galerkin’s method on the interval 0 ≤ t ≤ 30.

(c) Tabulate the analytic solution and each approximation for t = 5, 10, 15, 20, and 25.

6. (a) Poisson’s equation together with boundary conditions can always be interpreted as a steady
state heat conduction problem. The one-dimensional problem
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d2U

dx2
= − sin x, U(0) = 1, U(1) = −2,

can be interpreted as steady state temperature in a rod. Find the exact solution of the
problem.

(b) In this one-dimensional setting the result of Exercise 24 in Section 2.2 states that the solution
should satisfy the equation

∫ 1

0

sinx dx = −[U ′(1)− U ′(0)].

Verify that this condition is satisfied.
(c) Polynomial approximations satisfying the boundary conditions are

UN (x) = 1 − 3x+
N∑

n=1

cnx
n(1− x).

Use Galerkin’s method to find U1(x), U2(x), and U3(x).
(d) Calculate the mean square residual for each of the approximations.
(e) Approximations of the solution to the problem will not satisfy the condition in part (b).

The quantity
∫ 1

0

sinx dx+ [U ′(1)− U ′(0)],

is a measure of the extent to which the approximation meets this condition. It is another
guide as to the adequacy of the approximation. Calculate the quantity for each of the
approximations in part (c).

7. (a) Derive the solution Y (x) =
x2

4
− x

2
+

1
4 ln 2

ln (x+ 1) for the boundary value problem

(1 + x)Y ′′ + Y ′ = x, Y (0) = 0, Y (1) = 0.

(b) Use Approach 1 and Galerkin’s method to find first and second polynomial approximations
that satisfy the boundary conditions. Tabulate the analytic solution and the two approxi-
mations for x = 0.1, 0.2, . . . , 0.9.

(c) Repeat part (b) but use Table 15.5 for basis functions.

8. (a) Derive the solution V (r) =
1
9
(r3 − 1)− 7

9 ln 2
ln r of the boundary value problem

r
d2V

dr2
+
dV

dr
= r2, V (1) = V (2) = 0.

(b) Translate the independent variable by setting x = r − 1 so that V (x) satisfies

(x+ 1)
d2V

dx2
+
dV

dx
= (x+ 1)2, V (0) = V (1) = 0.

Use Table 15.5 to determine polynomial basis functions for this problem. Find the first
approximation using (i) collocation, (ii) subdomain, and (iii) Galerkin methods.

(c) Tabulate approximations and the exact solution in part (a) for r = 1.1, 1.2, . . . , 1.9.

9. (a) Show that the solution of the boundary value problem
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r2R′′ + rR′ + (r2 − 1)R = 0, R(1) = 1, R(2) = 2

is R(r) = 3.60741J1(r) + 0.751964Y1(r).
(b) Translate the independent variable by setting x = r − 1 so that R(x) satisfies

(x+ 1)2
d2R

dx2
+ (x+ 1)

dR

dx
+ (x2 + 2x)R = 0, R(0) = 1, R(1) = 2.

Use Table 15.4 to show that the change of dependent variable Z(x) = R(x)− x− 1 moves
the nonhomogeneities from the boundary conditions to the differential equation. Verify that
Z(x) must satisfy

(x+ 1)2
d2Z

dx2
+ (x+ 1)

dZ

dx
+ (x2 + 2x)Z = −1 − 3x− 3x2 − x3, Z(0) = 0, Z(1) = 0.

(c) Use Table 15.5 to find polynomial basis functions for this problem. Find the first Galerkin
approximation.

(d) Compare values of the solution in part (a) to that in part (c) at r = 1.1, 1.2, . . . , 1.8, 1.9.

10. The following problem has a nonhomogeneous differential equation and nonhomogeneous bound-
ary conditions

x
d2V

dx2
+
dV

dx
=

2
x2
, 1 < x < 2,

V (1) = 2,
V ′(2) = −1/4.

(a) Show that when an approximation of the form V2(x) = c0 + c1x+ c2x
2 + c3x

3 is required to
satisfy the boundary conditions, then

V2(x) =
1
4
(9− x) + c2(x− 1)(x− 3) + c3(x− 1)(x2 + x− 11).

Notice that φ0(x) = (9−x)/4 satisfies the boundary conditions of the problem, and φ1(x) =
(x−1)(x−3) and φ2(x) = (x−1)(x2+x−11) satisfy homogeneous versions of the boundary
conditions.

(b) Find values for c2 and c3 using (i) collocation, (ii) subdomains, (iii) moments, and
(iv) Galerkin’s method.

(c) Find the analytic solution to the problem, and tabulate it along with the approximations in
part (b) for x = 1.1, 1.2, . . . , 1.9.

11. In this exercise we follow the lead of the mixed method for problem 15.23 to approximate the
solution in Exercise 10.
(a) Take approximations of the solution to be

VN (x) = 2 +
N−1∑

n=0

cnφn(x) = 2 +
N−1∑

n=0

cnx
n(x− 1).

They satisfy the boundary condition V (1) = 2, but not the boundary condition V ′(2) =
−1/4. What is the residual associated with this approximation?

(b) Show that when the residual is multiplied by weight functions wm(x), and integration by
parts is performed on the term involving φ′′n(x), the result is



SECTION 15.3 629

0 =
N−1∑

n=0

cn

[
{xφ′nwm}2

1 −
∫ 2

1

xφ′nw
′
m dx

]
−
∫ 2

1

2
x2
wm dx.

(c) Suppose weight functions are chosen to satisfy the condition that wm(1) = 0. Furthermore,
assume implicitly that the residual at x = 2 satisfies

N−1∑

n=0

cnφ
′
n(2) = 0.

Show that coefficients cn must then satisfy the equations

0 =
N−1∑

n=0

cn

∫ 2

1

xφ′nw
′
m dx+

∫ 2

1

2
x2
wm dx.

(d) Weight functions associated with collocation, subdomains, and moments do not satisfy the
condition wm(1) = 0, but those associated with Galerkin’s method do. Show that when N
is chosen as 3, this method leads to the equations

3c0
2

+
19c1

6
+

79c2
12

= −1 + 2 ln 2,

19c0
6

+
43c1

6
+

937c2
60

= 2 − 2 ln 2,

79c0
12

+
937c1

60
+

351c2
10

= 1.

(e) Solve the equations in part (d) and tabulate V3(x) for x = 1.1, 1.2, . . . , 1.9. How does it
compare to the approximations in Exercise 10?

12. In this exercise we illustrate the mixed method when one of the boundary conditions is Robin.
Consider the problem

(4− x2)
d2Y

dx2
+ 2Y = 0, 0 < x < 1, Y (0) = 0, Y ′(1) + 2Y (1) = 1.

(a) Show that polynomial approximations that satisfy both boundary conditions are

YN (x) =
x

3
+

N∑

n=1

bnx

(
xn − n+ 3

3

)
.

Find the second approximation using Galerkin’s method.
(b) Use Table 15.4 to move the nonhomogeneity to the differential equation and then use Table

15.5 to determine a second approximation. Calculate coefficients with Galerkin’s method.
(c) For polynomial solutions that satisfy Y (0) = 0, but not Y ′(1) + 2Y (1) = 1, take

YN (x) =
N∑

n=1

cnφn(x), where φn(x) = xn.

Express the residual associated with this approximation in terms of φn(x).
(d) Show that the MWR with weight functions wm(x), and integration by parts, leads to

0 =
N∑

n=1

cn

[{
(4 − x2)φ′nwm

}1

0
−
∫ 1

0

{
φ′n[−2xwm + (4 − x2)w′

m] − 2φnwm

}
dx

]
.
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(e) The boundary residual at x = 1 is

R|x=1 =
N∑

n=1

cn[φ′n(1) + 2φn(1)]− 1.

By implicitly demanding that this be equal to zero, and choosing weight functions that
vanish at x = 0, show that the equations in part (d) simplify to

0 = 3wm(1)− 6wm(1)
N∑

n=1

cnφn(1)−
N∑

n=1

cn

∫ 1

0

{
φ′n[−2xwm + (4 − x2)w′

m] − 2φnwm

}
dx.

(f) Find the second approximation, and tabulate it along with the approximations in parts (a)
and (b).

13. (a) Verify that Y (x) = x+ sin x is the exact solution of the nonlinear boundary value problem

sin x
d2Y

dx2
+ Y 2 = x2 + sinx, Y (0) = 0, Y (1) = 1 + sin 1.

(b) Show that polynomial approximations that satisfy the boundary conditions are

YN (x) = (1 + sin 1)x+
N∑

n=1

bnx(1 − xn).

Find the second approximation using Galerkin’s method.
(c) Use Table 15.4 to move the nonhomogeneity in the boundary condition to the differential

equation, and then use basis functions from Table 15.5 to find a second approximation with
Galerkin’s method.

(d) Tabulate the exact solution and the approximations in parts (b),(c) for x = 0.1, 0.2, . . . , 0.9.

14. (a) Verify that V (x) = x2 − x is the solution of the boundary value problem

d2V

dx2
− x

dV

dx
+ 2V = 2 − x, V (0) = V (1) = 0.

(b) Derive polynomial approximations

VN (x) =
N∑

n=1

bnx(1 − xn)

that satisfy the boundary conditions of the problem.
(c) The first approximation V1(x) = b1x(1− x) with b1 = −1 is the exact solution. Show that

the MWR returns the exact solution.
(d) We now prove this result in general. Suppose that V (x) is the exact solution of a boundary

value problem associated with the linear differential equation

L(V ) = F (x), a < x < b.

Suppose further that the basis function φ1(x) of approximations VN (x) =
∑N

n=1 cnφn(x),
where all basis functions satisfy the boundary conditions, is a scalar multiple of the exact
solution V (x). Prove that the MWR returns the exact solution.

15. (a) Verify that V (x) = 2x3 + x2 − 3x is the solution of the boundary value problem
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d2V

dx2
− x

dV

dx
+ 2V = −2x3 + 9x+ 2, V (0) = V (1) = 0.

(b) Derive polynomial approximations

VN (x) =
N∑

n=1

bnx(1 − xn)

that satisfy the boundary conditions of the problem.
(c) The second approximation V2(x) = b1x(1 − x) + b2x(1− x2) with b1 = −1 and b2 = −2 is

the exact solution. Show that Galerkin’s method returns the exact solution. The other
methods also return the exact solution.

16. Steady state temperature T (r) in a spherical nuclear-fission fuel element satisfies the boundary
value problem

− d

dr

(
r2
dT

dr

)
= Dr2

(
1 +

r2

a2

)
, 0 < r < a,

T ′(0) = 0,
T ′(a) + hT (a) = 0,

where D and h are constants, and a is the radius of the sphere.
(a) Derive the exact solution

T (r) =
Da2

60

[(
13 +

32
ah

)
− 10r2

a2
− 3r4

a4

]
.

(b) Use Table 15.5 to show that a first basis function is T1(r) = r2 − a

h
(2 + ah). Use Galerkin’s

method and this basis function to find a first approximation to T (r).
(c) Use Table 15.5 to obtain a third approximation. Show that Galerkin’s method leads to the

exact solution.

17. You may have noticed that Galerkin’s method seems to produce symmetric linear equations
for the unknown coefficients of an approximating polynomial. In this exercise and the next we
show that this is to be expected but only when the differential equation is in self-adjoint form
(see Section 12.3). Consider the boundary value problem

x
d2Y

dx2
+ 2

dY

dx
+ xY = 0, Y (1) = 1, Y (2) = 0,

the exact solution of which is Y (x) =
sin (2− x)
(sin 1)x

.

(a) Use Approach 2 to derive the following polynomial approximations to the solution

YN (x) = 2− x+
N−1∑

n=0

cnx
n(x− 1)(x− 2).

(b) Show that the equations resulting from Galerkin’s method for the approximation Y2(x) =
2 − x+ c1(x− 1)(x− 2) + c2x(x− 1)(x− 2) are not symmetric. Solve the equations for c1
and c2 and tabulate Y2(x) and Y (x) for x = 0.1, 0.2, . . . , 0.9.

(c) The reason that the equations in part (b) were not symmetric is that the differential equation
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is not in self-adjoint form. It can be put in self-adjoint form by multiplying by x (see the
discussion following equation 5.3 in Section 5.1),

x2 d
2Y

dx2
+ 2x

dY

dx
+ x2Y = 0 =⇒ d

dx

(
x2 dY

dx

)
+ x2Y = 0.

Show that the system of equations for c1 and c2 produced by Galerkin’s method is now
symmetric.

(d) Solve the equations in part (c) for c1 and c2. Are solutions the same as in part (b)?

18. Consider the boundary value problem

d2Y

dx2
+
dY

dx
+ Y = 2x, Y (0) = 0, Y (1) = 1.

(a) Show that polynomial approximations that satisfy the boundary conditions are

YN (x) = x+
N∑

n=1

bnx(xn − 1).

(b) Show that the equations resulting from Galerkin’s method for the approximation Y2(x) =
x+ b1(x2 − x) + b2(x3 − x) are not symmetric.

(c) The differential equation can be expressed in self-adjoint form by multiplying by ex,

ex d
2Y

dx2
+ ex dY

dx
+ exY = 2xex =⇒ d

dx

(
ex dY

dx

)
+ exY = 2xex.

Show that equations for b1 and b2 determined by Galerkin’s method for Y2(x) are now
symmetric.

19. Verify the entries in Table 15.4.

20. Verify the basis polynomials in Table 15.5.

21. The boundary value problem

EI
d4Y

dx4
+ kY = w, 0 < x < L,

Y (0) = Y ′′(0) = 0 = Y (L) = Y ′′(L),

describes deflections Y (x) of a static beam of length L on an elastic foundation, simply-
supported at both ends. Constant E is Young’s modulus of elasticity, I is the moment of inertia
of the cross section of the beam, and w is the load per unit length on the beam. According to
Exercise 7 in Section 2.5, the exact solution is

Y (x) =
w

k

[
1 − coshλx cosλ(1 − x) + cosλx coshλ(1 − x)

cosλL+ coshλL

]
,

when w is constant, where λ4 = k/(4EI).
(a) Show that polynomials that satisfy all four boundary conditions are

YN (x) =
N∑

n=1

bn
[
n(n+ 5)Ln+2x− (n+ 3)(n+ 2)Lnx3 + 6xn+3

}
.

(b) Use Galerkin’s method to obtain the first approximation,
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Y1(x) =
126w

3024EI + 31kL4
(L3x− 2Lx3 + x4).

(c) The trigonometric functions sin (nπx/L), where n ≥ 1 is an integer satisfy all four boundary
conditions, so that we could use these as basis functions. Furthermore, the solution should
be symmetric about x = L/2, and the functions sin (2n− 1)πx/L possess this property. In
other words, we could take approximations in the form

YN (x) =
N∑

n=1

cn sin
(2n− 1)πx

L
.

Use Galerkin’s method to find coefficients cn.
(d) To compare the exact solution to the approximation in part (b) and the second approxi-

mation in part (c), let L = 1 and EI = k/4, and find expressions for wY (x)/k, wY1(x)/k,
and wY2(x)/k, respectively. Tabulate these functions for x = 0.1, 0.2, . . . , 0.9.

22. The differential equation

d2X

dt2
+X + εX3 = sinωt,

describes the motion of a nonlinear spring subjected to a periodic forcing function. Suppose we
wish to determine whether there exist periodic solutions with the same period as the forcing
function. They would satisfy the boundary value problem

d2X

dt2
+X + εX3 = sinωt, 0 < t < 2π/ω, X(0) = 0, X(2π/ω) = 0.

A first approximation to such a solution could be taken in the form X1(t) = c sinωt. Use
Galerkin’s method to find an equation that must be satisfied by c.
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§15.4 Method of Weighted Residuals and Sturm-Liouville Systems

The MWR can be used to approximate eigenvalues and eigenfunctions for Sturm-
Liouville systems. Consider the system

X ′′ + λ(1− x2)X = 0, 0 < x < 1, (15.34a)
X(0) = 0, X ′(1) = 0. (15.34b)

(In previous chapters, we represented eigenvalues as λ2, rather than λ. We did
this to avoid excessive square roots in calculations. In this section wherein we use
numerical methods to approximate eigenvalues, there is no necessity for this.) We
illustrate three methods for this problem.

Method 1
In the absence of the 1 − x2 factor, eigenvalues are λn = (2n − 1)2π2/4 with cor-
responding eigenfunctions Xn(x) = sin (2n− 1)πx/2 (see Table 5.1 in Chapter 5).
We use these as basis functions to approximate eigenvalues and eigenfunctions of
Sturm-Liouville system 15.34. Because approximations using these basis functions
satisfy the boundary conditions of the SL-system, the MWR is an interior one. Sup-
pose we denote by λ1,1 and X1,1(x) = sin (πx/2) first approximations to the first
eigenvalue and eigenfunction of the SL-system. Because the differential equation
and boundary conditions are homogeneous, we have not included a multiplicative
factor c1 for X1,1, and we will only be finding λ1,1. To three decimal places, the
smallest eigenvalue is known to be λ1 = 5.122. We shall see how close each of
the MWR methods approximates this value. The (equation) residual obtained by
substituting λ1,1 and X1,1(x) into the differential equation is

R = −π
2

4
sin

πx

2
+ λ1,1(1 − x2) sin

πx

2
.

Collocation with collocation point x = 1/2 requires

0 = −π
2

4
sin

π

4
+ λ1,1

(
1 − 1

4

)
sin

π

4
=⇒ λ1,1 = 3.290.

The subdomain method (and the moment method) require

0 =
∫ 1

0

[
−π

2

4
sin

πx

2
+ λ1,1(1− x2) sin

πx

2

]
dx =⇒ λ1,1 = 4.592.

With weight function w1(x) = sin (πx/2) for Galerkin’s method, we obtain the
condition

0 =
∫ 1

0

[
−π

2

4
sin

πx

2
+ λ1,1(1− x2) sin

πx

2

]
sin

πx

2
dx =⇒ λ1,1 = 5.317.

For the second approximation λ1,2 to the first eigenvalue and corresponding
eigenfunction approximation X1,2(x) = c1 sin (πx/2)+c2 sin (3πx/2), the (equation)
residual is

R = −π
2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1− x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)
.

Collocation with collocation points x = 1/3 and x = 2/3 requires
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0 = −π
2

4
c1 sin

π

6
− 9π2

4
c2 sin

π

2
+ λ1,2

(
1 − 1

9

)(
c1 sin

π

6
+ c2 sin

π

2

)
,

0 = −π
2

4
c1 sin

π

3
− 9π2

4
c2 sinπ + λ1,2

(
1 − 4

9

)(
c1 sin

π

3
+ c2 sinπ

)
.

The second of these implies that λ1,2 = 9π2/20 = 4.441. The first then implies
that c2 = 0.041c1, so that the second approximation to the first eigenfunction is
X1,2(x) = sin (πx/2) + 0.041 sin (3πx/2).

The subdomain method requires

0 =
∫ 1/2

0

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1− x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
dx

= c1

{
π

2
√

2
(1−

√
2) +

[
32(

√
2 − 1)− 8π + (4

√
2 − 3)π2

2
√

2π3

]
λ1,2

}

+ c2

{
−3π(1 +

√
2)

2
√

2
+

[
32(

√
2 + 1)− 24π + (36

√
2 + 27)π2

54
√

2π3

]
λ1,2

}

0 =
∫ 1

1/2

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1 − x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
dx

= c1

{
− π

2
√

2
+

[
32 + 8(1 − 2

√
2)π + 3π2

2
√

2π3

]
λ1,2

}

+ c2

{
3π

2
√

2
+

[
−32 + 24(2

√
2 + 1)π − 27π2

54
√

2π3

]
λ1,2

}
.

Because nontrivial solutions of this linear system of homogeneous equations in c1
and c2 must exist, the determinant of the system must vanish,

0 =

{
π(1 −

√
2)

2
√

2
+

[
32(

√
2 − 1)− 8π + (4

√
2 − 3)π2

2
√

2π3

]
λ1,2

}{
3π

2
√

2
+

[
−32 + 24(2

√
2 + 1)π − 27π2

54
√

2π3

]
λ1,2

}

−

{
−3π(1 +

√
2)

2
√

2
+

[
32(

√
2 + 1)− 24π + (36

√
2 + 27)π2

54
√

2π3

]
λ1,2

}{
− π

2
√

2
+

[
32 + 8(1− 2

√
2)π + 3π2

2
√

2π3

]
λ1,2

}
.

This is a quadratic equation in λ1,2. Function X1,2(x) is a second approximation to
the first eigenfunction, but it can also be considered an approximation to the second
eigenfunction. As a result, the smaller of the solutions of this equation is the second
approximation to the first eigenvalue, and the larger solution is a first approximation
to the second eigenvalue. They are λ1,2 = 5.123 and λ2,1 = 34.76. The second
eigenvalue is known to be λ2 = 39.66, accurate to two decimal places. For λ1,2 =
5.123, the second equation implies that c2 = 0.059c1, and therefore the second
approximation to the first eigenfunction is X1,2(x) = sin (πx/2)+0.059 sin (3πx/2).

The moment method requires
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0 =
∫ 1

0

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1 − x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
dx

=
1

54π3

{
c1
[
−27π4 + (864− 432π + 108π2)λ1,2

]
+ c2

[
−81π4 + (32 + 48π + 36π2)λ1,2

]}
,

0 =
∫ 1

0

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1 − x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
x dx

=
1

27π4

{
c1
[
−27π4 + (2592− 216π2)λ1,2

]
+ c2

[
27π4 + (24π2 − 32)λ1,2

]}
.

When we set the determinant of this system to zero, the resulting quadratic equation
has solutions λ1,2 = 5.183 and λ2,1 = 40.98. For λ1,2 = 5.183, the second equation
implies that c2 = 0.064c1, and therefore the second approximation to the first
eigenfunction is X1,2(x) = sin (πx/2) + 0.064 sin (3πx/2).

Because basis functions for Galerkin’s method are orthogonal, integrations are
less intensive. With weight functions w1 = sin (πx/2) and w2 = sin (3πx/2), the
method requires

0 =
∫ 1

0

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1 − x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
sin

πx

2
dx,

= c1

[
−π

2

8
+

(π2 − 3)λ1,2

3π2

]
+

5c2λ1,2

4π2
,

0 =
∫ 1

0

[
−π

2

4
c1 sin

πx

2
− 9π2

4
c2 sin

3πx
2

+ λ1,2(1 − x2)
(
c1 sin

πx

2
+ c2 sin

3πx
2

)]
sin

3πx
2
dx,

=
5c1λ1,2

4π2
+ c2

[
−9π2

8
+

(3π2 − 1)λ1,2

9π2

]
.

Once again we set the determinant equal to zero, and the resulting quadratic equa-
tion has roots λ1,2 = 5.125 and λ2,1 = 45.54.

The above equations also imply that c2 = 0.069c1, so that the second approxi-
mation to the first eigenfunction is X1,2(x) = sin (πx/2) + 0.069 sin (3πx/2).

Method 2
We now use polynomial basis functions to approximate the eigenvalues of Sturm-
Liouville system 15.34. In particular, suppose we demand that polynomials

XN (x) =
N+1∑

n=0

cnx
n

satisfy boundary conditions 15.34b,c,

0 = X(0) = c0, 0 = X ′(1) =
N+1∑

n=0

ncn.

The second of these requires c1 = −2c2 − 3c3 − · · · − (N + 1)cN+1, and therefore
XN (x) = [−2c2 − 3c3 − · · · − (N + 1)cN+1]x+ c2x

2 + c3x
3 + · · · + cN+1x

N+1

= c2(x2 − 2x) + c3(x3 − 3x) + · · · + cN+1[xN+1 − (N + 1)x]

=
N∑

n=1

bn[xn+1 − (n+ 1)x]. (15.35)
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Thus, basis functions are xn+1 − (n + 1)x. (In Exercise 1, we use basis functions
as suggested by Table 15.5.) Because approximations Xn(x) satisfy the boundary
conditions of the Sturm-Liouville system, the method is once again an interior one.
The first approximation to the first eigenfunction is X1,1(x) = x2 − 2x, and the
residual is

R = 2 + λ1,1(1 − x2)(x2 − 2x). (15.36)

Collocation with collocation point x = 1/2 requires

0 = 2 + λ1,1

(
1 − 1

4

)(
1
4
− 1
)

=⇒ λ1,1 = 3.556.

The subdomain and moment methods require

0 =
∫ 1

0

[2 + λ1,1(1 − x2)(x2 − 2x)] dx = −2 − 11λ1,1

30
=⇒ λ1,1 = 5.455.

The Galerkin method requires

0 =
∫ 1

0

[2 + λ1,1(1 − x2)(x2 − 2x)](x2 − 2x) dx = −4
3

+
9λ1,1

35
=⇒ λ1,1 = 5.185.

The second approximation to the first eigenfunction is X1,2(x) = b1(x2 − 2x) +
b2(x3 − 3x), with residual

R = 2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)].

Collocation with collocation points x = 1/3 and x = 2/3 requires

0 = 2b1 + 6b2

(
1
3

)
+ λ1,2

(
1 − 1

9

)[
b1

(
1
9
− 2

3

)
+ b2

(
1
27

− 1
)]

,

0 = 2b1 + 6b2

(
2
3

)
+ λ1,2

(
1 − 4

9

)[
b1

(
4
9
− 4

3

)
+ b2

(
8
27

− 2
)]

.

These simplify to

0 = b1

(
1 − 20λ1,2

81

)
+ b2

(
1 − 104λ1,2

243

)
,

0 = b1

(
1 − 20λ1,2

81

)
+ b2

(
2 − 115λ1,2

243

)
.

When we set the determinant of the system equal to zero, we obtain

0 =

∣∣∣∣∣∣∣

1 − 20λ1,2

81
1 − 104λ1,2

243
1 − 20λ1,2

81
2 − 115λ1,2

243

∣∣∣∣∣∣∣
=
(

1 − 20λ1,2

81

)(
1 − 115λ1,2

243
+

104λ1,2

243

)
.

The smaller solution λ1,2 = 4.050 is the second approximation to the first eigen-
value, and the larger solution λ2,1 = 22.09 is the first approximation to the second
eigenvalue.

The subdomain method requires
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0 =
∫ 1/2

0

{
2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
dx

= b1

(
1 − 11λ1,2

60

)
+ b2

(
3
4
− 121λ1,2

384

)
,

0 =
∫ 1

1/2

{
2b1 + 6b2x+ λ1,2(1− x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
dx

= b1

(
1 − 11λ1,2

60

)
+ b2

(
9
4
− 45λ1,2

128

)
.

A vanishing determinant leads to an unimproved estimate of the first eigenvalue
λ1,2 = 5.455, and λ2,1 = 41.14.

The moment method demands that

0 =
∫ 1

0

{
2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
dx

= b1

(
2 − 11λ1,2

30

)
+ b2

(
3 − 2λ1,2

3

)
,

0 =
∫ 1

0

{
2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
x dx

= b1

(
1 − 11λ1,2

60

)
+ b2

(
2 − 12λ1,2

35

)
.

These yield λ1,2 = 5.455 and λ2,1 = 52.50.
Galerkin’s method requires

0 =
∫ 1

0

{
2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
(x2 − 2x) dx

= b1

(
−4

3
+

9λ1,2

35

)
+ b2

(
−5

2
+

401λ1,2

840

)
,

0 =
∫ 1

0

{
2b1 + 6b2x+ λ1,2(1 − x2)[b1(x2 − 2x) + b2(x3 − 3x)]

}
(x3 − 3x) dx

= b1

(
−5

2
+

401λ1,2

840

)
+ b2

(
−24

5
+

8λ1,2

9

)
.

These yield λ1,2 = 5.161 and λ2,1 = 42.81.

Method 3

In this method, we once again use polynomial basis functions to approximate eigen-
functions of the SL-system, but demand that approximations satisfy boundary con-
dition 15.34b, but not 15.34c; that is, we demand that φn(0) = 0. The method is
therefore a mixed MWR. Boundary condition 15.34c will be incorporated at a later
stage by introducing a boundary residual. As we did in Section 15.3, we proceed
with unspecified basis functions φn(x) (except that they satisfy φn(0) = 0). The
residual resulting from the approximation of X(x) by XN (x) =

∑N
n=1 cnφn(x) is
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R =
N∑

n=1

cn[φ′′n + λ(1− x2)φn].

With as yet unspecified weight functions wm(x), the MWR requires

0 =
∫ 1

0

{
N∑

n=1

cn[φ′′n + λ(1 − x2)φn]

}
wm dx

=
N∑

n=1

cn

[∫ 1

0

φ′′nwm dx+ λ

∫ 1

0

(1 − x2)φnwm dx

]
.

We use integration by parts on the first integral to write

0 =
N∑

n=1

cn

[
{φ′nwm}1

0 −
∫ 1

0

φ′nw
′
m dx+ λ

∫ 1

0

(1− x2)φnwm dx

]
. (15.37)

We can eliminate the term φ′nwm at x = 0 by choosing only weight functions that
satisfy wm(0) = 0. Because basis functions do not satisfy boundary condition 15.34c,
neither will XN (x). We define a boundary residual at x = 1,

R|x=1 =
N∑

n=1

cnφ
′
n(1). (15.38)

We implicitly demand that when multiplied by weight functions wm(1), the result
be zero

N∑

n=1

cnφ
′
n(1)wm(1) = 0. (15.39)

Substitution of these two requirements into equation 15.43 removes the nonintegral
terms,

0 =
N∑

n=1

cn

[∫ 1

0

[λ(1 − x2)φnwm − φ′nw
′
m] dx

]
. (15.40)

Once basis functions φn(x) and weight functions wm(x) are chosen, it is these equa-
tions that determine approximate eigenvalues and eigenfucntions.

Suppose we choose polynomial basis functions φn(x) = xn which, as required,
satisfy boundary condition 15.34b, but not 15.34c. Weight functions associated
with the collocation and subdomain methods do not satisfy the requirement that
wm(0) = 0. Weight functions wm = xm associated with the moment method
do satisfy this requirement, and these are the same weight functions for Galerkin’s
method. The first approximation to the first eigenvalue is denoted as before by λ1,1,
and the first eigenfunction is X1,1(x) = x. With these, condition 15.40 requires

0 =
∫ 1

0

[λ1,1(1 − x2)x2 − 1] dx =
2λ1,1

15
− 1 =⇒ λ1,1 = 7.5.

The second approximation to the first eigenfunction is X1,2(x) = c1x+ c2x
2. With

corresponding approximation λ1,2, conditions 15.40 demand that
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0 =
2∑

n=1

cn

∫ 1

0

[λ1,2(1− x2)xn+m − nmxn+m−2] dx, m = 1, 2.

Integrations with these values of m give

0 = c1

∫ 1

0

[λ1,2(1− x2)x2 − 1] dx+ c2

∫ 1

0

[λ1,2(1− x2)x3 − 2x] dx

= c1

(
2λ1,2

15
− 1
)

+ c2

(
λ1,2

12
− 1
)
,

0 = c1

∫ 1

0

[λ1,2(1− x2)x3 − 2x] dx+ c2

∫ 1

0

[λ1,2(1− x2)x4 − 4x2] dx

= c1

(
λ1,2

12
− 1
)

+ c2

(
2λ1,2

35
− 4

3

)
.

When we set the determinant of this system equal to zero,

0 =
(

2λ1,2

15
− 1
)(

2λ1,2

35
− 4

3

)
−
(
λ1,2

12
− 1
)2

.

Solutions are λ1,2 = 5.145 and λ2,1 = 96.03. The first of these leads to c2 =
−0.550c1, so that the second approximation to the first eigenfunction is X1,2(x) =
x− 0.550x2. As suggested earlier, because condition 15.39 was used implicitly, not
explicitly, this function does not satisfy boundary condition 15.34c.

Table 15.6 shows first and second approximations to the first eigenvalue of the
Sturm-Liouville system for all three methods.

EXERCISES 15.4

1. With basis functions as suggested in Table 15.5, use Galerkin’s method to the second approxi-
mation to the smallest eigenvalue of system 15.34.

2. Apply Galerkin’s method to find first and second approximations for the smallest eigenvalue of
Sturm-Liouville system 15.34 when boundary conditions are X(0) = X(1) = 0. Use eigenfunc-
tions of the Sturm-Liouville system when the 1 − x2 factor is absent as basis functions.

3. Consider the Sturm-Liouville system

X ′′ + λX = 0, X(0) = 0, X ′(1) + 2X(1) = 0.

(a) According to Table 5.1 in Section 5.2, values of λ satisfy the equation

cot
√
λ = − 2√

λ
.

Use a numerical method to find the smallest value of λ satisfying this equation and hence
the smallest eigenvalue of the Sturm-Liouville system.

(b) Use polynomials and Galerkin’s method to find first and second approximations to the
smallest eigenvalue.
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First Eigenvalue Second Eigenvalue

Exact (to 4 figures) 5.122 39.66
First Approximation Collocation 3.290
With Trigonometric Subdomain 4.592 34.76

Basis Functions Moment 4.592 40.98
Galerkin 5.317 45.54

Second Approximation Collocation 4.441
With Trigonometric Subdomain 5.123

Basis Functions Moment 5.183
Galerkin 5.125

First Approximation Collocation 3.556
With Polynomial Basis Subdomain 5.455

and Both Boundary Moment 5.183
Conditions Satisfied Galerkin 5.125

Second Approximation Collocation 4.050 22.09
With Polynomial Basis Subdomain 5.455 41.14

and Both Boundary Moment 5.161 52.50
Conditions Satisfied Galerkin 5.125 42.81
First Approximation

With Polynomial Basis Galerkin 7.5
and One Boundary
Condition Satisfied

Second Approximation
With Polynomial Basis Galerkin 5.145 96.03

and One Boundary
Condition Satisfied

Table 15.6

4. To four figures, the smallest eigenvalue of the Sturm-Liouville system

d

dr

(
r
dR

dr

)
+ λrR = 0, 0 < r < a,

R(a) = 0,

is λ1 = 5.783/a2 (see Section 8.4). Use basis functions φn(r) = cos
(2n− 1)πr

2a
, n = 1, 2, . . ., to

find a first approximation to this value with:
(a) collocation;
(b) the subdomain (or moment) method;
(c) Galerkin’s method.

5. (a) Repeat Exercise 4 with polynomial basis functions that satisfy the boundary condition.
(b) Find second approximations to the smallest eigenvalue using collocation, subdomain, and

Galerkin methods.

6. The smallest nonnegative eigenvalue of the Sturm-Liouville system



642 SECTION 15.4

d

dr

(
r
dR

dr

)
+ λrR = 0, 0 < r < a,

R′(a) = 0,

is λ0 = 0 (see Section 8.4). To four figures, the smallest positive eigenvalue is λ1 = 14.68/a2.
(a) Show that polynomial approximations that satisfy the boundary conditions are

RN (r) = b0 +
N∑

n=1

bnr[rn − (n+ 1)an].

(b) Use Galerkin’s method with R1(r) = b0 + b1(r2 − 2ar) to find a first approximation to λ1.
(c) Use Galerkin’s method with R2(r) = b0 + b1(r2 − 2ar) + b2(r3 − 3a2r) to find a second

approximation to λ1, and a first approximation to λ2.

7. To four figures, the smallest eigenvalue of the Sturm-Liouville system

d

dr

(
r
dR

dr

)
+ λrR = 0, 0 < r < 1,

R′(1) + 2R(1) = 0,

is λ1 = 2.558 (see Section 8.4).
(a) Show that polynomial approximations that satisfy the boundary conditions are

RN (r) =
N∑

n=1

bn(2rn − n− 2).

(b) Use Galerkin’s method with R1(r) = b1(2r − 3) to find a first approximation to λ1.
(c) Use Galerkin’s method with R2(r) = b1(2r − 3) + b2(2r2 − 4) to find a second approxi-

mation to λ1, and a first approximation to λ2.

8. (a) Suppose the Neumann boundary condition at x = 1 in Sturm-Liouville system 15.34 is
replaced by a Robin condition X ′(1) + 2X(1) = 0. Show that polynomial approximations
that satisfy both boundary conditions are

XN (x) =
N∑

n=1

cnx

(
xn − n+ 3

3

)
.

(b) Find first and second approximations to the smallest eigenvalue of the Sturm-Liouville
system using Galerkin’s method.

9. Eigenvalues of Legendre’s differential equation

(1 − x2)
d2Y

dx2
− 2x

dY

dx
+ λY = 0, −1 < x < 1,

are λn = i(i + 1), where i ≥ 0 is an integer. Suppose that polynomials YN (x) =
N∑

n=0

cnx
n are

used to approximate the solution of the equation. Show that with Galerkin’s method:
(a) Y0(x) yields λ0;
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(b) Y1(x) yields λ0 and λ1;
(c) Y2(x) yields λ0, λ1, and λ2;
(d) Y3(x) yields λ0, λ1, λ2, and λ3.
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§15.5 Method of Weighted Residuals and Dirichlet Boundary Value Problems

We now apply the MWR to boundary value problems associated with partial dif-
ferential equations, and in this section, we deal with Dirichlet problems as they
are the easiest to handle. We begin with a general discussion to outline one pos-
sible procedure, but other approaches may be advantageous, such as reduction of
dimensionality, a method that we also introduce in this section. Consider the two-
dimensional problem

L(V ) = F (x, y), (x, y) in R, (15.41a)
V (x, y) = G(x, y), (x, y) on β(R), (15.41b)

where L is some partial differential operator (which may be linear, such as the
Laplacian, or nonlinear), β(R) is the boundary of some region R in the xy-plane,
and F (x, y) and G(x, y) are given functions. For an interior method, we could take
approximations in the form

VN (x, y) = φ0(x, y) +
N∑

n=1

cnφn(x, y), (15.42)

where φ0(x, y) satisfies the nonhomogeneous boundary condition, and basis func-
tions φn(x, y) for n = 1, . . . , N satisfy the homogeneous version of the boundary
condition; that is φn(x, y) = 0 on β(R). Approximations VN (x, y) then satisfy
boundary condition 15.41b, and the resulting (equation) residual need only account
for VN (x, y) not satisfying the PDE,

R = L(VN ) − F (x, y) = L

[
φ0(x, y) +

N∑

n=1

cnφn(x, y)

]
− F (x, y)

= L(φ0) +
N∑

n=1

cnL(φn) − F (x, y). (15.43)

(This calculation has assumed that L is linear.) When N weight functions wm(x, y)
are chosen, the MWR requires

0 =
∫∫

R

[
L(φ0) +

N∑

n=1

cnL(φn)− F (x, y)

]
wm(x, y) dA, m = 1, . . . , N.

We can express these equations, which determine the cn, in the form
N∑

n=1

cn

∫∫

R

L(φn)wm dA =
∫∫

R

[F − L(φ0)]wm dA, m = 1, . . . , N.

As was the case for boundary value problems associated with ODEs, basis func-
tions must be linearly independent and from a complete set. Possible choices once
again include eigenfunctions of associated Sturm-Liouville problems, and polynomi-
als. The polynomials xnym, n,m = 0, 1, 2, . . . form a complete set for the space of
continuous functions, but in the above approach, it is unlikely that they will satisfy
the boundary condition. However, if ω(x, y) is a positive, continuously differentiable
function in R that vanishes on the boundary of R, then the functions ω(x, y)xnym
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constitute a complete set and they do satisfy the boundary condition. We use this
idea in our first example which has a simple nonhomogeneity in the differential
equation, and homogeneous boundary conditions.

Example 15.2 Find polynomial approximations to the solution of the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= k, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

where k is a constant. Use an interior method and a boundary method.

Solution Interior Method
The function ω(x, y) = (L2 − x2)(L2 − y2) is positive, continuously differentiable,
and vanishes on the edges of the square. Polynomial basis functions can therefore be
taken as xnym(L2−x2)(L2−y2), n,m = 0, 1, . . .. Furthermore, because the solution
of the problem should be an even function of both x and y, and be symmetric in x
and y, we can further restrict the choices for xnym. First and second approximations
that satisfy the boundary conditions and symmetry requirements are V1(x, y) =
c(L2 − x2)(L2 − y2) and V2(x, y) = (L2 − x2)(L2 − y2)[c + d(x2 + y2)]. We work
with the second approximation. The equation residual is

R(x, y) = −2(L2 − y2)[c+ d(x2 + y2)] + 2(−2x)(L2 − y2)(2dx)
+ (L2 − x2)(L2 − y2)(2d)− 2(L2 − x2)[c+ d(x2 + y2)]
+ 2(−2y)(L2 − x2)(2dy) + (L2 − x2)(L2 − y2)(2d)− k

= −2[c+ d(x2 + y2)](2L2 − x2 − y2) − 8d[x2(L2 − y2) + y2(L2 − x2)]
+ 4d(L2 − x2)(L2 − y2) − k.

We use collocation, subdomains, and Galerkin’s method to find values for c and d.
In addition, to four decimal places, the solution of the boundary value problem at
the centre of the square is −0.2947L2k (see Exercise 32 in Section 4.3). We compare
this value to that predicted by each approximation.
Collocation
Due to the symmetry of the problem, we choose two collocation points in the first
quadrant part of the square, namely (0, 0) and (L/2, L/2). These yield the equations

0 = −4cL2 + 4dL4 − k, 0 = −3cL2 − 9
4
dL4 − k.

The solution is c = − 25k
84L2

and d = − k

21L4
, and therefore the second collocation

approximation is

V2(x, y) = − k

84L4
(L2 − x2)(L2 − y2)[25L2 + 4(x2 + y2)].

It predicts a value of V2(0, 0) = −25L2k/84 ≈ −0.2976L2k for the centre of the
region.
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Subdomain

We choose two symmetric subdomains, namely the square A1 : 0 ≤ x, y ≤ L/2 and
A2 as the remainder of the original square in the first quadrant. These require

0 =
∫ L/2

0

∫ L/2

0

R(x, y) dy dx = −kL
2

4
− 11cL4

12
+

31dL6

80
,

0 =
∫ L/2

0

∫ L

L/2

R(x, y) dy dx+
∫ L

L/2

∫ L

0

R(x, y) dy dx = −3kL2

4
− 7cL4

4
− 287dL6

80
.

The solution of these equations is c = − 285k
952L2

and d = − 15k
238L4

, and the second
subdomain approximation is

V2(x, y) = − 15k
952L4

(L2 − x2)(L2 − y2)[17L2 − 4(x2 + y2)].

It predicts a value of V2(0, 0) = −285kL2/952 ≈ −0.2994L2k for the centre of the
region.
Galerkin

Galerkin’s method requires

0 =
∫ L

0

∫ L

0

R(x, y)(L2 − x2)(L2 − y2) dy dx = −4kL6

9
− 64cL8

45
− 256dL10

525
,

0 =
∫ L

0

∫ L

0

R(x, y)(L2 − x2)(L2 − y2)(x2 + y2) dy dx = −8kL8

45
− 256cL10

525
− 2816dL12

4725
.

The solution of these equations is c = − 1295k
4432L2

and d = − 525k
8864L4

. The second
Galerkin approximation is therefore

V2(x) = − 5k
8864L2

(L2 − x2)(L2 − y2)
[
518L2 + 105(x2 + y2)

]
.

It predicts a value of V2(0, 0) = −1295kL2/4432 ≈ −0.2922L2k for the centre of the
region.
Boundary Method

In a boundary method, polynomial approximations must satisfy the PDE. The func-
tion k(x2 + y2)/4 satisfies the PDE. To find polynomials that satisfy the homoge-
neous version of the PDE, namely, Laplace’s equation, we use the fact that real and
imaginary parts of every complex analytic function satisfy Laplace’s equation; in
particular, real and imaginary parts of the function zn = (x+ yi)n give polynomial
solutions of Laplace’s equation. The first few, from n = 1, 2, 3, and 4 are

1, x, y, x2 − y2, xy, x3 − 3xy2, 3x2y − y3, x4 − 6x2y2 + y4, 4x3 − 4xy3, . . . .

As already noted, the solution of the problem must be even in x and y, and symmet-
ric with respect to x and y. The first two such polynomials are 1 and x4−6x2y2+y4.
We therefore take as an approximating polynomial that satisfies the PDE

V2(x, y) = c+
k

4
(x2 + y2) + d(x4 − 6x2y2 + y4).
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The residual of this approximation along each of the four edges of the square is
identical, and we therefore consider it along x = L,

R = c+
k

4
(L2 + y2) + d(L4 − 6L2y2 + y4).

We now use collocation, subdomains, and Galerkin’s method to determine c and d.
Collocation
Collocation with y = L/3 and y = 2L/3 requires

0 = c+
k

4

(
L2 +

L2

9

)
+ d

(
L4 − 2L4

3
+
L4

81

)
,

0 = c+
k

4

(
L2 +

4L2

9

)
+ d

(
L4 − 8L4

3
+

16L4

81

)
.

These imply that c = −37kL2/126 and d = 9k/(196L2), and the second collocation
approximation is

V2(x, y) = −37kL2

126
+
k

4
(x2 + y2) +

9k
196L2

(x4 − 6x2y2 + y4).

It predicts a value of −37kL2/126 ≈ −0.2937L2k at (0, 0).
Subdomain
Subdomains require

0 =
∫ L/2

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy =

Lc

2
+

13L3k

96
+

41L5d

160
,

0 =
∫ L

L/2

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy =

Lc

2
+

19L3k

96
− 169L5d

160
.

These give c = −31kL2/105 and d = k/(21L2), and the second subdomain approx-
imation is

V2(x, y) = −31kL2

105
+
k

4
(x2 + y2) +

k

21L2
(x4 − 6x2y2 + y4).

It predicts V2(0, 0) = −31kL2/105 ≈ −0.2952L2k.
Galerkin
Galerkin’s method requires

0 =
∫ L

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
dy = Lc+

kL3

3
− 4L5d

5
,

0 =
∫ L

0

[
c+

k

4
(L2 + y2) + d(L4 − 6L2y2 + y4)

]
(L4 − 6L2y2 + y4) dy

= −4L5

5
− 8L7k

21
+

944L9d

315
.

The solution is c = −205kL2/696 and d = 45k/(928L2), and the second Galerkin
approximation is

V2(x, y) = −205kL2

696
+
k

4
(x2 + y2) +

45k
928L2

(x4 − 6x2y2 + y4).
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Its prediction at the centre is −205kL2/696 ≈ −0.2945L2k.•

The next example has a more general nonhomogeneity in the differential equa-
tion and two nonhomogeneous boundary conditions. We also use it to introduce the
method of reduction of dimensionality.

Example 15.3 Use polynomials and eigenfunctions to approximate the solution of the boundary
value problem

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), 0 < x < L, 0 < y < L′, (15.44a)

V (0, y) = V (L, y) = 0, 0 < y < L′, (15.44b)
V (x, 0) = g(x), 0 < x < L, (15.44c)
V (x,L′) = h(x), 0 < x < L. (15.44d)

For continuity of boundary conditions at the corners of the rectangle, we assume
that nonhomogeneities g(x) and h(x) satisfy the conditions g(0) = g(L) = h(0) =
h(L) = 0.

Solution Consider using approximations of the form

VN (x, y) = φ0(x, y) +
N∑

n=1

cnφn(x, y), (15.45)

where φ0(x, y) satisfies all boundary conditions, homogeneous and nonhomogeneous,
and basis function φn(x, y) for n = 1, . . . , N satisfy homogeneous versions of the
boundary conditions. A convenient choice for φ0(x, y) is g(x)(1− y/L′)+h(x)y/L′.
(Can you see the difficulty at this point were g(0), g(L), h(0), and/or h(L) nonzero?)
For polynomial approximations, we choose ω(x, y) = xy(L − x)(L′ − y), in which
case basis functions that satisfy homogeneous versions of the boundary conditions
are φnm(x, y) = xnym(L−x)(L′− y), n,m = 1, 2, . . .. Approximate solutions of the
problem are therefore

VN (x, y) = g(x)
(
1 − y

L′

)
+ h(x)

y

L′ +
N∑

n=1

N∑

m=1

cnmx
nym(L− x)(L′ − y). (15.46)

The first approximation is

V1(x, y) = g(x)
(
1 − y

L′

)
+ h(x)

y

L′ + c11xy(L− x)(L′ − y), (15.47)

with equation residual

R = g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′ + 2c11(x2 − Lx+ y2 − L′y) − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

∫ L′

0

[
g′′(x)

(
1 − y

L′

)
+ h′′(x)

y

L′ + 2c11(x2 − Lx+ y2 − L′y)

− F (x, y)
]
xy(L− x)(L′ − y) dy dx,
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and integrations lead to

c11 =
−90

L3L′3(L2 + L′2)

[
L′3

6

∫ L

0

g(x) dx+
L′3

6

∫ L

0

h(x) dx

+
∫ L

0

∫ L′

0

F (x, y)xy(L− x)(L′ − y) dy dx
]
.

We now consider using eigenfunctions of the associated eigenvalue problem

φnm(x, y) = sin
nπx

L
sin

mπy

L′

as basis functions. Approximations are

VNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′ . (15.48)

These approximations satisfy homogeneous boundary conditions 15.44b, but not
nonhomogeneous conditions 15.44c,d. The solution is pursued when all boundary
conditions are homogeneous in Exercise 5. Nonhomogeneous conditions 15.44c,d
can be handled by transforming them into the PDE. Suppose we make a change of
dependent variable by U(x, y) = V (x, y) + φ0(x, y) where φ0(x, y) is any function
that has value g(x) along y = 0 and h(x) along y = L′. The obvious choice is
g(x)(1 − y/L′) + h(x)y/L′. With this change, the boundary value problem for
U(x, y) is

∂2U

∂x2
+
∂2U

∂y2
= F (x, y) − g′′(x)

(
1 − y

L′

)
− h′′(x)

y

L′ , 0 < x < L, 0 < y < L′,

U(0, y) = U(L, y) = 0, 0 < y < L′,

U(x, 0) = U(x,L′) = 0, 0 < x < L.

Approximations

UNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′

satisfy the homogeneous boundary conditions. The equation residual is

R = −π2
N∑

n=1

M∑

m=1

cnm

(
n2

L2
+
m2

L′2

)
sin

nπx

L
sin

mπy

L′ − F (x, y)

+ g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′ .

Galerkin’s method requires

0 =
∫ L

0

∫ L′

0

[
−π2

N∑

n=1

M∑

m=1

cnm

(
n2

L2
+
m2

L′2

)
sin

kπx

L
sin

lπy

L′ − F (x, y)

+ g′′(x)
(
1 − y

L′

)
+ h′′(x)

y

L′

]
sin

kπx

L
sin

lπy

L′ dy dx.
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Due to the orthogonality of the eigenfunctions, this immediately leads to

cnm =
−4LL′

π2(n2L′2 +m2L2)

∫ L

0

∫ L′

0

[
F (x, y) − g′′(x)

(
1 − y

L′

)
− h′′(x)

y

L′

]

∗ sin
nπx

L
sin

mπy

L′ dy dx. (15.49a)

Multiple integrations by parts on the terms involving g(x) and h(x) leads to the
alternative formula

cnm =
−4LL′

π2(n2L′2 +m2L2)

{∫ L

0

∫ L′

0

F (x, y) sin
nπx

L
sin

mπy

L′ dy dx

+
n2πL′

mL2

∫ L

0

[g(x) + (−1)m+1h(x)] sin
nπx

L
dx

}
. (15.49b)

Finally then

VNM (x, y) =
N∑

n=1

M∑

m=1

cnm sin
nπx

L
sin

mπy

L′ − g(x)
(
1 − y

L′

)
− h(x)

y

L′ .•

Reduction of Dimensionality

The MWR can be used to reduce the dimensionality of a problem; for problem
15.44, the PDE is reduced to an ODE. We represent approximations as sums of
separated functions

VN (x, y) =
N∑

n=1

φn(x, y) =
N∑

n=1

cn(y)ψn(x),

where basis functions ψn(x) must be specified, and coefficients cn(y) will be deter-
mined by the MWR. (Approximations were separated in the previous approach, but
they need not have been so.) According to Table 15.5, polynomial basis functions
satisfying boundary conditions 15.44b are ψn(x) = xn(L − x), n = 1, 2, . . .. We
therefore take approximations in the form

VN (x, y) =
N∑

n=1

cn(y)xn(L− x),

the first being

V1(x, y) = c1(y)x(L− x).

The equation residual is

R = −2c1 + x(L− x)c′′1 − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

[−2c1 + x(L− x)c′′1 − F (x, y)]x(L− x) dx.

Integrations lead to
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c′′1 − 10c1
L2

=
30
L5

∫ L

0

F (x, y)x(L− x) dx.

So that the remainder of the procedure can be illustrated without unduly compli-
cated calculations, we assume that F (x, y) = k, a constant. In this case, c1(y) must
satisfy the ODE

c′′1 − 10c1
L2

=
5k
L2
.

A general solution of this equation is

c1(y) = A cosh
√

10y
L

+B sinh
√

10y
L

− k

2
.

The first approximation is therefore

V1(x, y) =

[
A cosh

√
10y
L

+B sinh
√

10y
L

− k

2

]
x(L− x).

We associate boundary residuals with this approximation due to the fact that it
does not satisfy boundary conditions 15.44c,d,

R|y=0 =
(
A− k

2

)
x(L− x) − g(x),

R|y=L′ =

[
A cosh

√
10L′

L
+B sinh

√
10L′

L
− k

2

]
x(L− x) − h(x).

We apply Galerkin’s method to find A and B,

0 =
∫ L

0

[(
A− k

2

)
x(L− x) − g(x)

]
x(L− x) dx,

0 =
∫ L

0

{[
A cosh

√
10L′

L
+B sinh

√
10L′

L
− k

2

]
x(L− x) − h(x)

}
x(L− x) dx.

Integrations lead to

A =
k

2
+

30
L5

∫ L

0

g(x)x(L− x) dx,

B =
30
L5

csch
√

10L′

L

∫ L

0

h(x)x(L− x) dx− coth
√

10L′

L

[
k

2
+

30
L5

∫ L

0

g(x)x(L− x) dx

]
.

We can also reduce the dimensionality of the problem using eigenfunctions
ψn(x) = sin (nπx/L) as basis functions,

VN (x, y) =
N∑

n=1

cn(y) sin
nπx

L
.

The equation residual is
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R =
N∑

n=1

(
−n

2π2

L2

)
cn sin

iπx

L
+

N∑

n=1

c′′n sin
nπx

L
− F (x, y)

=
N∑

n=1

(
c′′n − n2π2

L2
cn

)
sin

nπx

L
− F (x, y).

Galerkin’s method requires

0 =
∫ L

0

[
N∑

n=1

(
c′′n − n2π2

L2
cn

)
sin

nπx

L
− F (x, y)

]
sin

mπx

L
dx,

and due to orthogonality of eigenfunctions, this reduces to

c′′m − m2π2

L2
cm =

2
L

∫ L

0

F (x, y) sin
mπx

L
dx.

When F (x, y) = k, a constant, integration gives

c′′m − m2π2

L2
cm =

2
L

∫ L

0

k sin
mπx

L
dx =

2k[1 + (−1)m+1]
mπ

.

A general solution of this ODE is

cm(y) = Am cosh
mπy

L
+ Bm sinh

mπy

L
− 2kL2[1 + (−1)m+1]

m3π3
,

and the N th approximation is

VN (x, y) =
N∑

n=1

[
An cosh

nπy

L
+ Bn sinh

nπy

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
.

To evaluate An and Bn, we form boundary residuals along y = 0 and y = L′,

R|y=0 =
N∑

n=1

[
An − 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− g(x),

R|y=L′ =
N∑

n=1

[
An cosh

nπL′

L
+ Bn sinh

nπL′

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− h(x).

Application of Galerkin’s method gives

0 =
∫ L

0

{
N∑

n=1

[
An − 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− g(x)

}
sin

mπx

L
dx,

0 =
∫ L

0

{
N∑

n=1

[
An cosh

nπL′

L
+Bn sinh

nπL′

L
− 2kL2[1 + (−1)n+1]

n3π3

]
sin

nπx

L
− h(x)

}
sin

mπx

L
dx.

These give
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Am =
2kL2[1 + (−1)m+1]

m3π3
+

2
L

∫ L

0

g(x) sin
mπx

L
dx,

Bm = csch
mπL′

L

{
cosh

mπL′

L

[
−2kL2[1 + (−1)m+1]

m3π3
− 2
L

∫ L

0

g(x) sin
mπx

L
dx

]

+
2kL2[1 + (−1)m+1]

m3π3
+

2
L

∫ L

0

h(x) sin
mπx

L
dx.

This is the N th partial sum of the analytic solution obtained by separation of vari-
ables.

The next example cannot be solved with separation of variables; one edge of
the region under consideration is not a coordinate curve.

Example 15.4 Use Galerkin’s method to find a first approximation to the solution to the following
problem involving Poisson’s equation on the triangle R in Figure 15.2,

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (x, y) in R, (15.50a)

V (0, y) = 0, 0 < y < L, (15.50b)
V (x, 0) = 0, 0 < x < L, (15.50c)
V (x, y) = 0, (x, y) on x+ y = L. (15.50d)

Simplify the approximation when F (x, y) = k, a constant.

Solution Since boundary conditions are
homogeneous, we take approximations in
the form

VN (x, y) =
N∑

n=1

N∑

m=1

cnmφnm(x, y),

where basis functions φnm(x, y) must be
linearly independent and from a complete

y

x

x y L+ =

L

L

set of functions, and satisfy the boundary Figure 15.2
conditions. With ω(x, y) = xy(L− x− y),
one possible choice is φnm(x, y) = xnym(L− x− y), in which case

VN (x, y) =
N∑

n=1

N∑

m=1

cnmx
nym(L− x− y).

The first approximation is

V1(x, y) = c11xy(L− x− y),

with (equation) residual

R = −2c11(x+ y) − F (x, y).

Galerkin’s method requires

0 =
∫ L

0

∫ L−x

0

[−2c11(x+ y) − F (x, y)]xy(L− x− y) dy dx.
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Integrations lead to

c11 = − 90
L6

∫ L

0

∫ L−x

0

F (x, y)xy(L− x− y) dy dx.

In the special case that F (x, y) = k, a constant, we obtain c11 = −3k/(4L), and the
first approximation is

V1(x, y) = − 3k
4L

xy(L− x− y).•

In the event that any of the boundary conditions in this example are nonho-
mogeneous, calculations become more intensive. See Exercise 8 for the case when
the nonhomogeneity is along the hypotenuse of the triangle.

EXERCISES 15.5

1. In this exercise we discuss a number of possible ways to approximate the solution to the boundary
value problem

∂2U

∂x2
+
∂2U

∂y2
= 0, 0 < x < L, 0 < y < L′,

U(0, y) = U(L, y) = 0, 0 < y < L′,

U(x, 0) = x(L− x), 0 < x < L,

U(x,L′) = 0, 0 < x < L.

(a) Since the function φ0(x, y) = x(L− x)(1− y/L′) satisfies all four boundary conditions, and
the functions φn(x, y) = xnym(L− x)(L′ − y), n,m = 1, 2, . . . satisfy homogeneous versions
of the boundary conditions, we could take as a first approximation

U1(x, y) = x(L− x)
(
1 − y

L′

)
+ cxy(L− x)(L′ − y).

Use Galerkin’s method to determine c.
(b) Since the function x(L− x) satisfies the first three boundary conditions, we could use

reduction of dimensionality with U1(x, y) = c(y)x(L− x). Use Galerkin’s method to deter-
mine c(y).

(c) The functions sin (nπx/L) satisfy the first two boundary conditions so that we could take
approximations in the form

UN (x, y) =
N∑

n=1

cn(y) sin
nπx

L
.

Use Galerkin’s method to determine the cn(y). Are approximations partial sums of the
analytic solution obtained by separation of variables?

2. The approximation in part (a) of Exercise 1 was available because of the form of the boundary
condition along y = 0. In addition, this made the calculations in part (b) simpler than they
might otherwise be. In this exercise, we replace this boundary condition with U(x, 0) = f(x),
0 < x < L.
(a) Since the function x(L− x) satisfies the first two boundary conditions, we could take a

first approximation of the form U1(x, y) = c(y)x(L− x). Use reduction of dimensionality
and Galerkin’s method to find c(y). Compare the procedure to that in part (b) of Exercise
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1.
(b) Show that approximations of the form in part (c) of Exercise 1 are once again partial

sums of the analytic solution obtained by separation of variables.

3. Repeat parts (a) and (b) of Exercise 2 if the boundary condition along y = L′ is also nonhomo-
geneous, U(x,L′) = g(x), 0 < x < L.

4. (a) Could the square in Example 15.2 be divided into two triangles, one above the line y = x
and the other below the line, for the subdomain method? Explain.

(b) Divide the square into two triangles one above the line x+ y = L and one below for the
subdomain method. What does the resulting approximation predict for V2(0, 0)?

5. (a) Pursue approximation 15.48 of problem 15.44 in the case that all boundary conditions are
homogeneous (g(x) = h(x) = 0).

(b) Confirm that it is the N th partial sum of the analytic solution as obtained by finite
Fourier transforms with respect to x and y (see Exercise 54 in Section 7.2).

6. The boundary value problem occurs

∂2V

∂x2
+ ε2

∂2V

∂y2
= −1, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

where ε is a constant, occurs in fluid flow. With ω(x, y) = (L2 − x2)(L2 − y2), which vanishes
on the boundary of the square, a first polynomial approximation for V (x, y) is V1(x, y) =
c(L2 − x2)(L2 − y2). Use collocation and Galerkin’s method to find c.

7. Use reduction of order to find a first polynomial approximation to problem 15.44 when F (x, y) =
xy.

8. Find the first approximation to the solution of problem 15.50 when the boundary condition along
the hypotenuse of the triangle is V (x, y) = h(x, y) = h(x,L−x) = g(x), where g(0) = g(L) = 0.

9. The boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= −2, −L < x < L, −L < y < L,

V (−L, y) = V (L, y) = 0, −L < y < L,

V (x,−L) = V (x,L) = 0, −L < x < L,

arises in the study of torsion for a square prismatic rod.
(a) With ω(x, y) = (L2 − x2)(L2 − y2), which vanishes on the boundary of the square, a first

polynomial approximation for V (x, y) is V1(x, y) = c(L2 − x2)(L2 − y2). Use Galerkin’s
method to find c.

(b) The solution V (x, y) must be an even function of x and y, and be symmetric in x and
y. Taking this into account, a second polynomial approximation would be V2(x, y) =
(L2 − x2)(L2 − y2)[c+ d(x2 + y2)]. Use Galerkin’s method to find c and d.

(c) Use reduction of dimensionality with V1(x) = f(x)(L2 − y2), where f(−L) = f(L) = 0 to
approximate the solution.
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(d) Use trigonometric basis functions cos
(2n− 1)πx

2L
cos

(2m− 1)πy
2L

, n,m = 1, 2, . . ., to find

approximations to V (x, y).
(e) An important integral in this application is

M =
∫ L

−L

∫ L

−L

V (x, y) dy dx.

To four decimal places, its value is 1.1248L4. We can use it to gauge the accuracy of
the various approximations. Calculate M for the approximations in parts (a), (b) and (c).

10. We use reduction of dimensionality to approximate solutions of the boundary value problem

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, y > 0,

V (0, y) = 0, y > 0,
V (L, y) = 0, y > 0,
V (x, 0) = x(L− x), 0 < x < L.

Because solutions of this problem must be symmetric about x = L/2, choose basis functions
ψn(x) = xn(L− x)n in

VN (x, y) =
N∑

n=1

cn(y)ψn(x).

Such approximations satisfy the homogeneous boundary conditions for arbitrary cn(y), and
satisfy the nonhomogeneous condition provided c1(0) = 1 and cn(0) = 0, n = 2, . . . , N . Find
the first approximation V1(x, y) = c1(y)x(L− x) using:
(a) collocation;
(b) the subdomain (or moment) method;
(c) Galerkin’s method.

11. Use Galerkin’s method to find the second approximation in Exercise 10.

12. Since the PDE in Exercise 10 is homogeneous, we might consider a boundary method by choosing

basis functions that satisfy the PDE, in particular, φn(x, y) = e−(2n−1)πy sin
(2n− 1)πx

L
. They

are also symmetric about x = L/2. Approximations are then

VN (x, y) =
N∑

n=1

cne
−(2n−1)πy sin

(2n− 1)πx
L

.

(a) Show that Galerkin’s method gives the partial sums of the analytic solution.
(b) Find the first approximation using collocation.
(c) Find the first approximation using the subdomain (or moment) method.

13. Because the nonhomogeneity in Exercise 10 corresponded to the first term in the approximations,
it was possible to incorporate the nonhomogeneity into boundary conditions for coefficients
cn(y). This may not always be the case. For instance, consider the same problem where
x(L− x) is replaced by an arbitrary function g(x) except that it satisfy g(0) = g(L) = 0. With
no symmetry about x = L/2, basis functions are chosen as ψn(x) = xn(L − x), n = 1, 2, . . .;
they satisfy the homogeneous boundary conditions (see Table 15.5). Use Galerkin’s method to
find:
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(a) the first approximation,
(b) the second approximation.

14. Show that when Galerkin’s method is used in Exercise 13, with basis functions chosen as eigen-
functions ψn(x) = sin (nπx/L) of the associated Sturm-Liouville system, approximations are
the partial sums of the analytic solution obtained by separation of variables.

15. Because the PDE in Exercise 13 is homogeneous, we might consider a boundary method by
choosing basis functions that satisfy the PDE, in particular, φn(x, y) = e−nπy sin (nπx/L).
Approximations are then

VN (x, y) =
N∑

n=1

cne
−nπy sin

nπx

L
.

(a) Show that Galerkin’s method gives the partial sums of the analytic solution.
(b) Find the first and second approximations using collocation.
(c) Find the first and second approximations using the subdomain method.
(d) Find the first and second approximations using the moment method.

16. In some developments of the MWR, it is suggested that nonhomogeneous boundary conditions
need never be considered; the nonhomogeneity can always be transformed into the PDE. In this
exercise we show that whether this is done or not, the same residual to which the MWR would
be applied is the same. The residual for problem 15.41 when approximations are taken in form
15.42 where φ0(x, y) satisfies the nonhomogeneous boundary condition, and the φn(x, y), n =
1, · · · , N , satisfy the homogeneous version of the boundary condition, is given in equation 15.43.
The nonhomogeneity can be removed from the boundary condition with the transformation
V (x, y) = U(x, y) − φ0(x, y), where again φ0(x, y) is a function satisfying the nonhomogeneous
boundary condition. With this transformation, problem 15.41 is replaced by

L(U) = F (x, y) − L(φi), (x, y) in R,
U(x, y) = 0, (x, y) on β(R).

Show that the residual for approximation UN (x, y) =
∑N

n=1 cnφn(x, y) is also that given in
equation 15.43.



658 SECTION 15.6

§15.6 Method of Weighted Residuals and Neumann Boundary Value Problems

In this section, we apply the MWR to boundary value problems with Neumann
boundary conditions. When the boundary conditions are homogeneous, we may be
able to follow the procedure of Section 15.5, namely produce basis functions that
satisfy the boundary conditions and use an internal method. The following example
illustrates this.

Example 15.5 Find a first approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= −F (x, y), 0 < x < L, 0 < y < L′, (15.51a)

Ux(0, y) = U(L, y) = 0, 0 < y < L′, (15.51b)
Uy(x, 0) = U(x,L′) = 0, 0 < x < L. (15.51c)

Solution The function U1(x, y) = c(L2−x2)(L′2−y2) satisfies all four boundary
conditions and therefore serves as a first approximation. Its equation residual is

R = −2c(L′2 − y2) − 2c(L2 − x2) + F (x, y) = 2c(x2 + y2 − L2 − L′2) + F (x, y).

Galerkin’s method requires

0 =
∫ L

0

∫ L′

0

[2c(x2 + y2 − L2 − L′2) + F (x, y)](L2 − x2)(L′2 − y2) dy dx.

Integrations lead to

c =
45

32L3L′3(L2 + L′2)

∫ L

0

∫ L′

0

F (x, y)(L2 − x2)(L′2 − y2) dy dx.

In the special case that F (x, y) = k, a constant,

c =
45

32L3L′3(L2 + L′2)

∫ L

0

∫ L′

0

k(L2 − x2)(L′2 − y2) dy dx =
5k

8(L2 + L′2)
.

The first Galerkin approximation is therefore

U1(x, y) =
5k

8(L2 + L′2)
(L2 − x2)(L′2 − y2).

According to Exercise 52 in Section 7.2, an analytic solution of the problem is

U(x, y) =
k

2
(L2 − x2) +

16kL2

π3

∞∑

n=1

(−1)n cosh
(2n− 1)πy

2L

(2n− 1)3 cosh
(2n− 1)πL′

2L

cos
(2n− 1)πx

2L
.

We compare values of these functions at the centre of a square plate,

U1(L/2, L/2) =
5k

16L2

(
L2 − L2

4

)2

=
45kL2

256
≈ 0.176kL2,

and
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U(L/2, L/2) =
k

2

(
L2 − L2

4

)
+

16kL2

π3

∞∑

n=1

(−1)n cosh
(2n− 1)π

4

(2n− 1)3 cosh
(2n− 1)π

2

cos
(2n− 1)π

4

≈ 0.181kL2.

If Galerkin’s method is used with the eigenfunctions Xn(x) = cos
(2n− 1)πx

2L
to

reduce the problem to one variable, the partial sums of the analytic solution are
obtained as approximations (see Exercise 1).•

When Neumann boundary conditions are nonhomogeneous, we must adopt a
completely different approach, an approach similar to that in Example 15.23 wherein
we used integration by parts due to a Neumann boundary condition. Taking the
place of integration by parts will be Green’s first identity (see Appendix C). We
begin with a general discussion on how to apply the method to such problems,
followed by specific examples. Consider Poisson’s equation in a region R of the
xy-plane with boundary β(R) (Figure 15.3),

∇2V = F (x, y), (x, y) in R, (15.52a)
∂V (x, y)
∂n

= G(x, y), (x, y) on β(R). (15.52b)

The derivative in condition 15.52b
is assumed to be in the outwardly
normal direction to the boundary.
If basis functions φn(x, y), which for
the moment are arbitrary, except
that they must be linearly indepen-
dent and from a complete set, are
used to approximate V (x, y), then

y

x

x,y

n

RR

1

2

( )
( )

b

n̂

the N th approximation is Figure 15.3

VN (x, y) =
N∑

n=1

cnφn(x, y). (15.53)

The equation residual is

R = ∇2VN − F (x, y) =
N∑

n=1

cn∇2φn − F (x, y).

If N weight functions wm(x, y), m = 1, . . . , N , are chosen, we might take the fol-
lowing N equations as defining coefficients cn,

0 =
∫∫

R

Rwm dA =
∫∫

R

(∇2VN − F )wm dA

=
∫∫

R

∇2VN wm dA−
∫∫

R

F wm dA. (15.54)
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But this does not take into account the boundary condition, and we certainly want
VN (x, y) to approximate condition 15.52b as well as the PDE. To see how to do
this, we use Green’s first identity on the first of the integrals in equation 15.54,

0 =
∫
©

β(R)

(wm∇VN ) · n̂ ds−
∫∫

R

(∇VN · ∇wm) dA−
∫∫

R

F wm dA

=
∫
©

β(R)

(
wm

∂VN

∂n

)
ds−

∫∫

R

(∇VN · ∇wm + F wm) dA. (15.55)

We now have a line integral over the boundary and a double integral over R. To
incorporate boundary condition 15.52b into equation 15.55, we form a boundary
residual

R|β(R) =
∂VN

∂n
−G, (x, y) on β(R).

We implicitly demand that integrals of weighted residuals vanish; that is, we demand
that

∫
©

β(R)

[
∂VN

∂n
−G

]
wm ds = 0. (15.56)

We substitute from this into equation 15.55, along with VN =
∑N

n=1 cnφn,

0 =
∫
©

β(R)

Gwm ds−
∫∫

R

[
∇

(
N∑

n=1

cnφn

)
· ∇wm + F wm

]
dA,

or,

N∑

n=1

cn

∫∫

R

(∇φn · ∇wm) dA =
∫
©

β(R)

Gwm ds−
∫∫

R

F wm dA. (15.57)

These equations are used to determine coefficients cn. Because conditions 15.56 have
been incorporated implicitly, but not demanded explicitly, approximation VN (x, y)
will not satisfy the boundary condition; the boundary condition will only be ap-
proximated. The following example illustrates this approach.

Example 15.6 Find a first approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= −F (x, y), 0 < x < L, 0 < y < L′, (15.58a)

U(0, y) = 0, 0 < y < L′, (15.58b)
Ux(L, y) = f(y), 0 < y < L′, (15.58c)

Uy(x, 0) = U(x,L′) = 0, 0 < x < L. (15.58d)

Solution Since x(L′2 − y2) satisfies the homogeneous boundary conditions, we
take U1(x, y) = cx(L′2 − y2). Equation 15.57 gives

c

∫ L

0

∫ L′

0

[(L′2 − y2)̂i− 2xyĵ] · [(L′2 − y2)̂i− 2xyĵ] dy dx

=
∫ L′

0

f(y)L(L′2 − y2) dy −
∫ L

0

∫ L′

0

x(L′2 − y2)F (x, y) dy dx.
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Integration on the left leads to

c =
45

4LL′3(5L2 + 6L′2)

[
L

∫ L′

0

f(y)(L′2 − y2) dy −
∫ L

0

∫ L′

0

x(L′2 − y2)F (x, y) dy dx

]
.

For further discussion of this example see Exercise 3.•

EXERCISES 15.6

1. Show that if Galerkin’s method is used with the eigenfunctions Xn(x) = cos
(2n− 1)πx

2L
to

reduce problem 15.51 to one of one variable, approximations are partial sums of the analytic
solution.

2. (a) Find the solution to problem 15.58 when L = L′ = 1, F (x, y) = y, and f(y) = y4(L− y).
(b) Show that it does not satisfy boundary condition 15.58c.

3. An analytic solution of problem 15.58 when L = L′ = 1, F (x, y) = k1, a constant, and f(y) = k2,
also a constant, is

U(x, y) = (k1 + k2)x− k1x
2

2
− 8
π3

∞∑

n=1

{
[k2(−1)n+1π(2n− 1) + 2k1]sech[(2n− 1)π/2

(2n− 1)3

}
∗

cosh
(2n− 1)πy

2
sin

(2n− 1)πx
2

.

(See Exercise 31 in Section 4.3.)
(a) Use the series to find the solution at the centre (1/2, 1/2) of the square.
(b) What does the first approximation U1(x, y) predict for the value of U(x, y) at the centre of

the square?
(c) Find a second approximation in the form U2(x, y) = cx(1− y2) + dx2(1− y2).
(d) What is U2(1/2, 1/2)?
(e) According to Exercise 24 in Section 2.2 the solution should satisfy the equation

∫∫

R

F (x, y) dA =
∫
©

β(R)

∂U

∂n
ds,

where R is the square 0 < x, y < 1, β(R) is its boundary, and the derivative on the right
is in the outward normal direction. An approximation to the solution will not satisfy this
condition, and as a result, the quantity

Q =
∫∫

R

F (x, y) dA−
∫
©

β(R)

∂U

∂n
ds

will not be equal to zero. The size of Q is a measure of the extent to which the approximation
meets this condition. It is another guide as to the adequacy of the approximation. Calculate
Q for U1(x, y) and U2(x, y). Is Q2 less than Q1?

4. Find a first approximation for the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= −F (x, y), 0 < x < L, 0 < y < L′,

U(0, y) = 0, 0 < y < L′,
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Ux(L, y) = f(y), 0 < y < L′,

Uy(x, 0) = g(x), 0 < x < L,

U(x,L′) = 0, 0 < x < L.

5. Find an approximation of the form U4(x, y) = (L2 − x2)(L2 − y2)[c + d(x2 + y2) + fxy] to
problem 15.51 in the case that F (x, y) is a constant function, and L = L′.

6. Consider the Neumann problem

∇2U = xy, −L < x < L, −L′ < y < L′,

Ux(−L, y) = Ux(L, y) = 0, −L′ < y < L′,

Uy(x,−L′) = Uy(x,L′) = 0, −L < x < L.

The solution of the problem must be an odd function of both x and y. This would imply that
if a third degree polynomial in x and y were used to approximate the solution, it would contain
only the terms ax+ by + cxy + dx3 + fy3.
(a) Show that if this polynomial is subjected to the boundary conditions, it reduces to

U3(x, y) = d(x3 − 3L2x) + f(y3 − 3L′2y).

(b) Use Galerkin’s method to find d and f .

7. Show that if the nonhomogeneity xy in Exercise 6 is replaced by x+ y, then Galerkin’s method
with a third degree polynomial gives the exact solution U(x, y) = [(x3−3L2x)+(y3−3L′2y)]/6
of the problem.

8. (a) If the nonhomogeneity xy in Exercise 6 is replaced by xy2, then a fifth degree polynomial
that is odd in x and even in y is bx+ cy2 + dx3 + exy2 + fy4 + gx5 + hx3y2 + kxy4. Show
that for such a polynomial to satisfy the boundary conditions, it must be of the form

U5(x, y) = d(x3 − 3L2x) + g(x5 − 5L4x) + f(y4 − 2L′2y2).

(b) Use Galerkin’s method to find d, g, and f .
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§15.7 Method of Weighted Residuals and Robin Boundary Value Problems

In this section, we apply the MWR to boundary value problems with Robin bound-
ary conditions; the procedure is identical to that of Section 15.6. Consider Poisson’s
equation in a region R of the xy-plane with boundary β(R) (Figure 15.3),

∇2V = F (x, y), (x, y) in R, (15.59a)
∂V (x, y)
∂n

+ hV (x, y) = G(x, y), (x, y) on β(R). (15.59b)

The derivative in condition 15.59b is assumed to be in the outwardly normal di-
rection to the boundary. If basis functions φn(x, y), which for the moment are
arbitrary, except that they must be linearly independent and from a complete set,
are used to approximate V (x, y), then

VN (x, y) =
N∑

n=1

cnφn(x, y). (15.60)

The equation residual is

R = ∇2VN − F (x, y) =
N∑

n=1

cn∇2φn − F (x, y).

If N weight functions wm(x, y), m = 1, . . . , N , are chosen, we might take the fol-
lowing N equations as defining coefficients cn,

0 =
∫∫

R

Rwm dA =
∫∫

R

(∇2VN − F )wm dA

=
∫∫

R

∇2VNwm dA−
∫∫

R

F wm dA. (15.61)

But this does not take into account the boundary condition, and we certainly want
VN (x, y) to approximate condition 15.59b as well as the PDE. To see how to do
this, we use Green’s first identity on the first of the integrals in equation 15.61 (see
Appendix C),

0 =
∫
©

β(R)

(wm∇VN ) · n̂ ds−
∫∫

R

(∇VN · ∇wm) dA−
∫∫

R

F wm dA

=
∫
©

β(R)

(
wm

∂VN

∂n

)
ds−

∫∫

R

(∇VN · ∇wm + F wm) dA. (15.62)

We now have a line integral over the boundary and a double integral over R. To
incorporate boundary condition 15.59b into equation 15.62, we implicitly demand
that integrals of weighted residuals vanish on this boundary; that is, we demand
that

∫
©

β(R)

[
∂VN

∂n
+ hVN −G

]
wm ds = 0. (15.63)

We substitute from this into equation 15.62, along with VN =
∑N

n=1 cnφn,
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0 =
∫
©

β(R)

(G− hVN )wm ds−
∫∫

R

[∇VN · ∇wm + F wm] dA,

or,

N∑

n=1

cn

[∫∫

R

(∇φn · ∇wm) dA+ h

∫
©

β(R)

φn wm ds

]

=
∫
©

β(R)

Gwm ds−
∫∫

R

F wm dA. (15.64)

These equations are used to determine coefficients ci. Because condition 15.63 has
been incorporated implicitly, but not demanded explicitly, approximation VN (x, y)
will not satisfy the boundary condition; the boundary condition will only be ap-
proximated. The following example illustrates this approach.

Example 15.7 Find a first approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= F (x, y), 0 < x < L, 0 < y < L′, (15.65a)

U(0, y) = 0, 0 < y < L′, (15.65b)
Ux(L, y) + 2U(L, y) = f(y), 0 < y < L′, (15.65c)
U(x, 0) = U(x,L′) = 0, 0 < x < L. (15.65d)

Solution Since xy(L′ − y) satisfies the homogeneous boundary conditions, we
take U1(x, y) = cxy(L′ − y). Equation 15.64 gives

c

∫ L

0

∫ L′

0

[y(L′ − y)̂i + x(L′ − 2y)̂j] · [y(L′ − y)̂i + x(L′ − 2y)̂j] dy dx

+ 2c
∫ L′

0

L2y2(L′ − y)2 dy

=
∫ L′

0

Ly(L′ − y)f(y) dy−
∫ L

0

∫ L′

0

xy(L′ − y)F (x, y) dy dx.

Integrations on the left lead to

c =
90

LL′3(10L2 + 3L′2 + 6LL′2)

[
L

∫ L′

0

y(L′ − y)f(y) dy−
∫ L

0

∫ L′

0

xy(L′ − y)F (x, y) dy dx

]
.•

In the next example, we specialize the nonhomogeneities in the previous exam-
ple, but find a third approximation.

Example 15.8 Find a third approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= k1, 0 < x < 1, 0 < y < 1, (15.66a)

U(0, y) = 0, 0 < y < 1, (15.66b)
Ux(1, y) + 2U(1, y) = k2, 0 < y < 1, (15.66c)
U(x, 0) = U(x, 1) = 0, 0 < x < 1, (15.66d)

where k1 and k2 are constants.
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Solution Since xy(1−y) satisfies the homogeneous boundary conditions, we take
U3(x, y) = cxy(1 − y) + dx2y(1− y) + fxy2(1− y). Equations 15.64 give

c

{∫ 1

0

∫ 1

0

[y(1 − y)̂i + x(1 − 2y)̂j] · [y(1 − y)̂i + x(1 − 2y)̂j] dy dx+ 2
∫ 1

0

y2(1− y)2 dx
}

+ d

{∫ 1

0

∫ 1

0

[2xy(1 − y)̂i + x2(1− 2y)̂j] · [y(1 − y)̂i + x(1− 2y)̂j] dy dx+ 2
∫ 1

0

y2(1 − y)2 dy
}

+ f

{∫ 1

0

∫ 1

0

[y2(1 − y)̂i + x(2y − 3y2)̂j] · [y(1 − y)̂i + x(1− 2y)̂j] dy dx+ 2
∫ 1

0

y3(1 − y)2 dy
}

=
∫ 1

0

k2y(1− y) dy −
∫ 1

0

∫ 1

0

k1xy(1 − y) dy dx,

c

{∫ 1

0

∫ 1

0

[y(1 − y)̂i + x(1 − 2y)̂j] · [2xy(1 − y)̂i + x2(1 − 2y)̂j] dy dx+ 2
∫ 1

0

y2(1 − y)2 dy
}

+ d

{∫ 1

0

∫ 1

0

[2xy(1 − y)̂i + x2(1− 2y)̂j] · [2xy(1 − y)̂i + x2(1− 2y)̂j] dy dx+ 2
∫ 1

0

y2(1− y)2 dy
}

+ f

{∫ 1

0

∫ 1

0

[y2(1 − y)̂i + x(2y − 3y2)̂j] · [2xy(1 − y)̂i + x2(1− 2y)̂j] dy dx+ 2
∫ 1

0

y3(1 − y)2 dy
}

=
∫ 1

0

k2y(1− y) dy −
∫ 1

0

∫ 1

0

k1x
2y(1 − y) dy dx,

c

{∫ 1

0

∫ 1

0

[y(1 − y)̂i + x(1 − 2y)̂j] · [y2(1− y)̂i + x(2y − 3y2)̂j] dy dx+ 2
∫ 1

0

y3(1 − y)2 dy
}

+ d

{∫ 1

0

∫ 1

0

[2xy(1 − y)̂i + x2(1− 2y)̂j] · [y2(1 − y)̂i + x(2y − 3y2)̂j] dy dx+ 2
∫ 1

0

y3(1 − y)2 dy
}

+ f

{∫ 1

0

∫ 1

0

[y2(1 − y)̂i + x(2y − 3y2)̂j] · [y2(1− y)̂i + x(2y − 3y2)̂j] dy dx+ 2
∫ 1

0

y4(1 − y)2 dy
}

=
∫ 1

0

k2y
2(1− y) dy −

∫ 1

0

∫ 1

0

k1xy
2(1− y) dy dx.

Integrations lead to the equations

19c
90

+
11d
60

+
19f
180

=
k2

6
− k1

12
,

11c
60

+
8d
45

+
11f
120

=
k2

6
− k1

18
,

19c
180

+
11d
120

+
23f
315

=
k2

12
− k1

24
,

the solution of which is c = −30(5k1 + k2)/127, d = 5(23k1 +30k2)/127, and f = 0.
The third approximation is therefore

U3(x, y) = − 30
127

(5k1 + k2)xy(1 − x) +
5

127
(23k1 + 30k2)x2y(1− x).•
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EXERCISES 15.7

1. Find a first approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= F (x, y), 0 < x < L, 0 < y < L′,

−Ux(0, y) + 3U(0, y) = f(y), 0 < y < L′,

U(L, y) = 0, 0 < y < L′,

U(x, 0) = U(x,L′) = 0, 0 < x < L.

2. Find a first approximation to the solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= xy, 0 < x < L, 0 < y < L,

U(0, y) = 0, 0 < y < L,

Ux(L, y) + U(L, y) = y, 0 < y < L,

U(x, 0) = 0, 0 < x < L,

Uy(x,L) + 2U(x,L) = L− x, 0 < x < L.

3. An analytic solution to the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= 0, 0 < x < 1, 0 < y < 1,

U(0, y) = 0, 0 < y < 1,
U(L, y) = 0, 0 < y < 1,
U(x, 0) = 0, 0 < x < 1,

Uy(x, 1) + 2U(x, 1) = k, 0 < x < 1,

where k is a constant, is

U(x, y) =
4k
π

∞∑

n=1

(−1)n+1

(2n− 1)[(2n− 1)π cosh (2n− 1)π + 2 sinh (2n− 1)π]
sinh (2n− 1)πy sin (2n− 1)πx.

(a) What does it predict for U(1/2, 1/2)?
(b) Since xy(1− x) satisfies the homogeneous boundary conditions, find a first approximation

U1(x, y) = cxy(1 − x). What is U1(1/2, 1/2)?
(c) Find a third approximation U3(x, y) = cxy(1− x) + dx2y(1 − x) + fxy2(1 − x). What is

U3(1/2, 1/2)?
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§15.8 Method of Weighted Residuals and Initial Boundary Value Problems

For initial boundary value problems, we use the MWR to reduce the dimensionality
of the problem. In particular, for an initial boundary value problem in x and t, we
reduce the problem to an ordinary differential in t. We illustrate with the following
heat conduction problem,

∂U

∂t
= k

∂2U

∂x2
, 0 < x < 1, t > 0, (15.67a)

U(0, t) = 1, t > 0, (15.67b)
U(1, t) = 0, t > 0, (15.67c)
U(x, 0) = f(x), 0 < x < 1. (15.67d)

We could have made the problem more general by making boundary condition 15.67c
nonhomogeneous, using the more general Robin boundary conditions, and including
a heat source term in the PDE. Doing so would not change the argument; it would
only complicate the calculations.

To use weighted residuals to reduce problem 15.67 to an initial value problem
in t only, we choose basis functions that are separated

UN (x, t) = φ0(x) +
N∑

n=1

An(t)φn(x),

and require φ0(x) to satisfy boundary conditions 15.67b,c, and the φn(x) to sat-
isfy the homogeneous version of 15.67b and condition 15.67c (which is already
homogeneous). A simple choice for φ0(x) is 1 − x, and the φn(x) must satisfy
φn(0) = φn(1) = 0. Among the many possible choices for the φn(x) are eigen-
functions sinnπx of the associated Sturm-Liouville system and the polynomials
xn(1−x). In Exercise 1, it is shown that Galerkin’s method with the eigenfunctions
of the Sturm-Liouville system leads to partial sums of the analytic solution. If we
choose basis functions φn(x) = xn(1 − x), then

UN (x, t) = 1 − x+
N∑

n=1

An(t)xn(1 − x). (15.68)

The first approximation is

U1(x, t) = 1 − x+ A1(t)x(1− x),

with equation residual

R =
∂U1

∂t
− k

∂2U1

∂x2
= A′

1(t)x(1− x) + 2kA1(t).

Galerkin’s method applied to this residual gives

0 =
∫ 1

0

[A′
1(t)x(1− x) + 2kA1(t)]x(1− x) dx =

1
30
A′

1(t) +
k

3
A1(t).

Hence, A1(t) = Ce−10kt, and

U1(x, t) = 1 − x+ Ce−10ktx(1− x).
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To find C, we form an (initial) residual of this approximation at t = 0,

R|t=0 = 1− x+ Cx(1− x) − f(x).

Once again we apply Galerkin’s method,

0 =
∫ 1

0

[1 − x+ Cx(1− x) − f(x)]x(1− x) dx.

For instance, if f(x) = 1 − x3, then this equation yields C = 3/2, and the first
approximation to problem 15.67 is

U1(x, t) = 1 − x+
3
2
e−10ktx(1− x).

The analytic solution of problem 15.67 with f(x) = 1 − x3 is

U(x, t) = 1 − x+
12
π3

∞∑

n=1

(−1)n+1

n3
e−n2π2kt sinnπx.

We have tabulated U(x, t) and U1(x, t) in Table 15.7 for t = 10 and t = 10 000. The
approximation of U(x, t) by U1(x, t) improves as t increases; that is, as we approach
the steady state solution 1 − x, but it is woefully inadequate for small times.

x U(x, 10) U1(x, 10) U(x, 10 000) U1(x, 10 000)

0.1 0.9990 1.0348 0.9350 0.9391
0.2 0.9918 1.0397 0.8666 0.8695
0.3 0.9729 1.0146 0.7914 0.7912
0.4 0.9356 0.9596 0.7080 0.7042
0.5 0.8748 0.8745 0.6138 0.6085
0.6 0.7833 0.7596 0.5085 0.5042
0.7 0.6568 0.6146 0.3924 0.3912
0.8 0.4870 0.4397 0.2672 0.2695
0.9 0.2709 0.2348 0.1354 0.1391

Table 15.7

Let us see what improvement is achieved with the second approximation

U2(x, t) = 1 − x+A1(t)x(1− x) +A2(t)x2(1− x),

with equation residual

R =
∂U2

∂t
− k

∂2U2

∂x2

= A′
1(t)x(1− x) + 2kA1(t) +A′

2(t)x
2(1− x) − kA2(t)(2− 6x).

When we apply Galerkin’s method, we obtain



SECTION 15.8 669

0 =
∫ 1

0

[A′
1(t)x(1− x) + 2kA1(t) +A′

2(t)x
2(1− x) − kA2(t)(2− 6x)]x(1− x) dx

=
1
60

[2A′
1(t) + 20kA1(t) + A′

2(t) + 10kA2(t)],

0 =
∫ 1

0

[A′
1(t)x(1− x) + 2kA1(t) +A′

2(t)x
2(1− x) − kA2(t)(2− 6x)]x2(1− x) dx

=
1

420
[7A′

1(t) + 70kA1(t) + 4A′
2(t) + 56kA2(t)].

When orthogonal eigenfunctions are used as basis functions, differential equations
for the An(t) are uncoupled (see Exercise 1); polynomial basis functions, not being
orthogonal, lead to coupled differential equations in A1(t) and A2(t). Solutions are

A1(t) = Ce−10kt +De−42kt, A2(t) = −2De−42kt.

The second Galerkin approximation is therefore

U2(x, t) = 1 − x+ (Ce−10kt +De−42kt)x(1− x) − 2De−42ktx2(1− x).

The residual of this approximation at t = 0 is

R|t=0 = 1 − x+ (C +D)x(1− x) − 2Dx2(1− x) − f(x),

and if we once again apply Galerkin’s method, equations defining C and D are

0 =
∫ 1

0

[1 − x+ (C +D)x(1− x) − 2Dx2(1− x) − f(x)]x(1− x) dx,

0 =
∫ 1

0

[1 − x+ (C +D)x(1− x) − 2Dx2(1− x) − f(x)]x2(1 − x) dx.

In the case that f(x) = 1 − x3, these equations yield C = 3/2 and D = −1/2, and
the second Galerkin approximation to problem 15.67 is

U2(x, t) = 1 − x+
1
2
(3e−10kt − e−42kt)x(1− x) + e−42ktx2(1− x).

Table 15.8 shows values of U(x, t) and U2(x, t) at t = 10 and t = 10 000. The
agreement at t = 10 is much better than that for U1(x, t).

x U(x, 10) U2(x, 10) U(x, 10 000) U2(x, 10 000)

0.1 0.9990 0.9990 0.9350 0.9389
0.2 0.9918 0.9920 0.8666 0.8692
0.3 0.9729 0.9728 0.7917 0.7909
0.4 0.9356 0.9357 0.7080 0.7040
0.5 0.8748 0.8745 0.6138 0.6085
0.6 0.7833 0.7834 0.5085 0.5043
0.7 0.6568 0.6564 0.3924 0.3914
0.8 0.4870 0.4875 0.2672 0.2697
0.9 0.2709 0.2706 0.1354 0.1393

Table 15.8
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Example 15.9 The problem

∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < a, t > 0, (15.69a)

U(a, t) = 0, t > 0, (15.69b)
U(r, 0) = a2 − r2, 0 < r < a, (15.69c)

describes radially symmetric temperature U(r, t) in a circular plate. According to
Exercise 1 in Section 9.1, the analytic solution of this problem is

U(r, t) =
8
a

∞∑

n=1

1
λ3

n

e−kλ2
nt J0(λnr)
J1(λna)

,

where the first ten eigenvalues λn can be found in Example 8.3 of Section 8.4. Use
Galerkin’s method to approximate the solution with a quadratic in r multiplied by
a function of t; that is, U1(r, t) = d(t)(c0 + c1r + c2r

2).

Solution For U1(r, t) to satisfy the boundary condition, we must have c0 + c1a+
c2a

2 = 0. We also impose the condition that Ur(0, t) = 0 which results in c1 = 0.
Thus, U1(r, t) will be of the form U1(r, t) = c2d(t)(r2 − a2), or absorbing −c2 into
d(t), we take U1(r, t) = d(t)(a2 − r2). The equation residual for this approximation
is

R = d′(t)(a2 − r2) − kd(t)(−2− 2) = d′(t)(a2 − r2) + 4kd(t).

Galerkin’s method requires

0 =
∫ a

0

[d′(t)(a2 − r2) + 4kd(t)](a2 − r2) dr =
8a5

15
d′(t) +

8ka3

3
d(t).

Thus, d(t) must satisfy the ODE

d′(t) +
5k
a2
d(t) = 0, from which d(t) = Ae−5kt/a2

.

The approximate solution of the boundary value problem is therefore U1(r, t) =
Ae−5kt/a2

(a2 − r2). To satisfy the initial condition, we create a residual at t = 0,

R|t=0 = A(a2 − r2) − (a2 − r2) = (A− 1)(a2 − r2).

When we apply Galerkin’s method to this residual, we obtain

0 =
∫ a

0

(A− 1)(a2 − r2)2 dr,

and this implies that A = 1. Our final approximation is U1(r, t) = e−5kt/a2
(a2−r2).

We have tabulated the analytic solution and this approximation below at t = 100,
using a = 1 and k = 10−4. The agreement is excellent, but this is clearly due to the
fact that the initial temperature is of the same form as in U1(r, t) = d(t)(a2 − r2).
In addition, there is agreement between the boundary condition at t = 0 and the
initial condition at r = a. See Exercise 3 when these conditions are not met; the
approximation is unacceptable.•
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r U(r, 100) U1(r, 100)

0.1 0.950 0.942
0.2 0.920 0.913
0.3 0.870 0.866
0.4 0.800 0.799
0.5 0.710 0.713
0.6 0.600 0.609
0.7 0.470 0.485
0.8 0.323 0.342
0.9 0.162 0.181

Table 15.9

EXERCISES 15.8

1. Show that Galerkin’s method for problem 15.67 with eigenfunctions of the associated Sturm-
Liouville system as basis functions leads to the partial sums of the analytic solution.

2. Consider the nonlinear problem

∂U

∂t
= k

∂2U

∂x2
+ εU2, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,
U(L, t) = 0, t > 0,
U(x, 0) = 1, 0 < x < L.

(a) Show that if a first Galerkin approximation is chosen in the form U1(x, t) = c1(t)X1(x),
whereX1(t) = sin (πx/L) is the first eigenfunction of the associated Sturm-Liouville system,
then c1(t) must satisfy the ODE

c′1(t) +
π2

L2
c1(t) =

8ε
√

2/L
3π

c21(t).

(b) Solve this Bernoulli equation for c1(t) and use Galerkin’s method on the initial residual to
determine the constant of integration.

3. (a) Find approximation U1(r, t) to problem 15.69 when the initial temperature of the plate is 1
throughout.

(b) An analytic solution is

U(r, t) =
2
a

∞∑

n=1

1
λn
e−kλ2

nt J0(λnr)
J1(λna)

,

(see Exercise 1 of Section 9.1). With a = 1, k = 10−4, tabulate, or plot, U1(r, 100) and
U(r, 100) to show that U1(r, t) is not a good approximation to U(r, t) for this initial tem-
perature.

4. Consider the following heat conduction problem where constants have been eliminated for sim-
plicity,
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∂U

∂t
=
∂2U

∂x2
, 0 < x < 1, t > 0,

−Ux(0, t) + U(0, t) = 0, t > 0,
Ux(1, t) = 0, t > 0,
U(x, 0) = 1, 0 < x < 1.

To reduce this problem to an initial value problem in t only, we take approximations in the form

UN (x, t) =
N∑

n=1

dn(t)φn(x),

where basis functions φn(x) satisfy the boundary conditions: that is,

−φ′n(0) + φn(0) = 0, φ′n(1) = 0.

(a) Show that when basis functions are assumed in the form φn(x) = c0 + c1x+ cn+1x
n+1, then

φn(x) = 1 + x− xn+1

n+ 1
.

Does Table 15.5 in Section 15.3 give the same φ1(x)?
(b) Use Galerkin’s method to find the first approximation U1(x, t) = d1(t)φ1(x).
(c) Use Galerkin’s method to find the second approximation U2(x, t) = d1(t)φ1(x)+d2(t)φ2(x).

5. The initial boundary value problem

∂U

∂t
+ U

∂U

∂x
=
∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,
U(L, t) = 0, t > 0,
U(x, 0) = f(x), 0 < x < L,

involves the nonlinear Burger equation. Use Galerkin’s method to find a first approximation if
the basis function is (a) sin (πx/L), (b) x(L− x).
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CHAPTER 16 Finite Element Solutions

§16.1 Introduction

You may have noticed that the boundary value problems of Sections 15.5–15.7 were
always posed on regions with simple boundaries such as rectangles, triangles, and
circles. This is a major deficiency of the MWR; it can be very difficult to use the
MWR on regions R with complex boundaries such as that in Figure 16.1a. There are
other difficulties associated with the method. We usually worked with relatively low
order approximations, first, second, and sometimes a third; higher order approxima-
tions can increase calculations dramatically. In addition, polynomials were often the
choice for basis functions, yielding therefore approximations which were continuous
functions. But many physical problems have discontinuous material properties, and
it would be unreasonable to expect continuous functions to accurately describe such
situations.

Figure 16.1a Figure 16.1b

Finite elements can overcome these difficulties. Region R is approximated by
a set of subregions, usually triangles and quadrilaterals, perhaps like that in Figure
16.1b. Each subregion is called an element, and the totality of elements is called
the mesh for region R. Needless to say, straight edges of the elements of the mesh
can approximate the boundary of R arbitrarily closely. In addition, triangles and
quadrilaterals with curved edges are also possible, and these could approximate
the boundary of R even more closely. On each element, the unknown function is
approximated by a polynomial in x and y, and the form of this polynomial is the
same for each element (of the same type). Better and better approximations are not
achieved by increasing the number of terms in the polynomial (as was the case for
the MWR). Instead polynomials remain fixed in form, and the number of elements
is increased. Finally, elements can be adapted to changing material properties by
choosing boundaries of elements to coincide with, or approximate, curves along
which such changes take place.

In the space of one chapter, we cannot give a complete treatment of finite
elements; it is a vast subject with many texts devoted to it, and it alone. Most
readers will likely be users, not developers, of prewritten finite element programs,
but in order to appreciate these programs and be able to adapt to them, it is wise to
have some understanding of the underlying mathematics. This is the purpose of the
present chapter — present the underlying concept of finite elements. We make no
attempt to assemble elements into an efficient program, how to write finite element
code, or how to use commercially prepared programs. Hopefully, with the ideas
presented here, the reader will find assembly, coding, and commercial programs
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easier to follow.
As was done in Chapter 15, we begin with boundary value problems associ-

ated with ordinary differential equations, and then move on to multi-dimensional
boundary and initial boundary value problems.
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§16.2 Finite Elements for Ordinary Differential Equations

In this section we illustrate the central idea of the method of finite elements (hence-
forth shortened to MFE), by applying it to boundary value problems associated with
ODEs. Finite elements always use polynomials to approximate solutions of bound-
ary value problems, unlike the MWR which may also use other basis functions such
as trigonometric functions.

Linear Approximations

The simplest polynomial is the linear one, y(x) = a+bx, but finite elements requires
them to be expressed in a different form. If the function has values y(x1) and y(x2)
at x1 and x2, then

y(x1) = a+ bx1, y(x2) = a+ bx2.

When these are solved for a and b, we get

a =
x2y(x1)− x1y(x2)

x2 − x1
, b =

y(x2)− y(x1)
x2 − x1

.

The linear function can therefore be expressed in the form

y(x) =
x2y(x1) − x1y(x2)

x2 − x1
+
[
y(x2) − y(x1)

x2 − x1

]
x

= y(x1)
(
x− x2

x1 − x2

)
+ y(x2)

(
x− x1

x2 − x1

)
. (16.1)

What we have shown is the following. If a linear approximation is sought for a
boundary value problem associated with an ordinary differential equation, instead
of taking the approximation in the form y = a + bx and determining values for a
and b, finite elements takes the approximation in the form

y = c1φ1(x) + c2φ2(x), (16.2a)

where

φ1(x) =
x− x2

x1 − x2
φ2(x) =

x− x1

x2 − x1
, (16.2b)

and determines values for c1 and c2. These are values of the approximation at x1

and x2, called nodes. This is one of the essential ideas of finite elements; it finds
approximations to the solution of the boundary value problem at predetermined
nodes. This is reminiscent of finite differences in Chapter 14 which also approxi-
mates the solution at nodes. Finite elements goes further; it provides, through its
interpolating polynomial (in this case a linear one), approximations between nodes.
Basis functions 1 and x are replaced by φ1(x) and φ2(x). They have the property

φn(xm) = δnm =
{

1, if n = m
0, if n 6= m; (16.3)

each function has value 1 at one node and value 0 at the other. We have shown
the functions φ1(x) and φ2(x) in Figure 16.2a. Figure 16.2b shows a linear function
with values y(x1) and y2(x) in terms of φ1(x) and φ2(x).
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You may feel that representation 16.2 is excessively complicated compared to
a+ bx, but the advantage of this representation will soon become apparent. In fact,
the MFE with multiple elements would be impossible to program on a computer
without it.

We illustrate the essentials of the MFE with problem 15.23 of Section 15.3

d2Y

dx2
+ Y = x, 0 < x < 1, (16.4a)

Y (0) = 2, (16.4b)
Y ′(1) = 1, (16.4c)

the exact solution of which is

Y (x) = 2 cosx+ 2 tan1 sin x+ x. (16.5)

We choose this problem so that we can make comparisons with the MWR applied
to the same problem.

The first step is to discretize the domain; in this case, divide the interval 0 ≤
x ≤ 1 into subintervals, or elements. We begin with one element 0 ≤ x ≤ 1. With
only one element, we essentially repeat what we did in Chapter 15, but we rewrite
equations in a form that facilitates the transition to multiple elements. The two
points x = 0 and x = 1 are called nodes of our discretization; we have two nodes for
the element. Later we will see that additional nodes can be attached to elements. In
other words, the number of nodes is not necessarily just one more than the number of
elements. Next to consider is the order of the polynomial to be used to approximate
the solution on an element. It is tied to the number of nodes in the element. The
number of terms in the polynomial must be equal to the number of nodes for the
element; otherwise the number of nodes would not uniquely define the polynomial.
For two nodes, a linear polynomial must be used; for three nodes, a quadratic, etc.
In other words, if the number of nodes per element is chosen, it determines the
order of the polynomial; conversely, if the order of the polynomial is specified, it
determines the number of nodes per element. With our beginning choice of two
nodes for the single element, our approximation must be linear. We intend writing
it in form 16.2 by setting x1 = 0 and x2 = 1, and using the MWR to find values for
c1 = Y (0) and c2 = Y (1). Because we want to establish a framework that can be
used on any subinterval when we next subdivide the interval 0 ≤ x ≤ 1 into multiple
subintervals, we work on a generic interval x1 ≤ x ≤ x2. At the appropriate point
in the calculations, we will set x1 = 0 and x2 = 1. On the interval x1 ≤ x ≤ x2,
then, we take the linear approximation of Y (x) to be
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Y1(x) = c1φ1(x) + c2φ2(x) = c1

(
x− x2

x1 − x2

)
+ c2

(
x− x1

x2 − x1

)
, (16.6)

where c1 and c2 represent Y1(x1) and Y1(x2). The (equation) residual of this ap-
proximation is

R = Y ′′
1 (x) + Y1(x) − x.

Notice that no account has been taken of the boundary conditions. The MWR
and the MFE handle boundary conditions in fundamentally different ways. In Ex-
ample 15.1, where we used an interior MWR on problem 16.4, the lowest possible
order for a polynomial approximation was quadratic because we forced the polyno-
mial to satisfy the boundary conditions, and did so at the beginning of the process.
We also used a mixed method where the initial approximation satisfied the Dirichlet
condition Y (0) = 2, but not the Neumann condition Y ′(1) = 1. The MFE does
not subject approximating polynomials to any boundary conditions prior to forming
the residual. Integration by parts is always applied to integrals of residuals, and
boundary conditions are introduced into the resulting equations.

Galerkin’s method applied to the residual requires

0 =
∫ x2

x1

[Y ′′
1 (x) + Y1(x)− x]φ1(x) dx, 0 =

∫ x2

x1

[Y ′′
1 (x) + Y1(x)− x]φ2(x) dx.

Integration by parts in the first of these gives

0 =
{
Y ′

1φ1

}x2

x1
−
∫ x2

x1

Y ′
1φ

′
1 dx+

∫ x2

x1

(Y1 − x)φ1 dx.

If we now substitute Y1 = c1φ1 + c2φ2 in the integrals,

0 =
{
Y ′

1φ1

}x2

x1
−
∫ x2

x1

(c1φ′1 + c2φ
′
2)φ

′
1 dx+

∫ x2

x1

(c1φ1 + c2φ2 − x)φ1 dx.

This can be written in the form

c1

∫ x2

x1

[(φ′1)
2 − φ2

1] dx+ c2

∫ x2

x1

(φ′1φ
′
2 − φ1φ2) dx =

{
Y ′

1φ1

}x2

x1
−
∫ x2

x1

xφ1 dx.

Similarly, the second Galerkin requirement can be expressed in the form

c1

∫ x2

x1

(φ′2φ
′
1 − φ2φ1) dx+ c2

∫ x2

x1

[(φ′2)
2 − φ2

2] dx =
{
Y ′

1φ2

}x2

x1
−
∫ x2

x1

xφ2 dx.

These are linear equations in c1 and c2 which we can write in matrix form



∫ x2

x1

[(φ′1)
2 − φ2

1] dx
∫ x2

x1

(φ′1φ
′
2 − φ1φ2) dx

∫ x2

x1

(φ′2φ
′
1 − φ2φ1) dx

∫ x2

x1

[(φ′2)
2 − φ2

2] dx



(
c1
c2

)
=
({

Y ′
1φ1

}x2

x1{
Y ′

1φ2

}x2

x1

)
+




−
∫ x2

x1

xφ1 dx

−
∫ x2

x1

xφ2 dx


 .

Symbolically, we write

KC = B +N, (16.7a)

where
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K = (Kij) =




∫ x2

x1

[(φ′1)
2 − φ2

1] dx
∫ x2

x1

(φ′1φ
′
2 − φ1φ2) dx

∫ x2

x1

(φ′2φ
′
1 − φ2φ1) dx

∫ x2

x1

[(φ′2)
2 − φ2

2] dx


 , (16.7b)

C =
(
c1
c2

)
, B =

({
Y ′

1φ1

}x2

x1{
Y ′

1φ2

}x2

x1

)
, N =




−
∫ x2

x1

xφ1 dx

−
∫ x2

x1

xφ2 dx


 . (16.7c)

Matrix K is symmetric; it is called the stiffness matrix. Vector C is a vector
of nodal values, called the displacement vector. The remaining two vectors are
called load vectors; B is due to boundary terms, and N is due to the internal non-
homogeneity. The terminology had its origin in structural analysis, but it persists
even in other applications such as heat conduction and electromagnetics. Matrix
equation 16.7a represents a set of linear equations for the nodal values c1 and c2;
they are called the system equations. When we move to multiple elements, they
will be called the element equations, and the assembly of all element equations
will be called the system equations.

It is important to point out that these equations are very general. They apply
to any approximation Y1(x) = c1φ1(x)+c2φ2(x) of differential equation16.4a, where
φ1(x) and φ2(x) are any two basis functions, and boundary conditions 16.4b,c have
not yet been invoked. In other words, they are valid for any two-term approxi-
mation to differential equation 16.4a on the interval x1 < x < x2. Let us now
calculate entries in these matrices when φ1(x) and φ2(x) are the linear polynomials
in approximation 16.6,

K11 =
∫ x2

x1

[(φ′1)
2 − φ2

1] dx =
∫ x2

x1

[
1

(x1 − x2)2
− (x− x2)2

(x1 − x2)2

]
dx =

3 − (x2 − x1)2

3(x2 − x1)
,

K12 =
∫ x2

x1

(φ′2φ
′
1 − φ2φ1) dx =

∫ x2

x1

[
−1

(x2 − x1)2
+

(x− x2)(x− x1)
(x2 − x1)2

]
dx

= −6 + (x2 − x1)2

6(x2 − x1)
,

K22 =
∫ x2

x1

[(φ′2)
2 − φ2

2] dx =
∫ x2

x1

[
1

(x2 − x1)2
− (x− x1)2

(x2 − x1)2

]
dx =

3 − (x2 − x1)2

3(x2 − x1)
,

N1 = −
∫ x2

x1

xφ1 dx =
∫ x2

x1

x

(
x− x2

x1 − x2

)
dx =

1
6
(x2

2 + x1x2 − 2x2
1),

N2 = −
∫ x2

x1

xφ2 dx =
∫ x2

x1

x

(
x− x1

x2 − x1

)
dx =

1
6
(x2

1 + x1x2 − 2x2
2),

B1 = Y ′
1(x2)φ1(x2) − Y ′

1(x1)φ1(x1) = −Y ′
1(x1),

B2 = Y ′
1(x2)φ2(x2) − Y ′

1(x1)φ2(x1) = Y ′
1(x2).

For our single element, we set x1 = 0 and x2 = 1, in which case system equations
16.7a become

(
2/3 −7/6
−7/6 2/3

)(
c1
c2

)
=
(
−Y ′

1(0)
Y ′

1(1)

)
+
(

1/6
−1/3

)
. (16.8)
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These equations define nodal values c1 = Y (0) and c2 = Y (1) once boundary
conditions have been incorporated. The boundary residual at x = 1 is R|x=1 =
Y ′

1(1) − 1. We demand that it vanish when multiplied by basis functions; that is,
[Y ′

1 (1) − 1]φ1(1) = 0 and [Y ′
1(1) − 1]φ2(1) = 0. The first requires nothing (since

φ1(1) = 0) whereas the second requires Y ′
1(1) = 1 (since φ2(1) = 1). In other words,

the boundary condition Y ′(1) = 1 forces the approximation to satisfy this condi-
tion. We demand this implicitly by substituting it into the right side of the second
equation, and because it is an implicit requirement, Y1(x) will only approximate
this condition. (You might want to review Example 15.1 in Section 15.3 for what
we mean by an implicit requirement.) The Dirichlet condition at x = 0 is different;
there is no way to incorporate it into the boundary load vector B; that is, it does
not specify a value for Y ′

1(0). Instead, we impose it on the trial solution; that is,
we demand that Y1(0) = 2. This implies that 2 = c1φ1(0) + c2φ2(0) = c1. When
we substitute this into the left side of the equations, it is an explicit requirement of
the solution; it will be satisfied,

(
2/3 −7/6
−7/6 2/3

)(
2
c2

)
=
(
−Y ′

1(0)
1

)
+
(

1/6
−1/3

)
.

The second equation now determines c2,

−7
6
(2) +

2
3
c2 = 1− 1

3
=⇒ c2 =

9
2
.

Thus, the one-element linear polynomial ap-
proximating the solution of problem 16.4 is

Y1(x) = 2
(
x− 1
−1

)
+

9
2

(
x− 0

1

)
= 2 +

5x
2

.

We have plotted the exact solution along
with this approximation in Figure 16.3.
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As expected, it does not satisfy the Neu- Figure 16.3
mann boundary condition.

We spent an inordinate amount of time formatting the calculations for the single
element, but it will now pay dividends as we move to multiple elements. We begin
with two elements 0 ≤ x ≤ 1/2 and 1/2 ≤ x ≤ 1, but for forthcoming extensions to
more than two elements, we replace x = 0, x = 1/2, and x = 1 with x = x1, x = x2,
and x = x3, respectively. At the appropriate juncture, we substitute specific values
for the two elements. On each element, we approximate the solution of problem
16.4 with a linear polynomial,

Y2(x) =





Y (1)(x) = c
(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) = c

(1)
1

x− x2

x1 − x2
+ c

(1)
2

x− x1

x2 − x1
, x1 ≤ x ≤ x2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) = c

(2)
1

x− x3

x2 − x3
+ c

(2)
2

x− x2

x3 − x2
, x2 < x ≤ x3.

The subscript in Y2(x) indicates that we have a two-element approximation. The
superscripts (1) and (2) represent element numbers, (1) for element 1, 0 ≤ x ≤ 1/2,
and (2) for element 2, 1/2 ≤ x ≤ 1. We now set up element equations for nodal
values (c(1)1 , c

(1)
2 ) and (c(2)1 , c

(2)
2 ). Because we treated the single element situation in

complete generality, there is no need to perform the same analysis for each element;
we use element equations 16.7 for each element with appropriate changes in nota-
tion — add superscripts to identify elements, and adjust subscripts. Furthermore,
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because the polynomials are, for the moment, unrelated, we combine the two sets
of element equations into one set of equations, the system equations,

KC = B +N, (16.9a)

where,

K =




K
(1)
11 K

(1)
12 0 0

K
(1)
21 K

(1)
22 0 0

0 0 K
(2)
11 K

(2)
12

0 0 K
(2)
21 K

(2)
22


 , (16.9b)

(
K

(1)
11 K

(1)
12

K
(1)
21 K

(1)
22

)
=

( ∫ x2

x1
[(φ(1)

1

′
)2 − (φ(1)

1 )2] dx
∫ x2

x1
[φ(1)

1

′
φ

(1)
2

′
− φ

(1)
1 φ

(1)
2 ] dx

∫ x2

x1
[φ(1)

2

′
φ

(1)
1

′
− φ

(1)
2 φ

(1)
1 ] dx

∫ x2

x1
[(φ(1)

2

′
)2 − (φ(1)

2 )2] dx

)
, (16.9c)

(
K

(2)
11 K

(2)
12

K
(2)
21 K

(2)
22

)
=

( ∫ x3

x2
[(φ(2)

1

′
)2 − (φ(2)

1 )2] dx
∫ x3

x2
[φ(2)

1

′
φ

(2)
2

′
− φ

(2)
1 φ

(2)
2 ] dx

∫ x3

x2
[φ(2)

2

′
φ

(2)
1

′
− φ

(2)
2 φ

(2)
1 ] dx

∫ x3

x2
[(φ(2)

2

′
)2 − (φ(2)

2 )2] dx

)
, (16.9d)

C =




c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2


 , B =




{
Y (1)′φ

(1)
1

}x2

x1{
Y (1)′φ

(1)
2

}x2

x1

Y (2)′φ
(2)
1

}x3

x2{
Y (2)′φ

(2)
2

}x3

x2



, N =




−
∫ x2

x1
xφ

(1)
1 dx

−
∫ x2

x1
xφ

(1)
2 dx

−
∫ x3

x2
xφ

(2)
1 dx

−
∫ x3

x2
xφ

(2)
2 dx



. (16.9e)

When we set x1 = 0, x2 = 1/2 and x3 = 1, and evaluate integrals, we get




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (1)′(1/2)
−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/12
−1/6
−5/24


 .(16.10)

These (system) equations define nodal values c(1)1 , c(1)2 , c(2)1 , and c(2)2 once boundary
conditions have been incorporated. We delay them for the moment and discuss
what are called interelement boundary conditions. The approximations must,
in some way, “match” at the node x = 1/2. We certainly want the two-element
approximation to be continuous at x = 1/2. Because c(1)2 and c

(2)
1 both represent

the value of the approximation at x = 1/2, we make the explicit demand that
c
(1)
2 = c

(2)
1 . Quantities Y (1)′(1/2) and Y (2)′(1/2) represent slopes of the linear

approximations in the two elements at x = 1/2. We implicitly demand that they
be the same, Y (1)′(1/2) = Y (2)′(1/2). When we make these substitutions in system
equations 16.10, we obtain




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (1)′(1/2)
−Y (1)′(1/2)
Y (2)′(1)


+




−1/24
−1/12
−1/6
−5/24


 .
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If we add the third equation to the second, we eliminate the unknown quantity
Y (1)′(1/2) from the second equation.




11/6 −25/12 0 0
−25/12 11/6 11/6 −25/12

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
0

−Y (1)′(1/2)
Y (2)′(1)


+




−1/24
−1/4
−1/6
−5/24


 .

We are now ready to incorporate the boundary conditions. As in the single element
case, the Neumann condition at x = 1 is (implicitly) incorporated by replacing
Y (2)′(1) with 1. For the Dirichlet condition at x = 0, we (explicitly) demand, as
in the single element case, that Y (1)(0) = 2. This implies that 2 = c

(1)
1 φ

(1)
1 (0) +

c
(1)
2 φ

(1)
2 (0) = c

(1)
1 . The system equations now read




11/6 −25/12 0 0
−25/12 11/6 11/6 −25/12

0 0 11/6 −25/12
0 0 −25/12 11/6







2
c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
0

−Y (1)′(1/2)
1


+




−1/24
−1/4
−1/6
−5/24


 .

The second and fourth equations determine c(2)1 and c(2)2 ,

−25
12

(2) +
11c(2)1

6
+

11c(2)1

6
− 25c(2)2

12
= −1

4
, −25c(2)1

12
+

11c(2)2

6
=

19
24
.

The solution is c(2)1 = 3.707 and c
(2)
2 = 4.644. Thus, the approximate solution of

problem 16.4 with two elements each with a linear polynomial is

Y2(x) =





2
(
x− 1/2
−1/2

)
+ 3.707

(
x

1/2

)
, 0 ≤ x ≤ 1/2

3.707
(
x− 1
−1/2

)
+ 4.644

(
x− 1/2

1/2

)
, 1/2 < x ≤ 1.

We have shown the exact solution and this
approximation in Figure 16.4. It should be
compared to that in Figure 16.3.
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Figure 16.4
We do a final subdivision into four elements, 0 ≤ x ≤ 1/4, 1/4 ≤ x ≤ 1/2,

1/2 ≤ x ≤ 3/4, and 3/4 ≤ x ≤ 1, but give a summarized version. Working first on
a general subdivision with points x1, x2, x3, x4, and x5, we approximate Y (x) with
a linear polynomial on each element,

Y4(x) =





Y (1)(x), x1 ≤ x ≤ x2,
Y (2)(x), x2 < x ≤ x3,
Y (3)(x), x3 < x ≤ x4,
Y (4)(x), x4 < x ≤ x5,

where
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Y (i)(x) = c
(i)
1 φ

(i)
1 (x) + c

(i)
2 φ

(i)
2 (x) = c

(i)
1

x− xi+1

xi − xi+1
+ c

(i)
2

x− xi

xi+1 − xi
, i = 1, . . . , 4.

Nodal values (c(i)1 , c
(i)
2 ), i = 1, . . . , 4 satisfy the system equations

KC = B +N, (16.11a)
where

K =




K
(1)
11 K

(1)
12 0 0 0 0 0 0

K
(1)
21 K

(1)
22 0 0 0 0 0 0

0 0 K
(2)
11 K

(2)
12 0 0 0 0

0 0 K
(2)
21 K

(2)
22 0 0 0 0

0 0 0 0 K
(3)
11 K

(3)
12 0 0

0 0 0 0 K
(3)
21 K

(3)
22 0 0

0 0 0 0 0 0 K
(4)
11 K

(4)
12

0 0 0 0 0 0 K
(4)
21 K

(4)
22




, (16.11b)

[
K

(i)
11 K

(i)
12

K
(i)
21 K

(i)
22

]
=

[ ∫ xi+1

xi
[(φ(i)

1

′
)2 − (φ(i)

1 )2] dx
∫ xi+1

xi
[φ(i)

1

′
φ

(i)
2

′
− φ

(i)
1 φ

(i)
2 ] dx

∫ xi+1

xi
[φ(i)

2

′
φ

(i)
1

′
− φ

(i)
2 φ

(i)
1 ] dx

∫ xi+1

xi
[(φ(i)

2

′
)2 − (φ(i)

2 )2] dx

]
,(16.11c)

C =




c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

c
(3)
1

c
(3)
2

c
(4)
1

c
(4)
2




, B =




{
Y (1)′φ

(1)
1

}x2

x1{
Y (1)′φ

(1)
2

}x2

x1{
Y (2)′φ

(2)
1

}x3

x2{
Y (2)′φ

(2)
2

}x3

x2{
Y (3)′φ

(3)
1

}x4

x3{
Y (3)′φ

(3)
2

}x4

x3{
Y (4)′φ

(4)
1

}x5

x4{
Y (4)′φ

(4)
2

}x5

x4




, N =




−
∫ x2

x1
xφ

(1)
1 dx

−
∫ x2

x1
xφ

(1)
2 dx

−
∫ x3

x2
xφ

(2)
1 dx

−
∫ x3

x2
xφ

(2)
2 dx

−
∫ x4

x3
xφ

(3)
1 dx

−
∫ x4

x3
xφ

(3)
2 dx

−
∫ x5

x4
xφ

(4)
1 dx

−
∫ x5

x4
xφ

(4)
2 dx




. (16.11e)

When we set x1 = 0, x2 = 1/4, x3 = 1/2, x4 = 3/4, and x5 = 1, and evaluate
integrals, we get




47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 0 0 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 0 0 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 0 0
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

c
(3)
1

c
(3)
2

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
Y (1)′(1/4)
−Y (2)′(1/4)
Y (2)′(1/2)
−Y (3)′(1/2)
Y (3)′(3/4)
−Y (4)′(3/4)
Y (4)′(1)




+




−1/96
−1/48
−1/24
−5/96
−7/96
−1/12
−5/48
−11/96




.
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The boundary conditions at x = 0 and x = 1 along with the interelement boundary
conditions at x = 1/4, x = 1/2, and x = 3/4 give




47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 0 0 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 0 0 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 0 0
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







2
c
(2)
1

c
(2)
1

c
(3)
1

c
(3)
1

c
(4)
1

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
Y (1)′(1/4)
−Y (1)′(1/4)
Y (2)′(1/2)
−Y (2)′(1/2)
Y (3)′(3/4)
−Y (3)′(3/4)

1




+




−1/96
−1/48
−1/24
−5/96
−7/96
−1/12
−5/48
−11/96




.

We now add the third equation to the second, the fifth to the fourth, and the seventh
to the sixth,




47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 47/12 −97/24 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 47/12 −97/24 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 47/12 −97/24
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







2
c
(2)
1

c
(2)
1

c
(3)
1

c
(3)
1

c
(4)
1

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
0

−Y (1)′(1/4)
0

−Y (2)′(1/2)
0

−Y (3)′(3/4)
1




+




−1/96
−1/16
−1/24
−1/8
−7/96
−3/16
−5/48
−11/96




.

The second, fourth, sixth, and eighth equations reduce to

47c(2)1

6
− 97c(3)1

24
=

385
48

,

−97c(2)1

24
+

47c(3)1

6
− 97c(4)1

24
= −1

8
,
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−97c(3)1

24
+

47c(4)1

6
− 97c(4)2

24
= − 3

16
,

−97c(4)1

24
+

47c(4)2

12
=

85
96
.

The solution is c(2)1 = 2.95246, c(3)1 = 3.73775, c(4)1 = 4.32277, and c
(4)
2 = 4.68680.

Thus, the four-element, linear approximate to the solution of problem 16.4 is

Y4(x) =





2(−4)(x− 1/4) + 2.95246(4)x, 0 ≤ x ≤ 1/4
2.95246(−4)(x− 1/2) + 3.73775(4)(x− 1/4), 1/4 < x ≤ 1/2
3.73775(−4)(x− 3/4) + 4.32277(4)(x− 1/2), 1/2 < x ≤ 3/4
4.32277(−4)(x− 1) + 4.68680(4)(x− 3/4), 3/4 < x ≤ 1

It is plotted along with the exact
solution in Figure 16.5. They are
barely distinguishable.

y

x

5

4

3

2

1

0.2 0.4 0.6 0.8 1.0

Y x( )

Y x( )1( )

3( )Y x( )

4( )Y x( )

2( )Y x( )

Figure 16.5

In the next example, we indicate how to handle Robin boundary conditions.

Example 16.1 Use one- and two-element, linear approximations on problem 16.4 when the bound-
ary condition at x = 1 is Robin,

d2Y

dx2
+ Y = x, 0 < x < 1, (16.12a)

Y (0) = 2, (16.12b)
Y ′(1) + 3Y (1) = 1. (16.12c)

Solution It is straightforward to generate the exact solution

Y (x) = 2 cosx+
[
2(sin 1 − 3 cos 1) − 3

3 sin 1 + cos 1

]
sinx+ x.

System (or element) equations for a one-element, linear approximation are equations
16.8,

(
2/3 −7/6
−7/6 2/3

)(
c1
c2

)
=
(
−Y ′

1(0)
Y ′

1(1)

)
+
(

1/6
−1/3

)
.

The Dirichlet boundary condition Y (0) = 2 is handled as before, set c1 = 2. The
boundary residual at x = 1 is R|x=1 = Y ′

1(1) + 3Y1(1) − 1. When we demand that
this be zero, the approximation must implicitly satisfy

Y ′
1(1) = 1 − 3Y1(1) = 1 − 3[c1φ1(1) + c2φ2(1)] = 1 − 3c2.

Substituting these requirements in the system equations yields
(

2/3 −7/6
−7/6 2/3

)(
2
c2

)
=
(
−Y ′

1(0)
1 − 3c2

)
+
(

1/6
−1/3

)
.
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The second equation gives

−7
6
(2) +

2c2
3

= 1 − 3c2 −
1
3

=⇒ c2 =
9
11
.

The one-element, linear approximation is therefore

Y1(x) = 2
(
x− 1
−1

)
+

9
11

(
x− 0

1

)
= 2 − 12x

11
.

Graphs of the exact solution and Y1(x) are shown in Figure 16.6a. System equations
for a two-element, linear approximation

Y2(x) =





Y (1)(x) = c
(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) = c

(1)
1

x− x2

x1 − x2
+ c

(1)
2

x− x1

x2 − x1
, x1 ≤ x ≤ x2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) = c

(2)
1

x− x3

x2 − x3
+ c

(2)
2

x− x2

x3 − x2
, x2 < x ≤ x3,

before application of the boundary conditions, are given by equations 16.10,




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (1)′(1/2)
−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/12
−1/6
−5/24


 .

We incorporate the Dirichlet condition by demanding that c(1)1 = 2. The Robin con-
dition at x = 1 is handled implicitly by setting Y ′

1(1) = 1− 3c(2)2 . The interelement
boundary conditions are c(1)2 = c

(2)
1 and Y (1)′(1/2) = Y (2)′(1/2). When we make

these substitutions in the system equations, we obtain




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







2
c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (1)′(1/2)
−Y (1)′(1/2)

1 − 3c(2)2


+




−1/24
−1/12
−1/6
−5/24


 .

If we add the third equation to the second, we obtain



11/6 −25/12 0 0
−25/12 11/6 11/6 −25/12

0 0 11/6 −25/12
0 0 −25/12 11/6







2
c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
0

Y (1)′(1/2)
1 − 3c(2)2


+




−1/24
−1/4
−1/6
−5/24


 .

The second and fourth equations are

−25
12

(2) +
11c(2)1

6
+

11c(2)1

6
− 25c(2)2

12
= −1

4
, −25c(2)1

12
+

11c(2)2

6
=

19
24

− 3c(2)2 .

The solution is c(2)1 = 1.538 and c
(2)
2 = 0.8267. Thus, the two-element, linear

approximate to the solution of problem 16.4 is

Y2(x) =





2
(
x− 1/2
−1/2

)
+ 1.538

(
x

1/2

)
, 0 ≤ x ≤ 1/2

1.538
(
x− 1
−1/2

)
+ 0.8267

(
x− 1/2

1/2

)
, 1/2 < x ≤ 1.
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The exact solution and this two-element, linear approximation are shown in Figure
16.6b.•

y

x

2

1.5

1

0.5

0.2 0.4 0.6 0.8 1.0

Y x( )

Y x( )1

y

x0.2 0.4 0.6 0.8 1.0

2

1.5

1

0.5

Y x( )

Y x( )1( )

2( )Y x( )

Figure 16.6a Figure 16.6b

Quadratic Approximation

We now use quadratic polynomials to approximate the solution to problem
16.4. It is anticipated that we should need fewer elements to obtain a comparable
approximation derived with linear functions. As was the case for linear functions,
finite elements requires quadratic functions to be written in a specific way. If a
quadratic function y(x) = a+ bx+ cx2 is to have values y(x1), y(x2), and y(x3) at
three points x1 < x2 < x3, then

y(x1) = a+ bx1 + cx2
1, y(x2) = a+ bx2 + cx2

2, y(x3) = a+ bx3 + cx2
3. (16.13)

These equations can be solved for

a =
y(x1)x2x3(x3 − x2) + y(x2)x1x3(x1 − x3) + y(x3)x1x2(x2 − x1)

(x2 − x1)(x3 − x1)(x3 − x2)
,(16.14a)

b =
−y(x1)(x2

3 − x2
2) + y(x2)(x2

3 − x2
1) − y(x3)(x2

2 − x2
1)

(x2 − x1)(x3 − x1)(x3 − x2)
, (16.14b)

c =
y(x1)(x3 − x2) − y(x2)(x3 − x2) + y(x3)(x2 − x1)

(x2 − x1)(x3 − x1)(x3 − x2)
, (16.14c)

(see Exercise 1). When these values are substituted into y = a+ bx+ cx2, the result
can be rearranged into the form

y(x) = y(x1)
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ y(x2)

(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

+ y(x3)
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
. (16.15)

If we denote the three quadratic functions on the right by

φ1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
, φ2(x) =

(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

,

φ3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
, (16.16)

then we have represented a quadratic function in terms of three other quadratic
functions

y(x) = y(x1)φ1(x) + y(x2)φ2(x) + y(x3)φ3(x). (16.17)
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Those who have studied numerical analysis will recognize the φi(x) as Lagrange
interpolation formulas. They satisfy property 16.3; each function has value one
at one of the nodes and value zero at the other two nodes. When a quadratic
approximation is sought for a boundary value problem associated with an ordinary
differential equation, instead of taking the approximation in the form y = a+ bx+
cx2, it will be taken in the form

y = c1φ1(x) + c2φ2(x) + c3φ3(x). (16.18)

Basis functions 1, x, and x2 are replaced by φ1(x), φ2(x), and φ3(x). We have
shown these functions in Figure 16.7a. Figure 16.7b shows a quadratic function
with values y(x1), y(x2), and y(x3) in terms of φ1(x), φ2(x), and φ3(x).

y

x

x( )11

1 3x x

f x( )2f

2x

x( )3f

y

x

x( )1

1

1 3x x

f

x( )2f

2x

x( )3f

y x( )1 x( )1f y x( )2+ x( )2f
y x( )2

y x( )1

y x( )3

x( )3fy x( )3+

Figure 16.7a Figure 16.7b

Constants c1, c2 and c3 are values of the approximation at the nodes x1, x2, and
x3, respectively. Finite elements approximates these nodal values, and approximates
the solution at other values of x with approximating quadratic 16.18.

Element equations 16.7 were derived for a (one-element) linear approximation
c1φ1(x) + c2φ2(x) on the interval x1 ≤ x ≤ x2. Based on these, it is not difficult to
write element equations for a quadratic approximation Y1(x) = c1φ1(x)+ c2φ2(x)+
c3φ3(x) on the interval x1 ≤ x ≤ x2, where

φ1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
, φ2(x) =

(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

, φ3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Those who feel that it would be instructive to derive them with the MWR, see
Exercise 2. The element equations are

KC = B +N, (16.19a)

where

K =




∫ x3

x1

[(φ′1)
2 − φ2

1] dx
∫ x3

x1

(φ′1φ
′
2 − φ1φ2) dx

∫ x3

x1

(φ′1φ
′
3 − φ1φ3) dx

∫ x3

x1

(φ′2φ
′
1 − φ2φ1) dx

∫ x3

x1

[(φ′2)
2 − φ2

2] dx
∫ x3

x1

(φ′2φ
′
3 − φ2φ3) dx

∫ x3

x1

(φ′3φ
′
1 − φ3φ1) dx

∫ x3

x1

(φ′3φ
′
2 − φ3φ2) dx

∫ x3

x1

[(φ′3)
2 − φ2

3] dx



,(16.19b)

C =



c1
c2
c3


 , B =

[ {Y ′
1φ1

}x3

x1{
Y ′

1φ2

}x3

x1{
Y ′

1φ3

}x3

x1

]
, N =




−
∫ x3

x1

xφ1 dx

−
∫ x3

x1

xφ2 dx

−
∫ x3

x1

xφ3 dx



. (16.19c)
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Evaluation of terms when x1 = 0, x2 = 1/2, and x3 = 1 gives



11/5 −41/15 11/30
−41/15 24/5 −41/15
11/30 −41/15 11/5





c1
c2
c3


 =




−Y ′
1(0)
0

Y ′
1(1)


+




0
−1/3
−1/6


 .

These equations define nodal values c1, c2, and c3 once boundary conditions have
been incorporated. To include the Neumann condition at x = 1, we once again,
replace Y ′

1(1) with 1, and this is an implicit requirement. We impose the Dirichlet
condition at x = 0 on the trial solution; that is, we demand that Y1(0) = 2. This
implies that 2 = c1φ1(0) + c2φ2(0) + c3φ3(0) = c1, an explicit requirement. When
we substitute these in the element equations,




11/5 −41/15 11/30
−41/15 24/5 −41/15
11/30 −41/15 11/5






2
c2
c3


 =




−Y ′
1(0)
0
1


+




0
−1/3
−1/6


 .

The second and third equations determine c2 and c3,

2
(
−41

15

)
+

24c2
5

− 41c3
15

= −1
3
, 2

(
11
30

)
− 41c2

15
+

11c3
5

=
5
6
.

The solution is c2 = 1041/278 and c3 = 658/139. Thus, the one-element, quadratic
approximation is

Y1(x) = 2φ1(x) +
1041
278

φ2(x) +
658
139

φ3(x)

= 2(2x− 1)(x− 1)− 4164
278

x(x− 1) +
658
139

x(2x− 1).

The graph of this approximation and the exact solution are almost indistinguish-
able. They are tabulated below for comparison. For a two-element, quadratic
approximation, see Exercise 6.

x Exact Y1(x)

0.1 2.401 2.409
0.2 2.779 2.788
0.3 3.131 3.137
0.4 3.455 3.456
0.5 3.748 3.745
0.6 4.009 4.003
0.7 4.236 4.231
0.8 4.428 4.429
0.9 4.583 4.596
1.0 4.701 4.734

Table 16.1

The stiffness matrix for the MFE is always symmetric provided the differential
equation is in self-adjoint form (see Section 12.3 for the definition of self-adjoint).
Any second-order differential equation can be put in self-adjoint form with a suitable
multiplicative factor (see the discussion following equation 5.3 in Section 5.1). For
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a typical problem using finite elements, the stiffness matrix can be very large, and
with symmetry, computer storage is kept to a minimum and numerical procedures
for solving the system equations are enhanced.

Examination of system equations 16.11 illustrates another feature of the stiff-
ness matrix; it is banded, nonzero entries cluster around the diagonal. This is due
to the fact that we numbered elements sequentially from left to right. This is nat-
ural; why would we number elements in some random fashion? This becomes an
important issue in two- and three-dimensional problems where there is no natural
way to number elements.

EXERCISES 16.2

1. Verify that the solution of equations 16.13 is given by equations 16.14.

2. Use the MWR to derive system equations 16.19.

3. Find one- and two-element linear approximations to the boundary value problem of Exercise
16 in Section 15.3. Use values a = 1, h = 2, and D = 1. Compare the exact solution and the
approximations graphically.

4. The stiffness matrix is symmetric when the differential equation is in self-adjoint form, and non-
symmetric otherwise. Illustrate this with a one-element linear approximation for the differential
equation in Exercise 17 of Section 15.3.

5. (a) Find one- and two-element, linear approximations to the boundary value problem of Exercise
10 in Section 15.3. Compare the exact solution and the approximations graphically.

(b) Find a one-element, quadratic approximation to the problem. Tabulate it and the exact
solution for x = 1.0, 1.1, 1.2, . . . , 2.0.

6. Find a two-element, quadratic approximation to boundary value problem 16.4. Tabulate this
approximation along with the one-element approximation and the exact solution.

7. The self-adjoint form for second-order linear differential equations is

d

dx

[
α(x)

dY

dx

]
+ β(x)Y = F (x).

Let Y1(x), as defined in equation 16.6, be a one-element, linear approximation of the solution
on the interval x1 < x < x2. Find the element equations for c1 and c2.

8. Repeat Exercise 7 for a one-element quadratic approximation Y1(x) = c1φ1(x) + c2φ2(x) +
c3φ3(x), on the interval x1 ≤ x ≤ x2, where the φi(x) are given in equations 16.16.

9. (a) Can we use a one-element, linear approximation for the boundary value problem in Exercise
9 of Section 15.3? Explain.

(b) Use Exercise 7 to find a two-element, linear approximation. (You must express the differ-
ential equation in self-adjoint form.) Draw graphs of the exact solution and the approxi-
mation.

10. We developed the Lagrange quadratic basis functions 16.16 by requiring that a quadratic polyno-
mial be expressible in terms of nodal values. Subsequently, we noted that they satisfy conditions
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16.3. Show that they can be developed by requiring a quadratic polynomial to satisfy conditions
16.3.
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§16.3 Toward a More comprehensive Notation

In Section 16.2, we developed system equations for finite element approximations
to boundary value problems associated with ordinary differential equations. On the
basis of these discussions, we can take a more direct route to the same equations,
and at the same time, we can simplify the notation, bringing us a step closer to
the customary notation of finite element programs. In the exercises, we provide a
template for system equations of any self-adjoint second-order differential equation.
We illustrate with problem 16.4

d2Y

dx2
+ Y = x, 0 < x < 1, (16.20a)

Y (0) = 2, (16.20b)
Y ′(1) = 1, (16.20c)

System equations for a two-element, linear approximation

Y2(x) =

{
Y (1)(x) = c

(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x), 0 ≤ x ≤ 1/2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x), 1/2 < x ≤ 1

=





c
(1)
1

x− x2

x1 − x2
+ c

(1)
2

x− x1

x2 − x1
= c

(1)
1 (1− 2x) + c

(1)
2 (2x), 0 ≤ x ≤ 1/2

c
(2)
1

x− x3

x2 − x3
+ c

(2)
2

x− x2

x3 − x2
= c

(2)
1 (2− 2x) + c

(2)
2 (2x− 1), 1/2 < x ≤ 1

were developed in Section 16.2. They were denoted by KC = B + N with entries
(see equations 16.10),




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (1)′(1/2)
−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/12
−1/6
−5/24


 .

(16.21)

When interelement boundary conditions c(1)2 = c
(2)
1 and Y (1)′(1/2) = Y (2)′(1/2) are

imposed, these become




11/6 −25/12 0 0
−25/12 11/6 0 0

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
Y (2)′(1/2)
−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/12
−1/6
−5/24


 .

If we now add the third equation to the second,




11/6 −25/12 0 0
−25/12 11/6 11/6 −25/12

0 0 11/6 −25/12
0 0 −25/12 11/6







c
(1)
1

c
(2)
1

c
(2)
1

c
(2)
2


 =




−Y (1)′(0)
0

−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/4
−1/6
−5/24


 .
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The objective is find c
(1)
1 , c(2)1 , and c

(2)
2 , and these are the values of the linear

polynomials approximating the solution at the three nodes x = 0, x = 1/2 and
x = 1. Suppose we denote these values simply by a1, a2, and a3,



11/6 −25/12 0 0
−25/12 11/6 11/6 −25/12

0 0 11/6 −25/12
0 0 −25/12 11/6






a1

a2

a2

a3


 =




−Y (1)′(0)
0

−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/4
−1/6
−5/24


 .

The value a2 appears in the second and third equations, and we intend using the
second equation, not the third, because the third equation contains the unknown
quantity Y (2)′(1/2). The question then is how to eliminate the third equation, with-
out losing any information contained in it. We cannot simply delete the third row
of each matrix. You should check that if this were done, the remaining equations
would not be the same as the first, second, and third of the above equations. How-
ever, the same equations are obtained if we follow two steps. Add the third column
of K to the second column,



11/6 −25/12 0 0
−25/12 11/3 11/6 −25/12

0 11/6 11/6 −25/12
0 −25/12 −25/12 11/6






a1

a2

a2

a3


 =




−Y (1)′(0)
0

−Y (2)′(1/2)
Y (2)′(1)


+




−1/24
−1/4
−1/6
−5/24


 .

Now delete the third equation by deleting the third row and third column of K and
the third entry of C, B and N ,




11/6 −25/12 0
−25/12 11/3 −25/12

0 −25/12 11/6





a1

a2

a3


 =




−Y (1)′(0)
0

Y (2)′(1)


+




−1/24
−1/4
−5/24


 . (16.22)

There are three points to notice about these equations.

1. The derivative at the interior node has been eliminated, only the value a2 of the
approximation at this node remains.

2. The stiffness matrix in system equations 16.21 was symmetric. We have made
various changes to this matrix, but the stiffness matrix in equations 16.22 is also
symmetric.

3. The (1, 3) (and (3, 1)) entry is zero because there is no coupling between nodes 1
and 3.

The final step is to incorporate boundary conditions 16.20b,c. They require a1 = 2
and Y (2)′(1) = 1,




11/6 −25/12 0
−25/12 11/3 −25/12

0 −25/12 11/6






2
a2

a3


 =




−Y (1)′(0)
0
1


+




−1/24
−1/4
−5/24


 .

The last two equations are now solved for a2 and a3.

To emphasize what has happened, we repeat it with the four-element linear
approximation in Section 16.2. System equations were
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47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 0 0 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 0 0 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 0 0
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

c
(3)
1

c
(3)
2

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
Y (1)′(1/4)
−Y (2)′(1/4)
Y (2)′(1/2)
−Y (3)′(1/2)
Y (3)′(3/4)
−Y (4)′(3/4)
Y (4)′(1)




+




−1/96
−1/48
−1/24
−5/96
−7/96
−1/12
−5/48
−11/96




.

Interelement boundary conditions c(1)2 = c
(2)
1 , c(2)2 = c

(3)
1 , c(3)2 = c

(4)
1 , Y (2)′(1/4) =

Y (1)′(1/4), Y (3)′(1/2) = Y (2)′(1/2), and Y (4)′(3/4) = Y (3)′(3/4) yield




47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 0 0 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 0 0 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 0 0
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







c
(1)
1

c
(2)
1

c
(2)
1

c
(3)
1

c
(3)
1

c
(4)
1

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
Y (1)′(1/4)
−Y (1)′(1/4)
Y (2)′(1/2)
−Y (2)′(1/2)
Y (3)′(3/4)
−Y (3)′(3/4)
Y (4)′(1)




+




−1/96
−1/48
−1/24
−5/96
−7/96
−1/12
−5/48
−11/96




.

We now add the third equation to the second, the fifth to the fourth, and the seventh
to the sixth,
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47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 47/12 −97/24 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 47/12 −97/24 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 47/12 −97/24
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







c
(1)
1

c
(2)
1

c
(2)
1

c
(3)
1

c
(3)
1

c
(4)
1

c
(4)
1

c
(4)
2




=




−Y (1)′(0)
0

−Y (1)′(1/4)
0

−Y (2)′(1/2)
0

−Y (3)′(3/4)
Y (4)′(1)




+




−1/96
−1/16
−1/24
−1/8
−7/96
−3/16
−5/48
−11/96




.

Suppose we denote c(1)1 , c(2)1 , c(3)1 , c(3)1 , c(4)1 , and c
(4)
2 , the values of the linear poly-

nomials approximating the solution at the five nodes x = 0, x = 1/4, x = 1/2,
x = 3/4, and x = 1 by a1, a2, a3, a4, and a5,




47/12 −97/24 0 0 0 0 0 0
−97/24 47/12 47/12 −97/24 0 0 0 0

0 0 47/12 −97/24 0 0 0 0
0 0 −97/24 47/12 47/12 −97/24 0 0
0 0 0 0 47/12 −97/24 0 0
0 0 0 0 −97/24 47/12 47/12 −97/24
0 0 0 0 0 0 47/12 −97/24
0 0 0 0 0 0 −97/24 47/12







a1

a2

a2

a3

a3

a4

a4

a5




=




−Y (1)′(0)
0

−Y (1)′(1/4)
0

−Y (2)′(1/2)
0

−Y (3)′(3/4)
Y (4)′(1)




+




−1/96
−1/16
−1/24
−1/8
−7/96
−3/16
−5/48
−11/96




.

In order to eliminate the third, fifth, and seventh equations, we first add the third
column of the stiffness matrix to the second, the fifth column to the fourth, and the
seventh column to the sixth,
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47/12 −97/24 0 0 0 0 0 0
−97/24 47/6 47/12 −97/24 0 0 0 0

0 47/12 47/12 −97/24 0 0 0 0
0 −97/24 −97/24 47/6 47/12 −97/24 0 0
0 0 0 47/12 47/12 −97/24 0 0
0 0 0 −97/24 −97/24 47/6 47/12 −97/24
0 0 0 0 0 47/12 47/12 −97/24
0 0 0 0 0 −97/24 −97/24 47/12







a1

a2

a2

a3

a3

a4

a4

a5




=




−Y (1)′(0)
0

−Y (1)′(1/4)
0

−Y (2)′(1/2)
0

−Y (3)′(3/4)
Y (4)′(1)




+




−1/96
−1/16
−1/24
−1/8
−7/96
−3/16
−5/48
−11/96




.

Now delete the third, fifth, and seventh equations by deleting the third, fifth, and
seventh rows and columns of K and the third, fifth, and seventh entries of C, B
and N ,




47/12 −97/24 0 0 0
−97/24 47/6 −97/24 0 0

0 −97/24 47/6 −97/24 0
0 0 −97/24 47/6 −97/24
0 0 0 −97/24 47/12







a1

a2

a3

a4

a5




=




−Y (1)′(0)
0
0
0

Y (4)′(1)




+




−1/96
−1/16
−1/8
−3/16
−11/96


 .

Points to notice again are that the stiffness matrix is symmetric and zero entries
correspond to uncoupled nodes. Derivatives at interior nodes have been eliminated
and only the values a2, a3, and a4 of the approximation at these nodes remain. The
final step is to incorporate boundary conditions 16.20b,c. They require a1 = 2 and
Y (2)′(1) = 1,




47/12 −97/24 0 0 0
−97/24 47/6 −97/24 0 0

0 −97/24 47/6 −97/24 0
0 0 −97/24 47/6 −97/24
0 0 0 −97/24 47/12







2
a2

a3

a4

a5




=




−Y (1)′(0)
0
0
0
1




+




−1/96
−1/16
−1/8
−3/16
−11/96


 .
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These are now solved for a2, a3, a4, and a5.
In the exercises we provide a template for system equations for linear approxi-

mations to self-adjoint, second-order differential equations.

EXERCISES 16.3

1. In Exercise 7 of Section 16.2, element equations for a linear approximation

Y1(x) = c1φ1(x) + c2φ2(x) = c1

(
x− x2

x1 − x2

)
+ c2

(
x− x1

x2 − x1

)
,

to the solution of the self-adjoint, second-order differential equation

d

dx

[
α(x)

dY

dx

]
+ β(x)Y = F (x).

on the interval x1 ≤ x ≤ x2 were shown to be

KC = B +N,

where

K =
(
K11 K12

K21 K22

)
=




∫ x2

x1

[α(φ′1)
2 − β(φ1)2] dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

(αφ′2φ
′
1 − βφ1φ2) dx

∫ x2

x1

[α(φ′2)
2 − β(φ2)2] dx


 ,

C =
(
c1
c2

)
, B =

({
αY ′

1φ1

}x2

x1{
αY ′

1φ2

}x2

x1

)
, N =




−
∫ x2

x1

Fφ1 dx

−
∫ x2

x1

Fφ2 dx


 .

Show that system equations for a two-element, linear approximation

Y2(x) =





Y (1)(x) = c
(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) = c

(1)
1

x− x2

x1 − x2
+ c

(1)
2

x− x1

x2 − x1
, x1 ≤ x ≤ x2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) = c

(2)
1

x− x3

x2 − x3
+ c

(2)
2

x− x2

x3 − x2
, x2 < x ≤ x3,

on the interval x1 ≤ x ≤ x3 can be written in the form


K

(1)
11 K

(1)
12 0

K
(1)
21 K

(1)
22 +K

(2)
11 K

(2)
12

0 K
(2)
21 K

(2)
22






a1

a2

a3


 =




−α(x1)Y (1)′(x1)
0

α(x3)Y (2)′(x3)


+




−
∫ x2

x1
Fφ

(1)
1 dx

−
∫ x2

x1
Fφ

(1)
2 dx−

∫ x3

x2
Fφ

(2)
1 dx

−
∫ x3

x2
Fφ

(2)
2 dx


 ,

where a1, a2, and a3 are values of Y2(x) at nodes x1, x2, and x3, respectively.

2. Show that system equations for a four-element, linear approximation

Y4(x) =





Y (1)(x), x1 ≤ x ≤ x2,
Y (2)(x), x2 < x ≤ x3,
Y (3)(x), x3 < x ≤ x4,
Y (4)(x), x4 < x ≤ x5,

where
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Y (i)(x) = c
(i)
1 φ

(i)
1 (x) + c

(i)
2 φ

(i)
2 (x) = c

(i)
1

x− xi+1

xi − xi+1
+ c

(i)
2

x− xi

xi+1 − xi
, i = 1, . . . , 4.

to the differential equation in Exercise 1 on the interval x1 ≤ x ≤ x5 can be written in the form



K
(1)
11 K

(1)
12 0 0 0

K
(1)
21 K

(1)
22 +K

(2)
11 K

(2)
12 0 0

0 K
(2)
21 K

(2)
22 +K

(3)
11 K

(3)
12 0

0 0 K
(3)
21 K

(3)
22 +K

(4)
11 K

(4)
12

0 0 0 K
(4)
21 K

(4)
22







a1

a2

a3

a4

a5




=




−α(x1)Y (1)′(x1)
0
0
0

α(x5)Y (4)′(x5)




+




−
∫ x2

x1
Fφ

(1)
1 dx

−
∫ x2

x1
Fφ

(1)
2 dx−

∫ x3

x2
Fφ

(2)
1 dx

−
∫ x3

x2
Fφ

(2)
2 dx−

∫ x4

x3
Fφ

(3)
1 dx

−
∫ x4

x3
Fφ

(3)
2 dx−

∫ x5

x4
Fφ

(4)
1 dx

−
∫ x5

x4
Fφ

(4)
2 dx



.

3. (a) Find the exact solution of the boundary value problem

d

dx

(
x
dY

dx

)
= x3, 1 < x < 2,

Y ′(1) = 1, Y (2) = 2,

(b) Use the template of Exercise 1 to show that system equations for a two-element, linear
approximation to the solution of the boundary value problem are




5/2 −5/2 0
−5/2 6 −7/2

0 −7/2 7/2





a1

a2

a3


 =




−Y (1)′(1)
0

2Y (2)′(2)


+




−131/320
−22/15

−499/320


 .

(c) Show that the stiffness matrix is singular. Can you explain why this must be so?
(d) Apply the boundary conditions to find a1, a2, and a3. Plot the approximation and the exact

solution.

4. (a) Use the template of Exercise 2 to show that system equations for a four-element, linear
approximation to the solution of the boundary value problem in Exercise 3 are



9/2 −9/2 0 0 0
−9/2 10 −11/2 0 0

0 −11/2 12 −13/2 0
0 0 −13/2 14 −15/2
0 0 0 −15/2 15/2







a1

a2

a3

a4

a5


 =




−Y (1)′(1)
0
0
0

2Y (4)′(2)




+




−625/1024
−763/2560
−219/256
−693/512

−4519/5120


 .

(b) Show that the stiffness matrix is singular. The reason for this was explained in Exercise 3.
(c) Apply the boundary conditions to find a1, a2, a3, a4, and a5. Plot the approximation and

the exact solution.

5. (a) Find the exact solution of the boundary value problem in Exercise 3 if the Dirichlet boundary
condition Y (2) = 2 is replaced by the Robin condition Y ′(2) + 3Y (2) = 1.

(b) Use the template of Exercise 1 to find a two-element, linear approximation. Plot the exact



698 SECTION 16.3

solution and the approximation.

6. Repeat Exercise 5 with the four-element, linear approximation of Exercise 2.

7. According to Exercise 6 in Section 16.2, system equations for a two-element, quadratic approx-
imation to differential equation 16.4a are




23/5 −161/30 41/60 0 0 0
−161/30 52/5 −161/30 0 0 0
41/60 −161/30 23/5 0 0 0

0 0 0 23/5 −161/30 41/60
0 0 0 −161/30 52/5 −161/30
0 0 0 41/60 −161/30 23/5







c
(1)
1

c
(1)
2

c
(1)
3

c
(2)
1

c
(2)
2

c
(2)
3




=




−Y (1)′(0)
0

Y (1)′(1/2)
−Y (2)′(1/2)

0
Y (2)′(1)




+




0
−1/12
−1/24
−1/24
−1/4
−1/12



.

Incorporate interelement boundary conditions to show that these equations can be written in
terms of nodal values of the approximation as follows:




23/5 −161/30 41/60 0 0
−161/30 52/5 −161/30 0 0
41/60 −161/30 46/5 −161/30 41/60

0 0 −161/30 52/5 −161/30
0 0 41/60 −161/30 23/5







a1

a2

a3

a4

a5




=




−Y (1)′(0)
0
0
0

Y (2)′(1)




+




0
−1/12
−1/12
−1/4
−1/12




8. In Exercise 8 of Section 16.2, element equations for a quadratic approximation

Y1(x) = c1φ1(x) + c2φ2(x) + c3φ3(x),

to the solution of the self-adjoint, second-order differential equation

d

dx

[
α(x)

dY

dx

]
+ β(x)Y = F (x).

on the interval x1 ≤ x ≤ x2 were shown to be

KC = B +N,

where

K =



K11 K12 K13

K21 K22 K23

K31 K32 K33
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=




∫ x2

x1

[α(φ′1)
2 − β(φ1)2] dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

(αφ′1φ
′
3 − βφ1φ3) dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

[α(φ′2)
2 − β(φ2)2] dx

∫ x2

x1

(αφ′2φ
′
3 − βφ2φ3) dx

∫ x2

x1

(αφ′1φ
′
3 − βφ1φ3) dx

∫ x2

x1

(αφ′2φ
′
3 − βφ2φ3) dx

∫ x2

x1

[α(φ′3)
2 − β(φ3)2] dx



,

C =



c1
c2
c3


 , B =




{
αY ′

1φ1

}x2

x1{
αY ′

1φ2

}x2

x1{
αY ′

1φ3

}x2

x1


 , N =




−
∫ x2

x1

Fφ1 dx

−
∫ x2

x1

Fφ2 dx

−
∫ x2

x1

Fφ3 dx



.

Basis functions are given in equations 16.16. Show that system equations for a two-element,
quadratic approximation

Y2(x) =

{
Y (1)(x) = c

(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) + c

(1)
3 φ

(1)
3 (x), x1 ≤ x ≤ x3

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) + c

(2)
3 φ

(2)
3 (x), x3 < x ≤ x5,

on the interval x1 ≤ x ≤ x5 can be written in the form



K
(1)
11 K

(1)
12 K

(1)
13 0 0

K
(1)
21 K

(1)
22 K

(1)
23 0 0

K
(1)
31 K

(1)
32 K

(1)
33 +K

(2)
11 K

(2)
12 K

(2)
13

0 0 K
(2)
21 K

(2)
22 K

(2)
23

0 0 K
(2)
31 K

(2)
32 K

(2)
33







a1

a2

a3

a4

a5


=




−α(x1)Y (1)′(x1)
0
0
0

α(x5)Y (2)′(x5)




+




−
∫ x3

x1
Fφ

(1)
1 dx

−
∫ x3

x1
Fφ

(1)
2 dx

−
∫ x3

x1
Fφ

(1)
3 dx−

∫ x5

x3
Fφ

(2)
1 dx

−
∫ x5

x3
Fφ

(2)
2 dx

−
∫ x5

x3
Fφ

(2)
3 dx



,

where a1, a2, a3, a4, and a5 are values of Y2(x) at nodes x1, x2, x3, x4, and x5, respectively.

9. Use the template of Exercise 8 to find a two-element, quadratic approximation to the solution of
the boundary value problem in Exercise 3. Tabulate the exact solution and the approximation.



700 SECTION 16.4

§16.4 One-dimensional Isoparametric Elements

In Section 16.2, we employed what might be called a direct method for constructing
polynomial basis functions which turned out to be Lagrange interpolation formulas.
In this section, we develop what are called isoparametric elements; they are
indispensable in higher dimensional problems. Essentially what we do is develop
polynomial approximations in an abstract coordinate, and then map them to each
element in the mesh. To illustrate with quadratic approximations, we begin by
setting up quadratic basis functions φi(ξ) on the interval −1 ≤ ξ ≤ 1, called the
parent element, that satisfy conditions 16.3. Using equations 16.16, they are

φ1(ξ) =
ξ(ξ − 1)

2
, φ2(ξ) = (1 + ξ)(1− ξ), φ3(ξ) =

ξ(ξ + 1)
2

. (16.23)

These basis functions, called the parent basis functions, are to be mapped to basis
functions on each element in some mesh. This is accomplished through a coordinate
transformation between ξ and x on each element. Suppose the ith element has
nodes identified by x1 < x2 < x3. We could denote these by x(i)

1 , x(i)
2 , and x(i)

3 , but
calculations are less cumbersome without the superscripts, and we can insert them
later. Keep in mind, however, that what we are doing is being done on each element
of the mesh. If the coordinate transformation is expressed in the form x = f(ξ),
then for ξ-nodes to be mapped to x-nodes, it must satisfy

x1 = f(−1), x2 = f(0), x3 = f(1). (16.24)

One transformation, among others, that accomplishes this is

x = φ1(ξ)x1 + φ2(ξ)x2 + φ3(ξ)x3

=
ξ(ξ − 1)

2
x1 + (1 + ξ)(1− ξ)x2 +

ξ(ξ + 1)
2

x3. (16.25)

It is called the isoparametric transformation; the parent element is mapped to
every x-element in some mesh in exactly the same way. All that varies from x-
element to x-element is specification of the nodes x1, x2, and x3. Still unspecified in
this transformation is the position of x2. We will make the choice here of x2 being
the midpoint of the interval; other possibilities are considered in the exercises. If
we substitute x2 = (x1 + x3)/2 in equation 16.25, we obtain

x =
ξ(ξ − 1)

2
x1 + (1 + ξ)(1− ξ)

(
x1 + x3

2

)
+
ξ(ξ + 1)

2
x3

=
x1

2
[ξ(ξ − 1) + (1 + ξ)(1− ξ)] +

x3

2
[ξ(ξ + 1) + (1 + ξ)(1− ξ)]

=
1
2
(1− ξ)x1 +

1
2
(1 + ξ)x3.

Thus, mapping 16.25, which generally is quadratic in ξ, is linear when node x2 is
chosen as the midpoint of the interval. The inverse mapping is

ξ =
2x− x1 − x3

x3 − x1
. (16.26)

Substitution of this into equations 16.23 yields basis functions on the interval x1 ≤
x ≤ x3 corresponding to the parental basis functions. For instance,



SECTION 16.4 701

φ1(x) =
1
2

(
2x− x1 − x3

x3 − x1

)(
2x− x1 − x3

x3 − x1
− 1
)

=
1
2

(
2x− x1 − x3

x3 − x1

)(
2x− x1 − x3 − x3 + x1

x3 − x1

)

=
[

2x− 2x2

2(x2 − x1)

](
x− x3

x3 − x1

)
=

(x− x2)(x− x3)
(x2 − x1)(x3 − x1)

.

This is the Lagrange interpolation formula that we developed directly in Section
16.2. Basis functions φ2(ξ) and φ3(ξ) in equations 16.23 lead to the other two
Lagrange formulas in Section 16.2. This is a direct result of the choice of x2 as the
midpoint of the interval. Basis functions φi(x) have the same shape as the φi(ξ);
parabolas have simply been rescaled from the interval −1 ≤ ξ ≤ 1 to x1 ≤ x ≤ x3.
Other choices of x2 lead to very different basis functions φi(x) (see Exercise 1).

EXERCISES 16.4

1. Draw basis functions φi(x) corresponding to functions 16.23 when x2 = x1 + (x3 − x1)/4.
2. (a) What are the linear parent functions φ1(ξ) and φ2(ξ) on the interval −1 ≤ ξ ≤ 1 satisfying

equations 16.3?
(b) Use the isoparametric transformation x = φ1(ξ)x1 +φ2(ξ)x2 to show that Lagrange interpo-

lation formulas are obtained for the basis functions φ1(x) and φ2(x).
3. (a) What are the cubic parent functions φ1(ξ), φ2(ξ), φ3(ξ), and φ4(ξ) on the interval −1 ≤ ξ ≤ 1

satisfying equations 16.3?
(b) Use the isoparametric transformation

x = φ1(ξ)x1 + φ2(ξ)x2 + φ3(ξ)x3 + φ4(ξ)x4

with equally spaced nodes x2 = x1 + (x4 − x1)/3 and x3 = x1 + 2(x4 − x1)/3 to show that
Lagrange interpolation formulas are obtained for the basis functions φ1(x), φ2(x), φ3(x),
and φ4(x).
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§16.5 Finite Elements and Sturm-Liouville Systems

In Section 15.4, we used the MWR to approximate eigenvalues and eigenfunctions
of Sturm-Liouville systems. We can do the same with finite elements. The method
reduces the Sturm-Liouville eigenvalue problem to a matrix eigenvalue problem. We
illustrate with system 15.34,

X ′′ + λ(1− x2)X = 0, 0 < x < 1, (16.27a)
X(0) = 0, X ′(1) = 0. (16.27b)

Suppose we seek linear approximations on multiple elements for the eigenfunctions
of the system. We adopt the procedure in Section 16.2 of first deriving element
equations on an arbitrary interval x1 ≤ x ≤ x2, and then using these element
equations to write system equations for multiple elements. The (equation) residual
associated with a linear approximation

X1(x) = c1φ1(x) + c2φ2(x) = c1

(
x− x2

x1 − x2

)
+ c2

(
x− x1

x2 − x1

)

is

R = X ′′
1 + λ(1 − x2)X1.

Galerkin’s method requires

0 =
∫ x2

x1

[X ′′
1 + λ(1− x2)X1]φ1 dx, 0 =

∫ x2

x1

[X ′′
1 + λ(1 − x2)X1]φ2 dx.

Integration by parts on the second derivative term in the first equation gives

0 =
{
X ′

1φ1

}x2

x1
+
∫ x2

x1

[−X ′
1φ

′
1 + λ(1 − x2)X1φ1] dx

= X ′
1(x2)φ1(x2) −X ′

1(x1)φ1(x1) +
∫ x2

x1

[−X ′
1φ

′
1 + λ(1− x2)X1φ1] dx.

The first term vanishes because φ1(x2) = 0. We now replace X1 by c1φ1 + c2φ2 in
the integral,

0 = −X ′
1(x1) +

∫ x2

x1

[−(c1φ′1 + c2φ
′
2)φ

′
1 + λ(1 − x2)(c1φ1 + c2φ2)φ1] dx.

A similar calculation with the second Galerkin requirement yields

0 = X ′
1(x2) +

∫ x2

x1

[−(c1φ′1 + c2φ
′
2)φ

′
2 + λ(1 − x2)(c1φ1 + c2φ2)φ2] dx.

These equations can be expressed in the form

KC = λMC +B, (16.28a)

where

K =




∫ x2

x1

(φ′1)
2 dx

∫ x2

x1

φ′1φ
′
2 dx

∫ x2

x1

φ′1φ
′
2 dx

∫ x2

x1

(φ′2)
2 dx


 , C =

(
c1
c2

)
, (16.28b)
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and

M =




∫ x2

x1

(1 − x2)φ2
1 dx

∫ x2

x1

(1 − x2)φ1φ2 dx
∫ x2

x1

(1− x2)φ1φ2 dx

∫ x2

x1

(1− x2)φ2
2 dx


 , B =

(
−X ′

1(x1)
X ′

1(x2)

)
.(16.29c)

When we set x1 = 0 and x2 = 1, and evaluate integrals, the element equations
become

(
1 −1
−1 1

)(
c1
c2

)
= λ

(
3/10 7/60
7/60 7/15

)(
c1
c2

)
+
(
−X ′

1(0)
X ′

1(1)

)
.

To satisfy the second of boundary conditions 16.27b, we implicitly set X ′
1(1) = 0.

To satisfy the first of the boundary conditions, we explicitly demand thatX1(0) = 0,
and this implies that c1 = 0. The system equations now read

(
1 −1
−1 1

)(
0
c2

)
= λ

(
3/10 7/60
7/60 7/15

)(
0
c2

)
+
(
−X ′

1(0)
0

)
.

The second equation requires c2 = 7λc2/15, from which λ = 15/7. This is the first
approximation to the smallest eigenvalue (which we know to be 5.122). Suppose we
now use a two-element, linear approximation

X2(x) =





X(1)(x) = c
(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) = c

(1)
1

x− 1/2
−1/2

+ c
(1)
2

x− 0
1/2

, 0 ≤ x ≤ 1/2

X(2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) = c

(2)
1

x− 1
−1/2

+ c
(2)
2

x− 1/2
1/2

, 1/2 < x ≤ 1

=

{
c
(1)
1 (1 − 2x) + c

(1)
2 (2x), 0 ≤ x ≤ 1/2

c
(2)
1 (2 − 2x) + c

(2)
2 (2x− 1), 1/2 < x ≤ 1.

System equations are



2 −2 0 0
−2 2 0 0
0 0 2 −2
0 0 −2 2







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2


 = λ




13/80 37/480 0 0
37/480 17/120 0 0

0 0 1/10 17/480
0 0 17/480 3/80







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2




+




−X(1)′(0)
X(1)′(1/2)
−X(2)′(1/2)
X(2)′(1)


 .

To satisfy boundary conditions 16.27b we explicitly demand that c(1)1 = 0 and
implicitly require X(2)′(1) = 0. Interelement boundary conditions are c(2)1 = c

(1)
2

and X(2)′(1/2) = X(1)′(1/2). With these, system equations reduce to


2 −2 0 0
−2 2 0 0
0 0 2 −2
0 0 −2 2







0
c
(2)
1

c
(2)
1

c
(2)
2


 = λ




13/80 37/480 0 0
37/480 17/120 0 0

0 0 1/10 17/480
0 0 17/480 3/80







0
c
(2)
1

c
(2)
1

c
(2)
2




+




−X(1)′(0)
X(1)′(1/2)
−X(1)′(1/2)

0


 .
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We now add the third equation to the second,




2 −2 0 0
−2 2 2 −2
0 0 2 −2
0 0 −2 2







0
c
(2)
1

c
(2)
1

c
(2)
2


 = λ




13/80 37/480 0 0
37/480 17/120 1/10 17/480

0 0 1/10 17/480
0 0 17/480 3/80







0
c
(2)
1

c
(2)
1

c
(2)
2




+




−X(1)′(0)
0

−X(1)′(1/2)
0


 .

The second and fourth equations give

4c(2)1 − 2c(2)2 = λ

(
29
120

c
(2)
1 +

17
480

c
(2)
2

)
,

−2c(2)1 + 2c(2)2 = λ

(
17
480

c
(2)
1 +

3
80
c
(2)
2

)
,

which we could write matrically as
(

4 −2
−2 2

)(
c
(2)
1

c
(2)
2

)
= λ

(
29/120 17/480
17/480 3/80

)(
c
(2)
1

c
(2)
2

)
.

This is a matrix eigenvalue problem. Eigenvalues are given by

0 =
∣∣∣∣

4 − 29λ/120 −2 − 17λ480
−2 − 17λ/480 2− 3λ/80

∣∣∣∣ =⇒ λ = 5.462, 93.79.

The smaller value is a second approximation to the smallest eigenvalue of Sturm-
Liouville system 16.27; the larger value is a first approximation to the second eigen-
value of the Sturm-Liouville system. (See Exercise 1 for a four-element, linear
approximation, and Exercise 2 for a one-element, quadratic approximation.)

EXERCISES 16.5

1. Find a third approximation for the smallest eigenvalue of Sturm-Liouville system 16.27 using a
four-element, linear approximation.

2. Find an approximation for the smallest eigenvalue of Sturm-Liouville system 16.27 using a
one-element, quadratic approximation.

3. The smallest eigenvalue of the Sturm-Liouville system

X ′′ + λX = 0, 0 < x < 1,
X ′(0) = X(1) = 0,

is known to be π2/4 (see Table 5.1 in Section 5.2).
(a) What is the estimate of this value using a one-element linear approximation?
(b) What is the estimate using a two-element linear approximation?
(c) What is the estimate using a one-element quadratic approximation?
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4. Repeat Exercise 3 for the Sturm-Liouville system

X ′′ + λX = 0, 0 < x < 1,
−X ′(0) + 2000X(0) = 0, X ′(1) = 0.

To two decimals, the smallest eigenvalue is 2.46 (see Exercise 21 in Section 5.2).

5. Repeat Exercise 3 for the Sturm-Liouville system

d

dr

(
r
dR

dr

)
+ λrR = 0, 0 < r < 1,

R(1) = 0.

To two decimals, the smallest eigenvalue is 5.78 (see Example 8.3 in Section 8.4).
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§16.6 Approximations With Continuous First Derivatives

Basis functions in Sections 16.2 and 16.4 were infinitely differentiable polynomials,
resulting in infinitely differentiable approximations on each element. When ele-
ments were assembled, we explicitly demanded continuity of the approximation at
all interior nodes. As a result, the global approximation was a continuous function.
Such approximations are said to be C0, meaning continuous. At interior nodes, we
implicitly demanded equality of the first derivative from adjoining elements, and
as a result, the global approximation did not have a continuous first derivative at
interior nodes. In this section, we discuss how this can be achieved; that is, how
to find global approximations that have continuous first derivatives everywhere,
including at interior nodes. These approximations will be said to be C1, having
continuous first derivatives. We take the direct approach in developing appropriate
basis functions, but an isoparametric approach is also possible.

Suppose the ith element of some mesh has nodes identified by its end points
x1 and x2. As noted in Section 16.4, we could denote these by x

(i)
1 and x

(i)
2 , but

calculations are less cumbersome without the superscripts, and we can insert them
later. Keep in mind, however, that what we are doing is being done on each element
of the mesh. Linear basis functions φ1(x) and φ2(x) in Section 16.2 were such that
an approximation on the interval x1 < x < x2 could be expressed in the form

c1φ1(x) + c2φ2(x),

where c1 and c2 were values of the approximation at x1 and x2, respectively. Basis
functions satisfied property 16.3. We now want basis functions φ1(x), φ2(x), φ3(x),
and φ4(x) so that approximations can be expressed in the form

c1φ1(x) + c2φ2(x) + c3φ3(x) + c4φ4(x),

where c1 and c3 represent values of the approximation at nodes x1 and x2, and c2
and c4 represent values of the derivative of the approximation at these nodes. This
requires the basis functions to satisfy the following sixteen conditions

φ1(x1) = 1, φ2(x1) = 0, φ3(x1) = 0, φ4(x1) = 0, (16.30a)
φ1(x2) = 0, φ2(x2) = 0, φ3(x2) = 1, φ4(x2) = 0, (16.30b)
φ′1(x1) = 0, φ′2(x1) = 1, φ3(x1) = 0, φ′4(x1) = 0, (16.30c)
φ′1(x2) = 0, φ′2(x2) = 0, φ′3(x2) = 0, φ′4(x2) = 1. (16.30d)

Since each function must satisfy four conditions, they must be cubic polynomials.
For instance, if φ1(x) = a1 + a2x+ a3x

2 + a4x
3, then coefficients must satisfy

1 = a1 + a2x1 + a3x
2
1 + a4x

3
1, 0 = a1 + a2x2 + a3x

2
2 + a4x

3
2,

0 = a2 + 2a3x1 + 3a4x
2
1, 0 = a2 + 2a3x2 + 3a4x

2
2.

The solution is a1 =
x2

2(x2 − 3x1)
(x2 − x1)3

, a2 =
6x1x2

(x2 − x1)3
, a3 =

−3(x1 + x2)
(x2 − x1)3

, and

a4 =
2

(x2 − x1)3
, so that

φ1(x) =
1

(x2 − x1)3
[x2

2(x2 − 3x1) + 6x1x2x− 3(x1 + x2)x2 + 2x3].
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This can be rewritten in the form

φ1(x) = 1 − 3
(
x− x1

x2 − x1

)2

+ 2
(
x− x1

x2 − x1

)3

. (16.31a)

Similar calculations lead to

φ2(x) = (x− x1)
(

1 − x− x1

x2 − x1

)2

, (16.31b)

φ3(x) =
(
x− x1

x2 − x1

)2 [
3 − 2(x− x1)

x2 − x1

]
, (16.31c)

φ4(x) = − (x− x1)2

x2 − x1

(
1 − x− x1

x2 − x1

)
. (16.31d)

By introducing the quantity s =
x− x1

x2 − x1
, the basis functions can also be expressed

in the form

φ1(x) = 1 − 3s2 + 2s3, φ2(x) = (x2 − x1)s(1− s)2,
φ3(x) = s2(3 − 2s), φ4(x) = (x2 − x1)s2(s− 1).

They are called Hermite interpolation polynomials. Notice how their graphs
in Figures 16.8 adhere to conditions 16.30.

x

1
1

1/2

1/2 1

f

x1/2 1

f20.2

0.1

Slope = 1

Figure 16.8a Figure 16.8b

x

1
3

1/2

1/2 1

f

x
4

1/2 1

f

-0.1

-0.2

Slope = 1

Figure 16.8c Figure 16.8d

Let us use these basis functions to find a two-element, C1 approximation to the
solution of problem 16.4,

d2Y

dx2
+ Y = x, 0 < x < 1, (16.32a)

Y (0) = 2, (16.32b)
Y ′(1) = 1, (16.32c)



708 SECTION 16.6

and compare it to the two-element, linear, C0 approximation in Section 16.2. In
preparation for this, we develop element equations for a one-element, C1 approxi-
mation

Y1(x) = c1φ1(x) + c2φ2(x) + c3φ3(x) + c4φ4(x) (16.33)

on an arbitrary interval x1 ≤ x ≤ x2. Galerkin’s method applied to the residual

R = Y ′′
1 (x) + Y1(x)− x

requires

0 =
∫ x2

x1

[Y ′′
1 (x) + Y1(x)− x]φi(x) dx, i = 1, 2, 3, 4.

Integration by parts gives

0 =
{
Y ′

1φi

}x2

x1
−
∫ x2

x1

Y ′
1φ

′
i dx+

∫ x2

x1

(Y1 − x)φi dx.

If we now substitute Y1 = c1φ1 + c2φ2 + c3φ3 + c4φ4 in the integrals,

0 =
{
Y ′

1φi

}x2

x1
−
∫ x2

x1

(c1φ′1 + c2φ
′
2 + c3φ

′
3 + c4φ

′
4)φ

′
i dx

+
∫ x2

x1

(c1φ1 + c2φ2 + c3φ3 + c4φ4 − x)φi dx.

This can be written in the form

c1

∫ x2

x1

(φ′1φ
′
i − φ1φi) dx+ c2

∫ x2

x1

(φ′2φ
′
i − φ2φi) dx+ c3

∫ x2

x1

(φ′3φ
′
i − φ3φi) dx

+ c4

∫ x2

x1

(φ′4φ
′
i − φ4φi) dx =

{
Y ′

1φi

}x2

x1
−
∫ x2

x1

xφi dx.

When all four equations (i = 1, 2, 3, 4) are assembled into one matrix equation, the
result is

KC = B +N, (16.34a)

where K is the matrix



∫ x2

x1

[(φ′1)
2 − φ2

1] dx
∫ x2

x1

(φ′1φ
′
2 − φ1φ2) dx

∫ x2

x1

(φ′1φ
′
3 − φ1φ3) dx

∫ x2

x1

(φ′1φ
′
4 − φ1φ4) dx

∫ x2

x1

(φ′2φ
′
1 − φ2φ1) dx

∫ x2

x1

[(φ′2)
2 − φ2

2] dx
∫ x2

x1

(φ′3φ
′
2 − φ3φ2) dx

∫ x2

x1

(φ′4φ
′
2 − φ4φ2) dx

∫ x2

x1

(φ′3φ
′
1 − φ3φ1) dx

∫ x2

x1

(φ′3φ
′
2 − φ3φ2) dx

∫ x2

x1

[(φ′3)
2 − φ2

3] dx
∫ x2

x1

(φ′3φ
′
4 − φ3φ4) dx

∫ x2

x1

(φ′4φ
′
1 − φ4φ1) dx

∫ x2

x1

(φ′4φ
′
2 − φ4φ2) dx

∫ x2

x1

(φ′4φ
′
3 − φ4φ3) dx

∫ x2

x1

[(φ′4)
2 − φ2

4] dx




,

(16.34b)
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C =



c1
c2
c3
c4


 , B =




{
Y ′

1φ1

}x2

x1{
Y ′

1φ2

}x2

x1{
Y ′

1φ3

}x2

x1{
Y ′

1φ4

}x2

x1


 , N =




−
∫ x2

x1

xφ1 dx

−
∫ x2

x1

xφ2 dx

−
∫ x2

x1

xφ3 dx

−
∫ x2

x1

xφ4 dx




. (16.34c)

These are the element equations for four-term C1 approximation 16.33 to the solu-
tion of problem 16.32 on an arbitrary interval x1 ≤ x ≤ x2. There will be one set
for each of the elements in a two-element C1-approximation

Y2(x) =

{
Y (1)(x) = c

(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) + c

(1)
3 φ

(1)
3 (x) + c

(1)
4 φ

(1)
4 (x), 0 ≤ x ≤ 1/2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) + c

(2)
3 φ

(2)
3 (x) + c

(2)
4 φ

(2)
4 (x), 1/2 < x ≤ 1.

When integrals are evaluated, the resulting system equations are




31/14 73/840 −69/28 181/1680 0 0 0 0
73/840 11/168 −181/1680 −53/3360 0 0 0 0
−69/28 −181/1680 31/14 −73/840 0 0 0 0

181/1680 −53/3360 −73/840 11/168 0 0 0 0
0 0 0 0 31/14 73/840 −69/28 181/1680
0 0 0 0 73/840 11/168 −181/1680 −53/3360
0 0 0 0 −69/28 −181/1680 31/14 −73/840
0 0 0 0 181/1680 −53/3360 −73/840 11/168




∗




c
(1)
1

c
(1)
2

c
(1)
3

c
(1)
4

c
(2)
1

c
(2)
2

c
(2)
3

c
(2)
4




=




{
Y (1)′φ

(1)
1

}1/2

0{
Y (1)′φ

(1)
2

}1/2

0{
Y (1)′φ

(1)
3

}1/2

0{
Y (1)′φ

(1)
4

}1/2

0{
Y (2)′φ

(2)
1

}1

1/2{
Y (2)′φ

(2)
2

}1

1/2{
Y (2)′φ

(2)
3

}1

1/2{
Y (2)′φ

(2)
4

}1

1/2




+




−3/80
−1/240
−7/80
1/160
−13/80
−7/480
−17/80
1/60




.

Interelement boundary conditions are c
(1)
3 = c

(2)
1 , c(1)4 = c

(2)
2 , and Y (1)′(1/2) =

Y (2)′(1/2). With these, the system equations reduce to
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31/14 73/840 −69/28 181/1680 0 0 0 0
73/840 11/168 −181/1680 −53/3360 0 0 0 0
−69/28 −181/1680 31/14 −73/840 0 0 0 0

181/1680 −53/3360 −73/840 11/168 0 0 0 0
0 0 0 0 31/14 73/840 −69/28 181/1680
0 0 0 0 73/840 11/168 −181/1680 −53/3360
0 0 0 0 −69/28 −181/1680 31/14 −73/840
0 0 0 0 181/1680 −53/3360 −73/840 11/168




∗




c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

c
(2)
1

c
(2)
2

c
(2)
3

c
(2)
4




=




−Y (1)′(0)
0

Y (1)′(1/2)
0

−Y (1)′(1/2)
0

Y (2)′(1)
0




+




−3/80
−1/240
−7/80
1/160
−13/80
−7/480
−17/80
1/60




.

There are now six unknowns, values of the approximation and its first derivative at
the three nodes x1, x2, and x3. If we denote these by a1 and a2, a3 and a4, and a5

and a6, respectively, the equations are



31/14 73/840 −69/28 181/1680 0 0 0 0
73/840 11/168 −181/1680 −53/3360 0 0 0 0
−69/28 −181/1680 31/14 −73/840 0 0 0 0

181/1680 −53/3360 −73/840 11/168 0 0 0 0
0 0 0 0 31/14 73/840 −69/28 181/1680
0 0 0 0 73/840 11/168 −181/1680 −53/3360
0 0 0 0 −69/28 −181/1680 31/14 −73/840
0 0 0 0 181/1680 −53/3360 −73/840 11/168




∗




a1

a2

a3

a4

a3

a4

a5

a6




=




−Y (1)′(0)
0

Y (1)′(1/2)
0

−Y (1)′(1/2)
0

Y (2)′(1)
0




+




−3/80
−1/240
−7/80
1/160
−13/80
−7/480
−17/80
1/60




.

We now add the fifth equation to the third, and the sixth equation to the fourth,



31/14 73/840 −69/28 181/1680 0 0 0 0
73/840 11/168 −181/1680 −53/3360 0 0 0 0
−69/28 −181/1680 31/14 −73/840 31/14 73/840 −69/28 181/1680

181/1680 −53/3360 −73/840 11/168 73/840 11/168 −181/1680 −53/3360
0 0 0 0 31/14 73/840 −69/28 181/1680
0 0 0 0 73/840 11/168 −181/1680 −53/3360
0 0 0 0 −69/28 −181/1680 31/14 −73/840
0 0 0 0 181/1680 −53/3360 −73/840 11/168




∗
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a1

a2

a3

a4

a3

a4

a5

a6




=




−Y (1)′(0)
0
0
0

−Y (1)′(1/2)
0

Y (2)′(1)
0




+




−3/80
−1/240
−1/4

−1/120
−13/80
−7/480
−17/80
1/60




.

In preparation for elimination of the fifth and sixth equations, we add column five
of the stiffness matrix to column three, and column six to column four,



31/14 73/840 −69/28 181/1680 0 0 0 0
73/840 11/168 −181/1680 −53/3360 0 0 0 0
−69/28 −181/1680 31/7 0 31/14 73/840 −69/28 181/1680

181/1680 −53/3360 0 11/84 73/840 11/168 −181/1680 −53/3360
0 0 31/14 73/840 31/14 73/840 −69/28 181/1680
0 0 73/840 11/168 73/840 11/168 −181/1680 −53/3360
0 0 −69/28 −181/1680 −69/28 −181/1680 31/14 −73/840
0 0 181/1680 −53/3360 181/1680 −53/3360 −73/840 11/168




∗




a1

a2

a3

a4

a3

a4

a5

a6




=




−Y (1)′(0)
0
0
0

−Y (1)′(1/2)
0

Y (2)′(1)
0




+




−3/80
−1/240
−1/4

−1/120
−13/80
−7/480
−17/80
1/60




.

Now eliminate rows five and six of the stiffness matrix, and columns five and six,
and fifth and sixth entries of the remaining matrices,



31/14 73/840 −69/28 181/1680 0 0
73/840 11/168 −181/1680 −53/3360 0 0
−69/28 −181/1680 31/7 0 −69/28 181/1680

181/1680 −53/3360 0 11/84 −181/1680 −53/3360
0 0 −69/28 −181/1680 31/14 −73/840
0 0 181/1680 −53/3360 −73/840 11/168



∗




a1

a2

a3

a4

a5

a6




=




−Y (1)′(0)
0
0
0

Y (2)′(1)
0




+




−3/80
−1/240
−1/4
−1/120
−17/80
1/60



.

The boundary conditions require a1 = 2 and Y (2)′(1) = 1 so that


31/14 73/840 −69/28 181/1680 0 0
73/840 11/168 −181/1680 −53/3360 0 0
−69/28 −181/1680 31/7 0 −69/28 181/1680

181/1680 −53/3360 0 11/84 −181/1680 −53/3360
0 0 −69/28 −181/1680 31/14 −73/840
0 0 181/1680 −53/3360 −73/840 11/168



∗
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2
a2

a3

a4

a5

a6




=




−Y (1)′(0)
0
0
0
1
0




+




−3/80
−1/240
−1/4
−1/120
−17/80
1/60



.

The last five equations are

73
420

+
11
168

a2 −
181
1680

a3 −
53

3360
a4 = − 1

240
,

−69
14

− 181
1680

a2 +
31
7
a3 −

69
28
a5 +

181
1680

a6 =
1
4
,

181
840

− 53
3360

a2 +
11
84
a4 −

181
1680

a5 −
53

3360
a6 = − 1

120
,

−69
28
a3 −

181
1680

a4 +
31
14
a5 −

73
840

a6 =
63
80
,

181
1680

a3 −
53

3360
a4 −

73
840

a5 +
11
168

a6 =
1
60
.

The solution is a2 = 4.11862, a3 = 3.74867, a4 = 2.77505, a5 = 4.70163, and
a6 = 0.995161. The two-element, C1 approximation is

Y2(x) =

{
2φ(1)

1 (x) + 4.11862φ(1)
2 (x) + 3.74867φ(1)

3 (x) + 2.77505φ(1)
4 (x), 0 ≤ x ≤ 1/2

3.74867φ(2)
1 (x) + 2.77505φ(2)

2 (x) + 4.70163φ(2)
3 (x) + 0.995161φ(2)

4 (x), 1/2 < x ≤ 1.

Its graph in Figure 16.9 shows continuity of its first derivative at x = 1/2. The graph
is indistinguishable from that of the exact solution Y (x) = 2 cosx+2 tan 1 sinx+x.
We have also tabulated Y (x) and Y2(x) below for comparison.

Y

x

25

4

3

2

1

1/2 1

x Y (x) Y2(x)

0.0 2.00000 2.00000
0.1 2.40097 2.40105
0.2 2.77895 2.77887
0.3 3.13116 3.13103
0.4 3.45509 3.45510
0.5 3.74849 3.74867
0.6 4.00943 4.00946
0.7 4.23630 4.23615
0.8 4.42785 4.42774
0.9 4.58314 4.58323
1.0 4.70163 4.70163

Figure 16.9 Table 16.2

The work in evaluation of integrals in K and N was formidable. Often the same
accuracy is achieved with less work using more elements with C0 continuity. C1

approximations become more attractive when applied to fourth-order differential
equations that are encountered in the bending of beams, plates, and shells. We
illustrate in the next example.
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Example 16.2 Find the exact solution of the boundary value problem

d4Y

dx4
= −5, 0 < x < 1,

Y (0) = Y ′(0) = 0,
Y (1) = Y ′(1) = 0.

(A boundary value problem of this form would arise for static deflections of a beam
that is built in horizontally at each end.) Find a two-element C1-approximation
and compare it to the exact solution.

Solution It is straightforward to integrate the differential equation four times
and apply the boundary conditions to obtain the exact solution

Y (x) = − 5
24
x2(x− 1)2.

In preparation for system equations for a two-element C1-approximation, we develop
element equations for a one-element, C1-approximation

Y1(x) = c1φ1(x) + c2φ2(x) + c3φ3(x) + c4φ4(x) (16.35)

on an arbitrary interval x1 ≤ x ≤ x2. Basis functions are defined in equations 16.31.
Galerkin’s method applied to the residual

R = Y ′′′′
1 (x) + 5

requires

0 =
∫ x2

x1

[Y ′′
1 (x) + 5]φi(x) dx, i = 1, 2, 3, 4.

Two integration by parts give

0 =
{
Y ′′′

1 φi

}x2

x1
−
∫ x2

x1

(Y ′′′
1 φ′i − 5φi) dx

=
{
Y ′′′

1 φi − Y ′′
1 φ

′
i

}x2

x1
+
∫ x2

x1

(Y ′′
1 φ

′′
i + 5φi) dx.

If we now substitute Y1 = c1φ1 + c2φ2 + c3φ3 + c4φ4 in the integral,

0 =
{
Y ′′′

1 φi − Y ′′
1 φ

′
i

}x2

x1
+
∫ x2

x1

(c1φ′′1 + c2φ
′′
2 + c3φ

′′
3 + c4φ

′′
4 )φ′′i dx+

∫ x2

x1

5φi dx.

This can be written in the form

c1

∫ x2

x1

φ′′1φ
′′
i dx+ c2

∫ x2

x1

φ′′2φ
′′
i dx+ c3

∫ x2

x1

φ′′3φ
′′
i dx+ c4

∫ x2

x1

φ′′4φ
′′
i dx

= −
{
Y ′′′

1 φi − Y ′′
1 φ

′
i

}x2

x1
−
∫ x2

x1

5φi dx.

When all four equations (i = 1, 2, 3, 4) are assembled into one matrix equation, the
element equations are
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(∫ x2

x1

φ′′i φ
′′
j dx

)


c1
c2
c3
c4


 =




{
Y ′′

1 φ
′
1 − Y ′′′

1 φ1

}x2

x1{
Y ′′

1 φ
′
2 − Y ′′′

1 φ2

}x2

x1{
Y ′′

1 φ
′
3 − Y ′′′

1 φ3

}x2

x1{
Y ′′

1 φ
′
4 − Y ′′′

1 φ4

}x2

x1


+




−
∫ x2

x1

5φ1 dx

−
∫ x2

x1

5φ2 dx

−
∫ x2

x1

5φ3 dx

−
∫ x2

x1

5φ4 dx




.

For a two-element C1-approximation,

Y2(x) =

{
Y (1)(x) = c

(1)
1 φ

(1)
1 (x) + c

(1)
2 φ

(1)
2 (x) + c

(1)
3 φ

(1)
3 (x) + c

(1)
4 φ

(1)
4 (x), 0 ≤ x ≤ 1/2

Y (2)(x) = c
(2)
1 φ

(2)
1 (x) + c

(2)
2 φ

(2)
2 (x) + c

(2)
3 φ

(2)
3 (x) + c

(2)
4 φ

(2)
4 (x), 1/2 < x ≤ 1.

there will be one set for each of the elements. When they are assembled and integrals
are evaluated, system equations are




96 24 −96 24 0 0 0 0
24 8 −24 4 0 0 0 0
−96 −24 96 −24 0 0 0 0
24 4 −24 8 0 0 0 0
0 0 0 0 96 24 −96 24
0 0 0 0 24 8 −24 4
0 0 0 0 −96 −24 96 −24
0 0 0 0 24 4 −24 8







c
(1)
1

c
(1)
2

c
(1)
3

c
(1)
4

c
(2)
1

c
(2)
2

c
(2)
3

c
(2)
4




=




{
Y (1)′′φ

(1)
1

′
− Y (1)′′′φ

(1)
1

}1/2

0{
Y (1)′′φ

(1)
2

′
− Y (1)′′′φ

(1)
2

}1/2

0{
Y (1)′′φ

(1)
3

′
− Y (1)′′′φ

(1)
3

}1/2

0{
Y (1)′′φ

(1)
4

′
− Y (1)′′′φ

(1)
4

}1/2

0{
Y (2)′′φ

(2)
1

′
− Y (2)′′′φ

(2)
1

}1

1/2{
Y (2)′′φ

(2)
2

′
− Y (2)′′′φ

(2)
2

}1

1/2{
Y (2)′′φ

(2)
3

′
− Y (2)′′′φ

(2)
3

}1

1/2{
Y (2)′′φ

(2)
4

′
− Y (2)′′′φ

(2)
4

}1

1/2




+




−5/4
−5/48
−5/4
5/48
−5/4
−5/48
−5/4
5/48




.

Interelement boundary conditions certainly include c(1)3 = c
(2)
1 , c(1)4 = c

(2)
2 , to ensure

continuity. We have built-in continuity of the first derivative at x = 1/2 (and notice
that the first derivative at x = 1/2 does not appear in the system equations). We
implicitly demand continuity of the second and third derivatives at x = 1/2. This
implies that Y (1)′′(1/2) = Y (2)′′(1/2) and Y (1)′′′(1/2) = Y (2)′′′(1/2). With these,
the system equations reduce to



SECTION 16.6 715




96 24 −96 24 0 0 0 0
24 8 −24 4 0 0 0 0
−96 −24 96 −24 0 0 0 0
24 4 −24 8 0 0 0 0
0 0 0 0 96 24 −96 24
0 0 0 0 24 8 −24 4
0 0 0 0 −96 −24 96 −24
0 0 0 0 24 4 −24 8







c
(1)
1

c
(1)
2

c
(2)
1

c
(2)
2

c
(2)
1

c
(2)
2

c
(2)
3

c
(2)
4




=




Y (1)′′′(0)
−Y (1)′′(0)

−Y (1)′′′(1/2)
Y (1)′′(1/2)
Y (1)′′′(1/2)
−Y (1)′′(1/2)
−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/4
5/48
−5/4
−5/48
−5/4
5/48




.

There are now six unknowns, values of the approximation and its first derivative at
the three nodes x1, x2, and x3. If we denote these by a1 and a2, a3 and a4, and a5

and a6, respectively, the equations are




96 24 −96 24 0 0 0 0
24 8 −24 4 0 0 0 0
−96 −24 96 −24 0 0 0 0
24 4 −24 8 0 0 0 0
0 0 0 0 96 24 −96 24
0 0 0 0 24 8 −24 4
0 0 0 0 −96 −24 96 −24
0 0 0 0 24 4 −24 8







a1

a2

a3

a4

a3

a4

a5

a6




=




Y (1)′′′(0)
−Y (1)′′(0)

−Y (1)′′′(1/2)
Y (1)′′(1/2)
Y (1)′′′(1/2)
−Y (1)′′(1/2)
−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/4
5/48
−5/4
−5/48
−5/4
5/48




.

We now add the fifth equation to the third, and the sixth equation to the fourth,




96 24 −96 24 0 0 0 0
24 8 −24 4 0 0 0 0
−96 −24 96 −24 96 24 −96 24
24 4 −24 8 24 8 −24 4
0 0 0 0 96 24 −96 24
0 0 0 0 24 8 −24 4
0 0 0 0 −96 −24 96 −24
0 0 0 0 24 4 −24 8







a1

a2

a3

a4

a3

a4

a5

a6




=




Y (1)′′′(0)
−Y (1)′′(0)

0
0

Y (1)′′′(1/2)
−Y (1)′′(1/2)
−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/2

0
−5/4
−5/48
−5/4
5/48




.

In preparation for elimination of the fifth and sixth equations, we add column five
of the stiffness matrix to column three, and column six to column four,




96 24 −96 24 0 0 0 0
24 8 −24 4 0 0 0 0
−96 −24 192 0 96 24 −96 24
24 4 0 16 24 8 −24 4
0 0 96 24 96 24 −96 24
0 0 24 8 24 8 −24 4
0 0 −96 −24 −96 −24 96 −24
0 0 24 4 24 4 −24 8







a1

a2

a3

a4

a3

a4

a5

a6




=




Y (1)′′′(0)
−Y (1)′′(0)

0
0

Y (1)′′′(1/2)
−Y (1)′′(1/2)
−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/2

0
−5/4
−5/48
−5/4
5/48




.

Now eliminate rows five and six of the stiffness matrix, and columns five and six,
and fifth and sixth entries of the remaining matrices,
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96 24 −96 24 0 0
24 8 −24 4 0 0
−96 −24 192 0 −96 24
24 4 0 16 −24 4
0 0 −96 −24 96 −24
0 0 24 4 −24 8







a1

a2

a3

a4

a5

a6




=




Y (1)′′′(0)
−Y (1)′′(0)

0
0

−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/2

0
−5/4
5/48



.

The (displacement)boundary conditions Y (0) = Y (1) = 0 require a1 = a5 = 0, and
the (slope) conditions necessitate a2 = a6 = 0 so that



96 24 −96 24 0 0
24 8 −24 4 0 0
−96 −24 192 0 −96 24
24 4 0 16 −24 4
0 0 −96 −24 96 −24
0 0 24 4 −24 8







0
0
a3

a4

0
0




=




Y (1)′′′(0)
−Y (1)′′(0)

0
0

−Y (2)′′′(1)
Y (2)′′(1)




+




−5/4
−5/48
−5/2

0
−5/4
5/48



.

The third and fourth equations now give a3 = −5/384 and a4 = 0. The two-element
approximation is therefore

Y2(x) =
{
−(5/384)(12x2 − 16x3), 0 ≤ x ≤ 1/2
−(5/384)(−4 + 24x− 36x2 + 16x3), 1/2 < x ≤ 1

.

The exact solution and this approximation
are shown to the right.

-0.005

-0.01

1/2 1

y
x

Y x( )

2Y x( )

Figure 16.10

EXERCISES 16.6
In Exercise 1–3 repeat Example 16.2 with the given boundary conditions.

1. Y (0) = Y ′′(0) = 0, Y (1) = Y ′′(1) = 0

2. Y (0) = Y ′(0) = 0, Y ′′(1) = Y ′′′(1) = 0

3. Y (0) = Y ′(0) = 0, Y (1) = Y ′′(1) = 0
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§16.7 Finite Elements for Boundary Value Problems

With the fundamental ideas of finite elements introduced in Sections 16.2 and 16.4,
we are prepared to apply finite elements to two-dimensional boundary value prob-
lems. As our vehicle of illustration, we consider a boundary value problem associated
with Poisson’s equation

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (16.36)

in some region R of the xy-plane with one or more boundary conditions on the
boundary β(R) of R. Particular forms for boundary conditions will be introduced
later since, as we know from our one-dimensional discussions, the FEM first ad-
dresses the differential equation. We follow the same approach as in Section 16.2 by
considering a one-element region, and then moving to multiple elements. Elements
are always triangles and quadrilaterals, three and four sided elements with straight
sides. With isoparametric elements, triangles and quadrilaterals with curved sides
are also available. We discuss them in Sections 16.8 and 16.9.

Triangular Elements

We begin then with a region consist-
ing of one triangle (Figure 16.11). The
solution of the boundary value problem
is approximated by a polynomial on the
triangle, and as we know, the degree of
the polynomial is tied to the number of
nodes in the triangle. For a linear poly-
nomial V1(x, y) = a+ bx+ cy, three nodes
are required for the triangle, and these

y

x

x y( , )3 3

x y( , )1 1

x y( , )2 2

are naturally chosen as the vertices. Figure 16.11
Before applying Galerkin’s method to V1(x, y) on the triangle, we rewrite

V1(x, y) in terms of different basis functions, just as we did in Section 16.2. The
three nodes in Figure 16.11 uniquely determine the linear approximation V1(x, y) =
a + bx + cy of V (x, y) on the triangle. If V1(x1, y1), V1(x2, y2), and V1(x3, y3) are
values of the approximation at the vertices, then

V1(x1, y1) = a+ bx1 + cy1, V1(x2, y2) = a+ bx2 + cy2, V1(x3, y3) = a+ bx3 + cy3.

The solution of these for a, b, and c in terms of V1(x1, y1), V1(x2, y2), and V1(x3, y3)
is

a =
1
∆

[(x2y3 − x3y2)V1(x1, y1) + (x3y1 − x1y3)V1(x2, y2) + (x1y2 − x2y1)V1(x3, y3)],

(16.37a)

b =
1
∆

[(y2 − y3)V1(x1, y1) + (y3 − y1)V1(x2, y2) + (y1 − y2)V1(x3, y3)], (16.37b)

c =
1
∆

[(x3 − x2)V1(x1, y1) + (x1 − x3)V1(x2, y2) + (x2 − x1)V1(x3, y3)], (16.37c)

where ∆ = (x2y3 − x3y2) − (x1y3 − x3y1) + (x1y2 − x2y1) is twice the area of the
triangle. When we substitute these into V1(x, y) = a+ bx+ cy, we obtain
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V1(x, y) =
1
∆
{
[(x2y3 − x3y2)V1(x1, y1) + (x3y1 − x1y3)V1(x2, y2) + (x1y2 − x2y1)V1(x3, y3)]

+ [(y2 − y3)V1(x1, y1) + (y3 − y1)V1(x2, y2) + (y1 − y2)V1(x3, y3)]x
+ [(x3 − x2)V1(x1, y1) + (x1 − x3)V1(x2, y2) + (x2 − x1)V1(x3, y3)]y

}

= V1(x1, y1)
[
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

∆

]

+ V1(x2, y2)
[
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y

∆

]

+ V1(x3, y3)
[
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y

∆

]
. (16.38)

In other words, with basis functions

φ1(x, y) =
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

∆
, (16.39a)

φ2(x, y) =
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y

∆
, (16.39b)

φ3(x, y) =
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y

∆
, (16.39c)

we can express the linear approximation in the form

V1(x, y) = c1φ1(x, y) + c2φ2(x, y) + c3φ3(x, y), (16.40)

where coefficients are values of V1(x, y) at the nodes (vertices) of the triangle.
Linear approximation V1(x, y) = a+ bx+ cy approximates the solution surface

of the boundary value problem with a plane. Representation 16.40 also does this,
but as the linear combination of three planes V = φ1(x, y), V = φ2(x, y), and
V = φ3(x, y). We have shown these planes in Figures 16.12a,b,c. Each plane has
value 1 at one vertex of the triangle and value 0 at the other two vertices. Each plane
is therefore zero on one side of the base triangle in the xy-plane. Basis functions
satisfy the equivalent of property 16.3;

φi(xj , yj) = δij . (16.41)

x

y

x y( , )1 1

x y( , )3 3

x y( , )1 1

x y( , )2 2

,1
x y( , )1f

x

y

x y( , )1 1

x y( , )3 3

x y( , )2 2

x y( , )2 2

,1
x y( , )2f

Figure 16.12a Figure 16.12b
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x

y

x y( , )1 1

x y( , )3 3

x y( , )3 3

x y( , )2 2

,1

x y( , )3f

Figure 16.12c
We are now ready to apply the MWR to linear approximation 16.40 of the

solution of Poisson’s equation 16.36. Galerkin’s method on the residual

∂2V1

∂x2
+
∂2V1

∂y2
− F (x, y)

demands that for i = 1, 2, 3,

0 =
∫∫

R

[
∂2V1

∂x2
+
∂2V1

∂y2
− F (x, y)

]
φi(x, y) dA.

For one-dimensional problems, we applied integation by parts to the second deriva-
tive. For PDEs, we apply Green’s first identity to the derivative terms (see Appendix
C),

0 =
∫
©

β(R)

(φi∇V1) · n̂ ds−
∫∫

R

∇V1 · ∇φi dA−
∫∫

R

F φi dA,

or,
∫∫

R

∇V1 · ∇φi dA =
∫
©

β(R)

(
φi
∂V1

∂n

)
ds−

∫∫

R

F φi dA. (16.42)

Because n̂ is the outward normal to the boundary β(R) of R, the derivative ∂V1/∂n
is the outwardly normal derivative of V1(x, y) along the three sides of the triangle.
When we substitute representation 16.40 into the double integral, we get

∫∫

R

∇(c1φ1 + c2φ2 + c3φ3) · ∇φi dA =
∫
©

β(R)

(
φi
∂V1

∂n

)
ds−

∫∫

R

F φi dA,

or,

c1

∫∫

R

∇φ1 · ∇φi dA+ c2

∫∫

R

∇φ2 · ∇φi dA+ c3

∫∫

R

∇φ3 · ∇φi dA

=
∫
©

β(R)

(
φi
∂V1

∂n

)
ds−

∫∫

R

F φi dA. (16.43)

Since this must be valid for i = 1, 2, 3, the element equations for c1, c2, and c3 are

KC = B +N, (16.44a)

where

K =




∫∫

R

∇φ1 · ∇φ1 dA

∫∫

R

∇φ2 · ∇φ1 dA

∫∫

R

∇φ3 · ∇φ1 dA
∫∫

R

∇φ1 · ∇φ2 dA

∫∫

R

∇φ2 · ∇φ2 dA

∫∫

R

∇φ3 · ∇φ2 dA
∫∫

R

∇φ1 · ∇φ3 dA

∫∫

R

∇φ2 · ∇φ3 dA

∫∫

R

∇φ3 · ∇φ3 dA



, (16.44b)
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C =



c1
c2
c3


 , B =




∫
©

β(R)

(
φ1
∂V1

∂n

)
ds

∫
©

β(R)

(
φ2
∂V1

∂n

)
ds

∫
©

β(R)

(
φ3
∂V1

∂n

)
ds



, N =




−
∫∫

R

F φ1 dA

−
∫∫

R

F φ2 dA

−
∫∫

R

F φ3 dA



. (16.44c)

Because Poisson’s equation is in self-adjoint form, the stiffness matrix K is symmet-
ric; load vector N is once again due to the nonhomogeneity in the PDE; and load
vector B is more complicated than in the case of ODEs because the boundary now
consists of curves (the edges of the triangle)
instead of two end points of an interval.
We should now evaluate integrals and
impose boundary conditions. Let us
simplify calculations by choosing a very
simple triangle, one with vertices (0, 0),
(2, 0), and (0, 3), and boundary condi-
tions as shown in (Figure 16.13). In
addition, suppose that F (x, y) = −10.

y

x

3

2

VVx = 06-5= y

Vy 5-6= x

C1

C3

C2

1

For this triangle, basis functions are Figure 16.13

φ1(x, y) =
1
6
(6− 3x− 2y), φ2(x, y) =

x

2
, φ3(x, y) =

y

3
.

They can be obtained from equations 16.39, or simply by inspection, since each
function must be one at a node of the triangle and zero along the opposite side.
When integrals are evaluated, element equations 16.44a become




13/12 −3/4 1/3
−3/4 3/4 0
1/3 0 1/3





c1
c2
c3


 =



B1

B2

B3


+




10
10
10


 . (16.45)

The Dirichlet condition along the hypotenuse of the triangle requires

0 = c1

(
6 − 3x− 2y

6

)
+ c2

(x
2

)
+ c3

(y
3

)
= c2

(x
2

)
+ c3

(
6 − 3x

2

)
,

and this is satisfied if we take c2 = c3 = 0. When these are substituted into equations
16.45, the first equation determines c1, and therefore we need only calculate B1,

B1 =
∫
©

C1+C2+C3

∂V

∂n
φ1 ds =

∫

C2+C3

∂V

∂n
φ1 ds

=
∫

C2

−∂V (0, y)
∂x

(
6 − 2y

6

)
ds+

∫

C3

−∂V (x, 0)
∂y

(
6 − 3x

6

)
ds

=
1
6

∫ 3

0

−(6 − 5y)(6− 2y) dy +
1
6

∫ 2

0

−(6 − 5x)(6− 3x) dx = −25
6
.

Consequently, element equations are



13/12 −3/4 1/3
−3/4 3/4 0
1/3 0 1/3





c1
0
0


 =




−25/6
B2

B3


+




10
10
10


 .
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The first equation yields c1 = 70/13, and the one-element, linear approximation is

V1(x, y) = c1φ1(x, y) =
35
39

(6− 3x− 2y).

The exact solution of the boundary
value problem is

V (x, y) = (x+ y)(6− 3x− 2y).
A sketch of this function and the linear
approximation are shown in Figure 16.14.

x

y

V x y( , )1

Exact
Solution

Figure16.14

It is now time to move on to what the MFE is all about, multiple elements.
We adopt the procedure of Section 16.2 by beginning with two elements, and pro-
gressing to more and more elements. We continue with triangle elements, but in
Section 16.9, we introduce quadrilateral elements. Consider solving Poisson’s equa-
tion 16.36, with F (x, y) = xy, on the four-sided figure in Figure 16.15a, subject to
the boundary conditions shown. We can divide the triangle into two triangles in
two ways. Suppose we choose the triangles in Figure 16.15b.

y

x

3

(2,2)

2

=0

=1

=

=0

V

V

V xy

x

Vx

y

x

(2,2)

2

=0

=1

=

=0

V

V

V xy

x

Vx

R2

R1

(2,0)1 (0,0)

3

4 (0,3)

Figure 16.15a Figure 16.15b

Using the process that has become quite familiar to us, we write element equations
16.44 for each triangle and then combine them into system equations. For element
(1) in Figure 16.16a, basis functions are

φ
(1)
1 (x, y) =

1
2
(2 − x), φ

(1)
2 (x, y) =

1
2
(x− y), φ

(1)
3 (x, y) =

y

2
.

Element equations 16.44 are



1/2 −1/2 0
−1/2 1 −1/2

0 −1/2 1/2






c
(1)
1

c
(1)
2

c
(1)
3


 =



B

(1)
1

B
(1)
2

B
(1)
3


+




−2/5
−8/15
−16/15


 ,

where

B
(1)
1 =

∫
©

C
(1)
1 +C

(1)
2 +C

(1)
3

(
φ

(1)
1

∂V1

∂n

)
ds =

∫

C
(1)
2 +C

(1)
3

(
φ

(1)
1

∂V1

∂n

)
ds

=
∫

C
(1)
2

(
φ

(1)
1

∂V1

∂n

)
ds+

∫ 2

0

1
2
(2 − x)(−x) dx =

∫

C
(1)
2

(
φ

(1)
1

∂V1

∂n

)
ds− 2

3
,
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B
(1)
2 =

∫
©

C
(1)
1 +C

(1)
2 +C

(1)
3

(
φ

(1)
2

∂V1

∂n

)
ds =

∫

C
(1)
1 +C

(1)
3

(
φ

(1)
2

∂V1

∂n

)
ds

=
∫

C
(1)
1

1
2
(2− y)(0) ds+

∫ 2

0

1
2
(x)(−x) dx = −4

3
,

B
(1)
3 =

∫
©

C
(1)
1 +C

(1)
2 +C

(1)
3

(
φ

(1)
3

∂V1

∂n

)
ds =

∫

C
(1)
1 +C

(1)
2

(
φ

(1)
3

∂V1

∂n

)
ds

=
∫

C
(1)
1

y

2
(0) ds+

∫

C
(1)
2

(
φ

(1)
3

∂V1

∂n

)
ds =

∫

C
(1)
2

(
φ

(1)
3

∂V1

∂n

)
ds.

(2,2)

2=

=0

V xy

Vx

R1

(2,0)1 (0,0)

3

y

x

y x

C

=

3
(1)

C1
(1)C2

(1)

(2,2)
R2

1 (0,0)

3

y

x

y x
C

=
3
(2)

C1
(2)

C4
(2)

(0,3)4 0

=1Vx

=V
yx=2(3- )

Figure 16.16a Figure 16.16b

Basis functions for element 2 in Figure 16.16b are

φ
(2)
1 (x, y) =

1
6
(6− x− 2y), φ

(2)
3 (x, y) =

x

2
, φ

(2)
4 (x, y) =

1
3
(y − x).

Element equations are



5/12 −1/4 −1/6
−1/4 3/4 −1/2
−1/6 −1/2 2/3






c
(2)
1

c
(2)
3

c
(2)
4


 =



B

(2)
1

B
(2)
3

B
(2)
4


+




−7/10
−9/5
−1


 ,

where

B
(2)
1 =

∫
©

C
(2)
1 +C

(2)
3 +C

(2)
4

(
φ

(2)
1

∂V1

∂n

)
ds =

∫

C
(2)
3 +C

(2)
4

(
φ

(2)
1

∂V1

∂n

)
ds

=
∫ 2

0

1
6
(6− 2y)(−1) dy+

∫

C
(2)
4

(
φ

(2)
1

∂V1

∂n

)
ds =

∫

C
(2)
4

(
φ

(2)
1

∂V1

∂n

)
ds+

4
3
,

B
(2)
3 =

∫
©

C
(2)
1 +C

(2)
3 +C

(2)
4

(
φ

(2)
3

∂V1

∂n

)
ds =

∫

C
(2)
1

(
φ

(2)
3

∂V1

∂n

)
ds+

∫

C
(2)
4

(
φ

(2)
3

∂V1

∂n

)
ds,

B
(2)
4 =

∫
©

C
(2)
1 +C

(2)
3 +C

(2)
4

(
φ

(2)
4

∂V1

∂n

)
ds =

∫

C
(2)
1 +C

(2)
3

(
φ

(2)
4

∂V1

∂n

)
ds

=
∫

C
(2)
1

(
φ

(2)
4

∂V1

∂n

)
ds+

∫ 2

0

1
3
(y)(−1) dy =

∫

C
(2)
1

(
φ

(2)
4

∂V1

∂n

)
ds+

2
3
.

We put both sets of element equations together to get the system equations for the
two-element, linear approximation

V2(x, y) =

{
c
(1)
1 φ

(1)
1 (x, y) + c

(1)
2 φ

(1)
2 (x, y) + c

(1)
3 φ

(1)
3 (x, y), (x, y) in R1

c
(2)
1 φ

(2)
1 (x, y) + c

(2)
3 φ

(2)
3 (x, y) + c

(2)
4 φ

(2)
4 (x, y), (x, y) in R2.
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They are




1/2 −1/2 0 0 0 0
−1/2 1 −1/2 0 0 0

0 −1/2 1/2 0 0 0
0 0 0 5/12 −1/4 −1/6
0 0 0 −1/4 3/4 −1/2
0 0 0 −1/6 −1/2 2/3







c
(1)
1

c
(1)
2

c
(1)
3

c
(2)
1

c
(2)
3

c
(2)
4




=




∫
C

(1)
2

(
φ

(1)
1

∂V1
∂n

)
ds− 2

3

− 4
3∫

C
(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+ 4

3∫
C

(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds

∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−2/5
−8/15
−16/15
−7/10
−9/5
−1



.

Interelement boundary conditions are c(2)1 = c
(1)
1 and c(2)3 = c

(1)
3 . If we denote values

of V2(x, y) at the four vertices of the quadrilateral by a1, a2, a3, and a4, then system
equations for these nodal values are




1/2 −1/2 0 0 0 0
−1/2 1 −1/2 0 0 0

0 −1/2 1/2 0 0 0
0 0 0 5/12 −1/4 −1/6
0 0 0 −1/4 3/4 −1/2
0 0 0 −1/6 −1/2 2/3







a1

a2

a3

a1

a3

a4




=




∫
C

(1)
2

(
φ

(1)
1

∂V1
∂n

)
ds− 2

3

− 4
3∫

C
(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+ 4

3∫
C

(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds

∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−2/5
−8/15
−16/15
−7/10
−9/5
−1



.

We now add the fourth equation to the first, and the fifth to the third,




1/2 −1/2 0 0 0 0
−1/2 1 −1/2 0 0 0

0 −1/2 1/2 0 0 0
0 0 0 5/12 −1/4 −1/6
0 0 0 −1/4 3/4 −1/2
0 0 0 −1/6 −1/2 2/3







a1

a2

a3

a1

a3

a4
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=




∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
1

∂V1
∂n

)
ds+ 2

3

− 4
3∫

C
(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+ 4

3∫
C

(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds

∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−11/10
−8/15
−43/15
−7/10
−9/5
−1



.

The first entry of the B matrix is equal to
∫

C
(2)
4

[
1
6
(6 − 3x)

∂V1

∂n

]
ds+

∫

C
(1)
2

[
1
2
(2− x)

∂V1

∂n

]
ds+

2
3
.

Along C(2)
4 , the derivative ∂V1/∂n is in the normal direction downward from the line

y = x, whereas along C(1)
2 , which is the same line, the derivative is in the normal

direction upward from the line. In other words, these derivatives are negatives of
each other, and the integrals cancel, leaving 2/3 for the matrix entry. Similarly,
integrals in the fifth entry of B cancel, leaving a zero entry. System equations are
therefore



1/2 −1/2 0 0 0 0
−1/2 1 −1/2 0 0 0

0 −1/2 1/2 0 0 0
0 0 0 5/12 −1/4 −1/6
0 0 0 −1/4 3/4 −1/2
0 0 0 −1/6 −1/2 2/3







a1

a2

a3

a1

a3

a4




=




2
3

− 4
3∫

C
(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+ 4

3

0∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−11/10
−8/15
−43/15
−7/10
−9/5
−1



.

To eliminate the fourth and fifth equations, we first add the the fourth column of
the stiffness matrix to the first, and the fifth column to the third,



1/2 −1/2 0 5/12 −1/4 −1/6
−1/2 1 −1/2 0 0 0

0 −1/2 1/2 −1/4 3/4 −1/2
0 0 0 5/12 −1/4 −1/6
0 0 0 −1/4 3/4 −1/2
0 0 0 −1/6 −1/2 2/3







a1

a2

a3

a1

a3

a4




=




2
3

− 4
3∫

C
(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
4

(
φ

(2)
1

∂V1
∂n

)
ds+ 4

3

0∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−11/10
−8/15
−43/15
−7/10
−9/5
−1



.
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awe now delete the fourth and fifth rows and columns of the stiffness matrix, and
the fourth and fifth entries of the remaining matrices,




1/2 −1/2 0 −1/6
−1/2 1 −1/2 0

0 −1/2 1/2 −1/2
0 0 0 2/3






a1

a2

a3

a4




=




2
3

− 4
3∫

C
(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−11/10
−8/15
−43/15
−1


 .

The Dirichlet boundary condition along x = 2(3− y) requires a3 = a4 = 0,



1/2 −1/2 0 −1/6
−1/2 1 −1/2 0

0 −1/2 1/2 −1/2
0 0 0 2/3






a1

a2

0
0




=




2
3

− 4
3∫

C
(2)
1

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(2)
4

(
φ

(2)
3

∂V1
∂n

)
ds+

∫
C

(1)
2

(
φ

(1)
3

∂V1
∂n

)
ds

∫
C

(2)
1

(
φ

(2)
4

∂V1
∂n

)
ds+ 2

3




+




−11/10
−8/15
−43/15
−1


 .

The first two equations can be solved for a1 = −82/15 and a2 = −23/5. The
two-element, linear approximation is therefore

V2(x, y) =





−82
15

· 1
2
(2 − x) − 23

5
· 1
2
(x− y), (x, y) in R1

−82
15

· 1
6
(6 − x− 2y), (x, y) in R2

=





1
30

(−164 + 13x+ 69y), (x, y) in R1

−41
45

(6− x− 2y), (x, y) in R2.

EXERCISES 16.7
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§16.8 Isoparametric Triangular Elements

In Section 16.7, we used linear basis functions on triangular elements to approximate
solutions of boundary value problems. Basis functions were developed directly from
the requirement that coefficients of basis functions be values of the polynomial
approximation at the nodes (vertices) of the triangle. In this section, we continue
with triangular elements, first showing that isoparametric elements can be used to
give the same linear basis functions. We then use isoparametric elements to develop
quadratic approximations for triangular elements.

Linear Approximations on Isoparametric Triangles

In the isoparametric approach, parental basis functions are established for a triangle
in the ξη-plane, and these are then mapped to basis functions for triangles in the
xy-plane. The triangle chosen in the ξη-plane is the right-angled one in Figure
16.17. Basis functions that satisfy requirement 16.41 are easily seen to be

φ1(ξ, η) = 1 − ξ − η, φ2(ξ, η) = ξ, φ3(ξ, η) = η. (16.46)

The isoparametric transformation that maps nodes (vertices) of this triangle to the
nodes of the generic triangle in Figure 16.18 is

x = φ1x1 + φ2x2 + φ3x3 = (1 − ξ − η)x1 + ξx2 + ηx3, (16.47a)
y = φ1y1 + φ2y2 + φ3y3 = (1 − ξ − η)y1 + ξy2 + ηy3. (16.47b)

x

h

1

3

2(0,0)

(0,1)

(1,0)

hx+ =1

1

3

2

y

x

x y( , )3 3

x y( , )2 2

x y( , )1 1

Figure 16.17 Figure 16.18

To find basis functions for the xy-triangle, we solve these equations for ξ and η in
terms of x and y. The result is

ξ =
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y

(x2y3 − x3y2) − (x1y3 − x3y1) + (x1y2 − x2y1)
,

η =
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y

(x2y3 − x3y2) − (x1y3 − x3y1) + (x1y2 − x2y1)
. (16.48)

(See Exercise 1.) Substitution of these into equations 16.46 gives basis functions
16.39.

Problem 16.36 on the triangle of Figure 16.13 provides a simple illustration.
The transformation that maps vertices of the triangle in Figure 16.17 to those in
Figure 16.13 is

x = 2ξ, y = 3η,

so that ξ = x/2 and η = y/3. Substitution of these into equations 16.46 gives basis
functions for the triangle in Figure 16.13,
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φ1(x, y) = 1 − x

2
− y

3
, φ2(x, y) =

x

2
, φ3(x, y) =

y

3
.

Quadratic Approximations on Isoparametric Triangles

We now develop quadratic approximations for isoparametric triangles. As in the
linear case, the parent triangle is that in Figure 16.17, but additional nodes are
needed. The complete second-order polynomial in ξ and η is

p(ξ, η) = a+ bξ + cη + dξ2 + fξη + gη2. (16.49)

(By complete, we mean that the polynomial contains all second order terms in ξ
and η.) To determine the six coefficients, values of the polynomial at six points in
the triangle are needed. We choose the three vertices and the midpoints of the sides
(Figure 16.19).
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h

1

3

2(0,0)

(0,1)

(1,0)

hx+ =1

6 (0,1/2) 5 (1/2,1/2)

4 (1/2,0)
1

3

2

y

x

x y( , )3 3

x y( , )2 2

x y( , )1 1

5 x y( , )5 5

4 x y( , )4 4

6 x y( , )6 6

Figure 16.19 Figure 16.20

We could take the direct approach that we have used in the past to find quadratic
basis functions by specifying values of p(ξ, η) at each of the nodes, solving the equa-
tions for a, b, c, d, f , and g, substituting these into equation 16.49, and rearranging
terms. Preferable is to use the fact that basis functions φi(ξ, η) shoud satisfy prop-
erty 16.41. If we take the basis function φ1(ξ, η) associated with node 1 in form
16.49, and invoke these conditions, we obtain the equations

1 = φ1(ξ1, η1) = φ1(0, 0) = a,

0 = φ1(ξ2, η2) = φ1(1, 0) = a+ b+ d,

0 = φ1(ξ3, η3) = φ1(0, 1) = a+ c+ g,

0 = φ1(ξ4, η4) = φ1(1/2, 0) = a+ b/2 + d/4,
0 = φ1(ξ5, η5) = φ1(1/2, 1/2) = a+ b/2 + c/2 + d/4 + f/4 + g/4,
0 = φ1(ξ6, η6) = φ1(0, 1/2) = a+ c/2 + g/4.

These are easily solved for a = 1, b = −3, c = −3, d = 2, f = 4, and g = 2, so that
the first basis function is

φ1(ξ, η) = 1− 3ξ − 3η + 2ξ2 + 4ξη + 2η2 = (1− ξ − η)(1 − 2ξ − 2η). (16.50a)

Similar procedures give basis functions associated with the other five nodes

φ2(ξ, η) = ξ(2ξ − 1), (16.50b)
φ3(ξ, η) = η(2η − 1), (16.50c)
φ4(ξ, η) = 4ξ(1− ξ − η), (16.50d)
φ5(ξ, η) = 4ξη, (16.50e)
φ6(ξ, η) = 4η(1− ξ − η). (16.50f)
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In practice, we can formulate the basis functions by inspection. For instance, in
order that φ1(ξ, η) vanish at nodes 2, 5, and 3, we include in it the factor 1− ξ− η.
To vanish at nodes 4 and 6, we include 2 − ξ − η. In other words, φ1(ξ, η) must be
of the form φ1(ξ, η) = a(1 − ξ − η)(2 − ξ − η). The requirement that φ1(0, 0) = 1
yields a = 1. This procedure can also be followed for the other five basis functions.
We have shown φ1(ξ, η) and φ4(ξ, η) in Figures 16.21a,b.

x

h

f1

1

3

2
5

4

6

x

h

f4

Figure 16.21a Figure 16.21b

Suppose now that we want basis functions for the triangle in Figure 16.20. We
map the nodes in Figure 16.19 to those in Figure 16.20 and use this mapping to
transform basis functions. The mapping to accomplish this is

x =
6∑

i=1

φi(ξ, η)xi, y =
6∑

i=1

φi(ξ, η)yi. (16.51)

Depending on the positions of nodes along the sides of the triangle in Figure 16.20,
basis functions may, or may not be, quadratic polynomials in x and y. However, the
most common choice of side nodes in triangles is midpoints, just like in the parent
element, in which case,

x4 =
x1 + x2

2
, x5 =

x2 + x3

2
, x6 =

x1 + x3

2
.

These will imply similar expressions for y4, y5, and y6. Substitution of these into
maping 16.51 gives

x = (1− ξ − η)(1 − 2ξ − 2η)x1 + ξ(2ξ − 1)x2 + η(2η − 1)x3

+ 4ξ(1 − ξ − η)
(
x2 + x2

2

)
+ 4ξη

(
x2 + x3

2

)
+ 4η(1− ξ − η)

(
x1 + x3

2

)

= x1 + (x2 − x1)ξ + (x3 − x1)η,

with an identical result for y,

y = y1 + (y2 − y1)ξ + (y3 − y1)η.

This is linear mapping 16.47; when solved for ξ and η in terms of x and y, equa-
tions 16.48 result. When these are substituted into parent basis functions 16.50,
basis functions for the triangle in Figure 16.20 with midpoint nodes are obtained.
Because the mapping is linear, the xy-basis functions will remain quadratic. As an
illustration, suppose the xy-triangle is that in Figure 16.13. The transformation
that maps vertices of the triangle in Figure 16.17 to those in Figure 16.13 and pre-
serves midpoints is x = 2ξ, y = 3η, so that ξ = x/2 and η = y/3. Substitution of
these into equations 16.50 gives quadratic basis functions for the triangle in Figure
16.13 with midpoint nodes,
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φ1(x, y) =
(
1 − x

2
− y

3

)(
1 − x− 2y

3

)
=

1
18

(6 − 3x− 2y)(3− 3x− 2y),

φ2(x, y) =
x

2
(x− 1),

φ3(x, y) =
η

3

(
2η
3

− 1
)

=
1
9
η(2η − 3),

φ4(x, y) = 4
(x

2

)(
1 − x

2
− y

3

)
=

1
3
x(6 − 3x− 2y),

φ5(x, y) = 4
(x

2

)(y
3

)
=

2
3
xy,

φ6(x, y) = 4
(y

3

)(
1 − x

2
− y

3

)
=

2
9
y(6 − 3x− 2y).

When a triangular element has two nodes on the boundary of a region (Figure
16.22), approximations are enhanced if quadratic basis functions are used, and one
of the midpoint nodes is chosen on the boundary. This results in a triangle with two
straight sides and one curved side (Figure 16.23). Transformation 16.51 still maps
nodes of the parent element in Figure 16.19 to nodes of the curved-sided triangle in
Figure 16.23, but it is no longer linear. For instance,

x = (1− ξ − η)(1− 2ξ − 2η)x1 + ξ(2ξ − 1)x2 + η(2η − 1)x3

+ 4ξ(1− ξ − η)
(
x1 + x2

2

)
+ 4ξηx5 + 4η(1 − ξ − η)

(
x1 + x3

2

)

= (1− ξ − η)x1 + ξ(1 − 2η)x2 + η(1 − 2ξ)x3 + 4ξηx5,

with a similar equation for y. Basis functions for the curved triangle will not be
quadratic.

Boundary
of region

Boundary
of region

Figure 16.22 Figure 16.23

We close this section with a brief mention of cubic approximations. The com-
plete cubic polynomial in ξ and η is

p(ξ, η) = a1 + a2ξ + a3η + a4ξ
2 + a5ξη + a6η

2 + a7ξ
3 + a8ξ

2η + a9ξη
2 + a10η

3.
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The parent triangle, which must
have ten nodes, is usually chosen
as that in Figure 16.24, nine
boundary nodes and one interior
node. Cubic basis functions for
this triangle are developed in
Exercise 2.

x

h

hx+ =1

1

11/3 2/3

1/3

2/3

Figure 16.24

EXERCISES 16.8

1. Verify the results in equations 16.48.

2. Develop cubic basis functions for the ten-node parent triangle in Figure 16.24.
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§16.9 Isoparametric Quadrilateral Elements

We continue with the isoparametric approach in developing basis functions for
quadrilateral elements. The parent quadrilateral is taken to be the square in Fig-
ure 16.25. Recall that the number of nodes for the square dictates the order of the
polynomial approximation, and conversely, the order of a polynomial determines the
number of nodes that must be used. Usually the number of nodes is chosen, with
due regard to symmetry, and terms in the polynomial are chosen correspondingly.
We shall illustrate. There are two sets of polynomials in common use, depending
on whether nodes interior to the square are used.

x

h
1

1 x

h
1

1

1

3

2

4

Figure 16.25 Figure 16.26

Lagrange Type Basis Functions
Two-dimensional Lagrange type basis functions use products of one-dimensional
Lagrange interpolation formulas. For example, products of the two linear basis
functions (1−ξ)/2 and (1+ξ)/2 in the ξ-coordinate by their counterparts in η yield
what are called bilinear basis functions

φ1(ξ, η) =
1
4
(1− ξ)(1− η), φ2(ξ, η) =

1
4
(1 + ξ)(1− η),

φ3(ξ, η) =
1
4
(1 + ξ)(1 + η), φ4(ξ, η) =

1
4
(1 − ξ)(1 + η).

These bilinear basis functions correspond to the minimum number of nodes for a
square, its vertices (Figure 16.26). They continue to satisfy property 16.41. Ap-
proximations are ultimately polynomials in 1, ξ, η, and ξη. As a result, bilinear
basis functions constitute a complete set of linear functions, but an incomplete set
of quadratics.

Two-dimensional biquadratic basis functions are products of the one-dimen-
sional quadratic basis functions 16.23. Since they involve terms in

1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2, ξ2η2,

they are a complete set of quadratic basis functions, but an incomplete set of cubics
and an incomplete set of quartics. They use the nine nodes in Figure 16.27, eight
boundary nodes and one interior.
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x

h
1

1 x

h
1

1

Figure 16.27 Figure 16.28

Two-dimensional bicubic basis functions are products of the one-dimensional
cubic basis functions in Exercise 3 of Section 16.4. Since they involve terms in

1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3, ξ3η, ξ2η2, ξη3, ξ3η2, ξ2η3, ξ3η3,

they are a complete set of cubic basis functions, but an incomplete set of quartics,
quintics, and sextics. They use the sixteen nodes in Figure 16.28, twelve boundary
nodes and four interior.

Serendipity Basis Functions

Serendipity basis functions use only boundary nodes of the quadrilateral and in
the process remove some of the incomplete terms in the Lagrange basis functions.
The Lagrange bilinear basis functions use only the boundary nodes in Figure 16.26,
and hence will remain as serendipity functions for the four-node quadrilateral. The
bilinear quadratics, however, use a centre node (Figure 16.27), and will be replaced.
Boundary nodes for the complete quadratic serendipity basis functions are shown
in Figure 16.29. Because there are eight nodes, basis functions are chosen to involve
the terms

1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2.

They are to satisfy conditions 16.3, and we could use these conditions to generate
them. For instance, if we take the basis function φ1(ξ, η) associated with node 1 as

φ1(ξ, η) = a+ bξ + cη + dξ2 + eξη + fη2 + gξ2η + hξη2,

then substituting each of the nodes gives eight equations in the eight coefficients.
Alternatively, we can obtain the basis functions by inspection. For φ1(ξ, η) to vanish
at nodes 2, 6, 3, 7, and 4, we include factors of 1 − ξ and 1 − η. For vanishing at
nodes 5 and 8, we include the factor 1 + ξ + η. In other words, φ(ξ, η) must be of
the form

φ(ξ, η) = a(1 − ξ)(1 − η)(1 + ξ + η).

To meet the requirement φ(−1,−1) = 1, a must be −1/4, and therefore

φ1(ξ, η) = −1
4
(1 − ξ)(1− η)(1 + ξ + η).

A similar procedure gives the remaining seven serendipity basis functions for the
eight-node quadrilateral,

φ1(ξ, η) = −1
4
(1 − ξ)(1− η)(1 + ξ + η), (16.52a)
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φ2(ξ, η) = −1
4
(1 + ξ)(1− η)(1− ξ + η), (16.52b)

φ3(ξ, η) = −1
4
(1 + ξ)(1 + η)(1− ξ − η), (16.52c)

φ4(ξ, η) = −1
4
(1 − ξ)(1 + η)(1 + ξ − η), (16.52d)

φ5(ξ, η) =
1
2
(1 − ξ2)(1− η), φ6(ξ, η) =

1
2
(1 + ξ)(1− η2), (16.52e)

φ7(ξ, η) =
1
2
(1 − ξ2)(1 + η), φ8(ξ, η) =

1
2
(1 − ξ)(1− η2). (16.52f)
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Serendipity functions for the quadrilateral in Figure 16.30, (the quadrilateral in
Figure 16.28 stripped of interior nodes), are developed in Exercise 1.

The parent square in Figure 16.25 can be mapped to an arbitrary quadrilateral
with an isoparametric mapping. For the four-node square in Figure 16.26 to be
mapped to the four-node quadrilateral in Figure 16.31, we use

x = φ1(ξ, η)x1 + φ2(ξ, η)x2 + φ3(ξ, η)x3 + φ4(ξ, η)x4, (16.53a)
y = φ1(ξ, η)y1 + φ2(ξ, η)y2 + φ3(ξ, η)y3 + φ4(ξ, η)y4. (16.53b)

Additionally, by using more nodes, we can map the parent square to “quadrilaterals”
with curved sides. In particular, the isoparametric mapping

x =
8∑

i=1

φi(ξ, η)xi, y =
8∑

i=1

φi(ξ, η)yi, (16.54)

with basis functions 16.52, maps the eight-node square in Figure 16.29 to the
“quadrilateral” in Figure 16.32.

x y( 3 3, )

x y( 2 2, )
x y( 1 1, )

x y( 4 4, )

y

x

y

x

Figure 16.31 Figure 16.32

EXERCISES 16.9

1. Find the twelve serendipity basis functions for the quadrilateral in Figure 16.30.
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§16.10 Finite Elements and Diffusion Problems

We use finite elements, in conjunction with separation of variables, to reduce an
initial boundary value problem associated with the two-dimensional diffusion equa-
tion to an initial value problem for a system of ODEs. To illustrate, consider the
general, one-dimensional, heat conduction problem

∂U

∂t
= k

∂2U

∂x2
+
kG(x, t)

κ
, 0 < x < L, t > 0, (16.55a)

U(0, t) = g(t), t > 0, (16.55b)
Ux(L, t) = h(t), t > 0, (16.55c)
U(x, 0) = f(x), 0 < x < L. (16.55d)

Suppose we create a mesh of N elements xj−1 ≤ x ≤ xj , j = 1, . . . , N for the
interval 0 ≤ x ≤ L (with x0 = 0 and xN = L). We pick n basis functions φ(j)

i (x),
i = 1, . . . , n, on the jth element. We approximate the solution of problem 16.55 on
the jth element with separated functions

U
(j)
N (x, t) =

n∑

i=1

a
(j)
i (t)φ(j)

i (x). (16.56)

To ease the notation, we temporarily drop the element designation and write

UN (x, t) =
n∑

i=1

ai(t)φi(x). (16.57)

Realize, however, that we are about to do is being done on every element. We will
insert superscripts later. The residual of this approximation is

R =
∂UN

∂t
− k

∂2UN

∂x2
− kG

κ
.

Application of Galerkin’s method requires
∫ xj

xj−1

[
∂UN

∂t
− k

∂2UN

∂x2
− kG

κ

]
φm dx = 0, m = 1, . . . , n.

We apply integration by parts on the second derivative term,

0 = −k
{
∂UN

∂x
φm

}xj

xj−1

+
∫ xj

xj−1

(
k
∂UN

∂x
φ′m +

∂UN

∂t
φm − kG

κ
φm

)
dx.

We now substitute for UN (x, t) in the integral,

0 = −k
{
∂UN

∂x
φm

}xj

xj−1

+
∫ xj

xj−1

[
n∑

i=1

(kaiφ
′
iφ

′
m + a′iφiφm) − kG

κ
φm

]
dx,

or,
n∑

i=1

a′i

∫ xj

xj−1

φiφm dx+ k

n∑

i=1

ai

∫ xj

xj−1

φ′iφ
′
m dx = k

{
∂UN

∂x
φm

}xj

xj−1

+
k

κ

∫ xj

xj−1

Gφm dx. (16.58)



SECTION 16.10 735

When the n basis functions φm are chosen, these are the element equations for
the jth element. They constitute a coupled system of n linear, first-order ODEs in
the n coefficients ai(t). Perhaps it would be appropriate for us to now put on the
designation for the jth element,

n∑

i=1

a
(j)
i

′
∫ xj

xj−1

φ
(j)
i φ(j)

m dx+ k
n∑

i=1

a
(j)
i

∫ xj

xj−1

φ
(j)
i

′
φ(j)

m

′
dx

= k

{
∂UN

∂x
φ(j)

m

}xj

xj−1

+
k

κ

∫ xj

xj−1

Gφ(j)
m dx, j = 1, . . . , N. (16.59)

These element equations will be assembled into system equations for the N elements
in the x-mesh. Boundary conditions 16.55b,c are incorporated as follows. The last
element equation (m = n) of the last element (j = N) contains, on the left side,

k

{
∂UN

∂x
φ(N)

n

}xN

xN−1

= k

[
∂UN (L, t)

∂x
φ(N)

n (L) − ∂UN (xN−1, t)
∂x

φ(N)
n (xN−1)

]
.

Since φ(N)
n (xN−1) = 0 and φ(N)

n (L) = 1, this expression reduces to

k
∂UN (L, t)

∂x
.

We substitute from boundary condition 16.55c to replace this term with kh(t), and
since this is on the right side of the equation, it is an implicit condition. Boundary
condition 16.55b must be incorporated explicitly. On the first element (j = 1),

UN (x, t) =
n∑

i=1

a
(1)
i (t)φ(1)

i (x).

Since φ(1)
i (0) = 0 when i > 1, and φ(1)

1 (0) = 1, this reduces at x = 0 to

UN (0, t) = a
(1)
1 (t).

Boundary condition 16.55b is satisfied if we set a(1)
1 (t) = g(t). Interelement bound-

ary conditions must also be applied to the system equations. The residual at time
t = 0 is

R|t=0 =
n∑

i=1

ai(0)φi(x) − f(x).

If we subject it to Galerkin’s requirement, we obtain

0 =
∫ xj

xj−1

[
n∑

i=1

ai(0)φi(x) − f(x)

]
φm(x) dx, m = 1, . . . , n.

This gives n linear equations that can be solved for initial values ai(0) for differential
equations 16.58 in ai(t),

n∑

i=1

ai(0)
∫ xj

xj−1

φiφm dx =
∫ xj

xj−1

fφm dx, m = 1, . . . , n. (16.60)

In finite element programs, the system ODEs are solved numerically with one of the
finite difference techniques discussed in Chapter 14.
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§16.11 Finite Elements and the Wave Equation

Material in this section parallels that in Section 16.10 in that both deal with ini-
tial boundary value problems. The only difference here is that the wave equation
contains a second-order time derivative as opposed to a first-order derivative in the
diffusion equation. Consider then the one-dimensional vibration problem

∂2Y

∂t2
= c2

∂2Y

∂x2
+
F (x, t)
ρ

, 0 < x < L, t > 0, (16.61a)

Y (0, t) = h1(t), t > 0, (16.61b)
Y (L, t) = h2(t), t > 0, (16.61c)
Y (x, 0) = f(x), 0 < x < L, (16.61d)
Yt(x, 0) = g(x), 0 < x < L. (16.61c)

Suppose we create a mesh of N elements xj−1 ≤ x ≤ xj , j = 1, . . . , N for the
interval 0 ≤ x ≤ L (with x0 = 0 and xN = L). We pick n basis functions φ(j)

i (x),
i = 1, . . . , n, on the jth element. We approximate the solution of problem 16.61 on
the jth element with separated functions

Y
(j)
N (x, t) =

n∑

i=1

a
(j)
i (t)φ(j)

i (x). (16.62)

To ease the notation, we temporarily drop the element designation and write

YN (x, t) =
n∑

i=1

ai(t)φi(x). (16.63)

Realize, however, that we are about to do is being done on every element. We will
insert superscripts later. The residual of this approximation is

R =
∂2YN

∂t2
− c2

∂2YN

∂x2
− F

ρ
.

Application of Galerkin’s method requires
∫ xj

xj−1

[
∂2YN

∂t2
− c2

∂2YN

∂x2
− F

ρ

]
φm dx = 0, m = 1, . . . , n.

We apply integration by parts on the second derivative term in x,

0 = −c2
{
∂YN

∂x
φm

}xj

xj−1

+
∫ xj

xj−1

(
c2
∂YN

∂x
φ′m +

∂2YN

∂t2
φm − F

ρ
φm

)
dx.

We now substitute for YN (x, t) in the integral,

0 = −c2
{
∂YN

∂x
φm

}xj

xj−1

+
∫ xj

xj−1

[
n∑

i=1

(c2aiφ
′
iφ

′
m + a′′i φiφm) − F

ρ
φm

]
dx,

or,
n∑

i=1

a′′i

∫ xj

xj−1

φiφm dx+ c2
n∑

i=1

ai

∫ xj

xj−1

φ′iφ
′
m dx = c2

{
∂YN

∂x
φm

}xj

xj−1

+
1
ρ

∫ xj

xj−1

Fφm dx. (16.64)
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When the n basis functions φm are chosen, these are the element equations for the
jth element. Perhaps it would be appropriate for us to now put on the designation
for the jth element,

n∑

i=1

a
(j)
i

′′
∫ xj

xj−1

φ
(j)
i φ(j)

m dx+ c2
n∑

i=1

a
(j)
i

∫ xj

xj−1

φ
(j)
i

′
φ(j)

m

′
dx

= c2
{
∂YN

∂x
φ(j)

m

}xj

xj−1

+
1
ρ

∫ xj

xj−1

Fφ(j)
m dx, j = 1, . . . , N. (16.65)

These element equations will be assembled into system equations for the N ele-
ments in the x-mesh. They constitute a system of coupled, second-order ODEs
in the coefficients a(j)

i (t). Boundary conditions 16.61b,c, being Dirichlet, must be
incorporated explicitly. On the first element (j = 1),

YN (x, t) =
n∑

i=1

a
(1)
i (t)φ(1)

i (x).

Since φ(1)
i (0) = 0 when i > 1, and φ(1)

1 (0) = 1, this reduces at x = 0 to

YN (0, t) = a
(1)
1 (t).

Boundary condition 16.61b is satisfied if we set a(1)
1 (t) = h1(t). On the last element

(j = N),

YN (x, t) =
n∑

i=1

a
(N)
i (t)φ(N)

i (x).

Since φ(N)
i (0) = 0 when i < n, and φ(N)

n (L) = 1, this reduces at x = L to

YN (L, t) = a(N)
n (t).

Boundary condition 16.61c is satisfied if we set a(N)
n (t) = h2(t). Interelement bound-

ary conditions must also be applied to the system equations. The displacement
residual at time t = 0 is

R|t=0 =
n∑

i=1

ai(0)φi(x) − f(x).

If we subject it to Galerkin’s requirement, we obtain

0 =
∫ xj

xj−1

[
n∑

i=1

ai(0)φi(x) − f(x)

]
φm(x) dx, m = 1, . . . , n.

This gives n linear equations that can be solved for initial values ai(0) for differential
equations 16.65 in ai(t),

n∑

i=1

ai(0)
∫ xj

xj−1

φiφm dx =
∫ xj

xj−1

fφm dx, m = 1, . . . , n. (16.66)

The velocity residual at time t = 0 is
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R|t=0 =
n∑

i=1

a′i(0)φi(x) − g(x).

If we subject it to Galerkin’s requirement, we obtain

0 =
∫ xj

xj−1

[
n∑

i=1

a′i(0)φi(x) − g(x)

]
φm(x) dx, m = 1, . . . , n.

This gives n linear equations that can be solved for initial values a′i(0) for differential
equations 16.65,

n∑

i=1

a′i(0)
∫ xj

xj−1

φiφm dx =
∫ xj

xj−1

gφm dx, m = 1, . . . , n. (16.67)

In finite element programs, the system ODEs are solved numerically with one of the
finite difference techniques discussed in Chapter 14.
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APPENDIX A Convergence of Fourier Series

In order to establish convergence of a Fourier series to the function that it represents,
we require a few preliminary results on trigonometric integrals. These results are
formulated so as to make them useful for Fourier integrals in Appendix B as well.

Theorem A.1 (Riemann’s Theorem) If f(x) is piecewise continuous on a ≤ x ≤ b, then

lim
λ→∞

∫ b

a

f(x) sinλx dx = 0 = lim
λ→∞

∫ b

a

f(x) cosλxdx. (A.1)

Proof The interval a ≤ x ≤ b can be divided into a finite number of subintervals
p ≤ x ≤ q in each of which f(x) is continuous even at the end points, provided we
use the limits from the interior as values of f(x) at the end points. The theorem
then follows if we can show that

lim
λ→∞

∫ q

p

f(x) sinλx dx = 0 = lim
λ→∞

∫ q

p

f(x) cosλx dx

for continuous f(x) on p ≤ x ≤ q. If we divide this interval into n equal parts by
points xj = p+ (q − p)j/n, j = 0, . . . , n, then

∫ q

p

f(x) sinλxdx =
n−1∑

j=0

∫ xj+1

xj

f(x) sinλxdx

=
n−1∑

j=0

[
f(xj)

∫ xj+1

xj

sin λxdx+
∫ xj+1

xj

[f(x) − f(xj)] sinλx dx

]

=
n−1∑

j=0

f(xj)
(

cosλxj − cosλxj+1

λ

)
+

n−1∑

j=0

∫ xj+1

xj

[f(x)− f(xj)] sin λxdx.

When we use the triangle inequality, |a+b| ≤ |a|+ |b|, on each of these summations,
and note that | sin λx| ≤ 1, we obtain
∣∣∣∣
∫ q

p

f(x) sinλx dx
∣∣∣∣ ≤

n−1∑

j=0

|f(xj)|
∣∣∣∣
cosλxj − cosλxj+1

λ

∣∣∣∣+
n−1∑

j=0

∫ xj+1

xj

|f(x)− f(xj)| dx.

Clearly, | cosλxj − cosλxj+1| ≤ | cosλxj | + | cosλxj+1| ≤ 2, and if we denote the
maximum value of |f(x)| on p ≤ x ≤ q by M , then

∣∣∣∣
∫ q

p

f(x) sinλxdx
∣∣∣∣ ≤

2Mn

λ
+

n−1∑

j=0

∫ xj+1

xj

|f(x) − f(xj)| dx.

Because a continuous function [f(x)] on a closed interval [p ≤ x ≤ q] is uniformly
continuous thereon, we can state that corresponding to any number ε > 0, no matter
how small, there exists an N large enough that when n > N and xj ≤ x ≤ xj+1,

|f(x) − f(xj)| <
ε

2(q − p)
.

For n > N , then,
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∣∣∣∣
∫ q

p

f(x) sinλx dx
∣∣∣∣ ≤

2Mn

λ
+

n−1∑

j=0

ε

2(q − p)
(xj+1 − xj) =

2Mn

λ
+
ε

2
.

Finally, if λ is chosen so large that 2Mn/λ < ε/2, then
∣∣∣∣
∫ q

p

f(x) sinλx dx
∣∣∣∣ < ε;

that is, λ can be chosen so large that the value of the integral can be made arbitrarily
close to zero. This is tantamount to saying that

lim
λ→∞

∫ q

p

f(x) sinλx dx = 0.

A similar proof yields the other limit.

When λ is set equal to nπ/L, we obtain the following corollary to Theorem
A.1.

Corollary If f(x) is piecewise continuous on 0 ≤ x ≤ 2L, then

lim
n→∞

∫ 2L

0

f(x) cos
nπx

L
dx = 0 = lim

n→∞

∫ 2L

0

f(x) sin
nπx

L
dx. (A.2)

Theorem A.2 If f(x) is piecewise continuous on 0 ≤ x ≤ b and has a right derivative at x = 0,
then

lim
λ→∞

∫ b

0

f(x)
sinλx
x

dx =
π

2
f(0+). (A.3)

Proof We begin by expressing the integral in the form
∫ b

0

f(x)
sinλx
x

dx =
∫ b

0

[
f(x)− f(0+)

x

]
sinλx dx+ f(0+)

∫ b

0

sinλx
x

dx. (A.4)

Now the function [f(x) − f(0+)]/2 is piecewise continuous on 0 ≤ x ≤ b (since
f(x) is), and provided we define the value at x = 0 by the limit that is the right
derivative of f(x) at x = 0). Hence, by Riemann’s theorem

lim
λ→∞

∫ b

0

[
f(x)− f(0+)

x

]
sinλx dx = 0,

and the first integral on the right of A.4 vanishes in the limit as λ → ∞. Further,
by the change of variable u = λx in the second integral, we find that

lim
λ→∞

∫ b

0

sinλx
x

dx = lim
λ→∞

∫ bλ

0

sinu
u

du =
∫ ∞

0

sinu
u

du =
π

2

∗
.

Consequently, the limit of A.4 as λ→ ∞ yields A.3.

∗This integral is quoted in many sources. See, for example, any edition of Standard
Mathematical Tables by Chemical Rubber Publishing Company.
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Theorem A.3 If f(x) is piecewise continuous on a ≤ x ≤ b, then at every x in a < x < b at which
f(x) has a right and left derivative,

lim
λ→∞

1
π

∫ b

a

f(t)
sinλ(x− t)

x− t
dt =

f(x+) + f(x−)
2

. (A.5)

Proof We begin by subdividing the interval of integration,
∫ b

a

f(t)
sinλ(x− t)

x− t
dt =

∫ x

a

f(t)
sinλ(x− t)

x− t
dt+

∫ b

x

f(t)
sinλ(x− t)

x− t
dt,

and make the changes of variables u = x− t and u = t− x, respectively,
∫ b

a

f(t)
sinλ(x− t)

x− t
dt =

∫ x−a

0

f(x− u)
sinλu
u

du+
∫ b−x

0

f(x+ u)
sinλu
u

du.

For fixed x, f(x− u) is piecewise continuous in u on 0 ≤ u ≤ x− a and has a right
derivative at u = 0 (namely, the negative of the left derivative of f(x) at x). It
follows, then, from Theorem A.2 that

lim
λ→∞

∫ x−a

0

f(x− u)
sinλu
u

du =
π

2
f(x−).

A similar discussion yields

lim
λ→∞

∫ b−x

0

f(x+ u)
sinλu
u

du =
π

2
f(x+),

and these two facts give the theorem.

We are now prepared to prove Theorem 3.2 in Section 3.1.

Theorem A.4 If f(x) is piecewise continuous and of period 2L, then at every x at which f(x) has a
right and left derivative, the Fourier series of f(x) converges to [f(x+) + f(x−)]/2.

Proof The nth partial sum of the Fourier series of f(x) is

Sn(x) =
a0

2
+

n∑

k=1

(
ak cos

kπx

L
+ bk sin

kπx

L

)
.

Substitutions from definitions 3.12 in Section 3.1 for a0, ak, and bk yield

Sn(x) =
1

2L

∫ 2L

0

f(t) dt+
n∑

k=1

[
cos

kπx

L

1
L

∫ 2L

0

f(t) cos
kπt

L
dt+ sin

kπx

L

1
L

∫ 2L

0

f(t) sin
kπt

L
dt

]

=
1
L

∫ 2L

0

[
1
2
f(t) +

n∑

k=1

f(t)
(

cos
kπx

L
cos

kπt

L
+ sin

kπx

L
sin

kπt

L

)]
dt

=
1
L

∫ 2L

0

[f(t)

[
1
2

+
n∑

k=1

cos
kπ(x− t)

L

]
dt

=
1
L

∫ 2L

0

f(t)
sin

(n+ 1/2)π(x− t)
L

2 sin
π(x− t)

2L

dt.∗
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Since the integrand is of period 2L, we may integrate over any interval of length
2L. We choose an interval beginning at a, where a < x < a+2L, and rearrange the
integrand into the following form,

Sn(x) =
1
L

∫ a+2L

a


f(t)

x− t

2 sin
π(x− t)

2L




sin
(n+ 1/2)π(x− t)

L
x− t

dt.

In order to take limits as n → ∞ and apply Theorem A.3, we require piecewise
continuity of

F (t) = f(t)
x− t

2 sin
π(x− t)

2L
on a ≤ t ≤ a + 2L and existence of both of its one-sided derivatives at t = x (x
fixed). This will follow if

x− t

2 sin
π(x− t)

2L
has these properties (since f(t) has, by assumption). Since t = x is the only point
in the interval a ≤ t ≤ a + 2L at which the denominator of this function vanishes,
it follows that it is indeed piecewise continuous thereon. Furthermore, it is easily
shown that this function has a right and left derivative at t = x. By Theorem A.3,
then,

lim
n→∞

Sn(x) = lim
n→∞

1
L

∫ a+2L

a


f(t)

x− t

2 sin
π(x− t)

2L




sin
(n+ 1/2)π(x− t)

L
x− t

dt

=
π

L
lim

n→∞

1
π

∫ a+2L

a

F (t)
sin

(2n+ 1)π(x− t)
2L

x− t
dt =

π

2L
[F (x+) + F (x−)].

Since F (x+) = limt→x+ F (t) = f(x+)(L/π), and similarly for F (x−), it follows
that

lim
n→∞

Sn(x) =
π

2L

[
L

π
f(x+) +

L

π
f(x−)

]
=
f(x+) + f(x−)

2
.

∗We have used the identity

1
2

+
n∑

k=1

coskθ =
sin (n+ 1/2)θ

2 sin (θ/2)
.

This formula can be established by expressing coskθ as a complex exponential (eikθ+
e−ikθ)/2 and summing the two resulting geometric series. The identity is regarded
in the limit sense at angles for which sin (θ/2) = 0.
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APPENDIX B Convergence of Fourier Integrals

In order to establish convergence of a Fourier integral to the function that it repre-
sents, we require some preliminary results on trigonometric integrals. They parallel
and utilize analogous properties in Appendix A.

Theorem B.1 (Riemann’s Theorem) If f(x) is piecewise continuous on every finite interval and
absolutely integrable on −∞ < x <∞, then

lim
λ→∞

∫ ∞

−∞
f(x) sinλx dx = 0 = lim

λ→∞

∫ ∞

−∞
f(x) cosλx dx. (B.1)

Proof Since

lim
λ→∞

∫ ∞

−∞
f(x) sinλx dx = lim

λ→∞

[
lim
r→∞
s→∞

∫ r

−s

f(x) sinλxdx
]
,

and the limit on r and s is absolutely and uniformly convergent with respect to λ,
limits may be reversed,

lim
λ→∞

∫ ∞

−∞
f(x) sinλx dx = lim

r→∞
s→∞

[
lim

λ→∞

∫ r

−s

f(x) sinλxdx
]
.

But Riemann’s theorem for finite intervals (Theorem A.1 in Appendix A) implies
that the integral on the right converges for all r and s.

Theorem B.2 If f(x) is piecewise continuous on every finite interval and absolutely integrable on
−∞ < x <∞, then at every x at which f(x) has a right and left derivative,

lim
λ→∞

1
π

∫ ∞

−∞
f(t)

sinλ(x− t)
x− t

dt =
f(x+) + f(x−)

2
. (B.2)

Proof For each fixed x, the function

F (t) = f(t)
sinλ(x− t)

x− t

is piecewise continuous in t on every finite interval (provided we define F (x) by the
limit as t approaches x). Further, since

|F (t)| = |λ||f(t)|
∣∣∣∣
sinλ(x− t)
λ(x− t)

∣∣∣∣ ≤ |λ||f(t)|,

and f(t) is absolutely integrable on −∞ < t < ∞, it follows that the improper
integral

∫ ∞

−∞
F (t) dt =

∫ ∞

−∞
f(t)

sinλ(x− t)
x− t

dt

converges. If a and b are numbers such that a < x < b, then
∣∣∣∣
∫ ∞

−∞
F (t) dt− π

[
f(x+) + f(x−)

2

]∣∣∣∣ ≤
∫ a

−∞
|F (t)| dt

+

∣∣∣∣∣

∫ b

a

F (t) dt− π

[
f(x+) + f(x−)

2

]∣∣∣∣∣+
∫ ∞

b

|F (t)| dt.
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Now,
∫ a

−∞
|F (t)| dt ≤

∫ a

−∞

|f(t)|
|x− t|

dt ≤ 1
x− a

∫ a

−∞
|f(t)| dt.

Given any ε > 0, there exists a(ε) < 0, independent of λ, such that
∫ a

−∞
|F (t)| dt ≤ 1

x− a

∫ a

−∞
|f(t)| dt < ε

3
.

Similarly, there exists b(ε) > 0 such that
∫ ∞

b

|F (t)| dt < ε

3
.

Since f(t) is piecewise continuous on a ≤ t ≤ b and has both one-sided derivatives
at t = x, a < x < b, we have from Theorem A.3 in Appendix A that

lim
λ→∞

1
π

∫ b

a

f(t)
sinλ(x− t)

x− t
dt =

f(x+) + f(x−)
2

;

that is, there exists λ(ε) such that whenever λ > λ(ε),
∣∣∣∣∣

∫ b

a

f(t)
sinλ(x− t)

x− t
dt− π

[
f(x+) + f(x−)

2

]∣∣∣∣∣ <
ε

3
.

Combining these three results, we have, for λ > λ(ε),
∣∣∣∣
∫ ∞

−∞
F (t) dt− π

[
f(x+) + f(x−)

2

]∣∣∣∣ < ε.

Since ε can be made arbitrarily small, it follows that

lim
λ→∞

1
π

∫ ∞

−∞
f(t)

sinλ(x− t)
x− t

dt =
f(x+) + f(x−)

2
.

We can now establish Theorem 11.1 in Section 11.2.

Theorem B.3 (Fourier Integral Theorem) If f(x) is piecewise continuous on every finite interval
and absolutely integrable on −∞ < x < ∞, then at every x at which f(x) has a
right- and left-derivative,

f(x+) + f(x−)
2

=
∫ ∞

0

[A(λ) cosλx+ B(λ) sinλx] dλ (B.3a)

when

A(λ) =
1
π

∫ ∞

−∞
f(x) cosλxdx, B(λ) =

1
π

∫ ∞

−∞
f(x) sinλx dx. (B.3b)

Proof By Theorem B.2, we may write

f(x+) + f(x−)
2

= lim
α→∞

1
π

∫ ∞

−∞
f(t)

sinα(x− t)
x− t

dt.

Since
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∫ α

0

cosλ(x− t) dλ =
{

sinλ(x− t)
x− t

}α

0

=
sinα(x− t)

x− t
,

it follows that

f(x+) + f(x−)
2

= lim
α→∞

1
π

∫ ∞

−∞
f(t)

[∫ α

0

cosλ(x− t) dλ
]
dt

= lim
α→∞

1
π

∫ ∞

−∞

∫ α

0

f(t) cosλ(x− t)dλ dt.

Since
∫ ∞

−∞
f(t) cosλ(x− t) dt

is uniformly convergent with respect to λ, we may interchange the order of integra-
tion and write

f(x+) + f(x−)
2

= lim
α→∞

1
π

∫ α

0

∫ ∞

−∞
f(t) cosλ(x− t)dt dλ

=
1
π

∫ ∞

0

∫ ∞

−∞
f(t) cosλ(x− t)dt dλ

=
1
π

∫ ∞

0

∫ ∞

−∞
f(t)[cosλx cosλt+ sin λx sin λt] dt dλ.

This is the result in equation B.3.
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APPENDIX C Vector Analysis

In this appendix we briefly mention the theorems from vector analysis that are used
throughout the book.

When f(x, y, z) is a scalar function with first partial derivatives in some region
V of space, its gradient is a vector-valued function defined by

grad f = ∇f =
∂f

∂x
î +

∂f

∂y
ĵ +

∂f

∂z
k̂. (C.1)

This a very important vector in applied mathematics, principally due to the prop-
erties stated in the following theorem.

Theorem C.1 The directional derivative of a function f(x, y, z) in any direction is the component of
∇f in that direction. Furthermore, f(x, y, z) increases most rapidly in the direction
∇f , and its rate of change in this direction is |∇f |.

When F(x, y, z) = P (x, y, z)̂i+Q(x, y, z)̂j+R(x, y, z)k̂ is a vector function with
first partial derivatives in some region V , its divergence and curl are defined as

divF = ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
, (C.2)

and

curlF = ∇× F =
(
∂R

∂y
− ∂Q

∂z

)
î +
(
∂P

∂z
− ∂R

∂x

)
ĵ +

(
∂Q

∂x
− ∂P

∂y

)
k̂. (C.3)

The gradient, divergence, and curl are linear operators that satisfy the following
identities:

∇(fg) = f∇g + g∇f, (C.4a)
∇ · (fF) = ∇f · F + f∇ · F, (C.4b)
∇× (fF) = ∇f × F + f(∇× F), (C.4c)

∇ · (F×G) = G · (∇× F) − F · (∇×G), (C.4d)
∇× (∇f) = 0, (C.4e)

∇ · (∇× F) = 0, (C.4f)

provided f(x, y, z) and the components of vectors are sufficiently differentiable.
The line integral

∫

C

F · dr =
∫

C

P dx+Qdy + Rdz

of a continuous vector function F = P î+Qĵ+Rk̂ along a smooth curve C can always
be evaluated by substituting from parametric equations for C and evaluating the
resulting definite integral. For example, the value of

∫

C

y dx+ x dy + z dz
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along the curve C: x = t2, y = t+ 1, z = 3t, 0 ≤ t ≤ 1, can be calculated with the
definite integral

∫ 1

0

(t+ 1)(2t dt) + t2 dt+ 3t(3 dt) =
∫ 1

0

(3t2 + 11t) dt =
13
2
.

In the event that a line integral is independent of path, and this occurs when
F is the gradient of some scalar function f(x, y, z), the value of the line integral is
the difference in the values of f(x, y, z) at terminal and initial points. The above
line integral is independent of path since ∇(xy+ z2/2) = yî+xĵ+ zk̂, and therefore

∫

C

y dx+ x dy + z dz =
{
xy +

z2

2

}(1,2,3)

(0,1,0)

=
13
2
.

The surface integral
∫∫

S

F · n̂ dS

of the normal component of a
vector function F(x, y, z) over a
smooth surface S with unit normal
vector n̂ is usualy evaluated by pro-
jecting the surface in a one-to-one
fashion onto a coordinate plane,
expressing F · n̂ and dS in terms of
coordinates in this plane, and
evaluating the resulting double integral.
For example, when F = x2yî + xzĵ and x

z

y

z x y

dS

x y z

= 4- 2- 2

2 2+ =4 =0,
2

2

4

n̂

when n̂ is the upper normal to the Figure C.1
surface S: z = 4 − x2 − y2, z ≥ 0, it is
appropriate to project S onto the xy-plane (Figure C.1). The unit upper normal to
S is

n̂ =
∇(z − 4 + x2 + y2)
|∇(z − 4 + x2 + y2)| =

(2x, 2y, 1)√
1 + 4x2 + 4y2

.

The relationship between a rectangular area dy dx in the xy-plane, and its projection
dS on S is

dS =

√
1 +

(
∂z

∂z

)2

+
(
∂z

∂y

)2

dy dx =
√

1 + 4x2 + 4y2 dy dx.

Since S projects onto the circle x2 + y2 ≤ 4, the value of the surface integral of the
normal component of F over S is
∫∫

S

F · n̂ dS =
∫ 2

−2

∫ √
4−x2

−
√

4−x2
(x2y, xz, 0) · (2x, 2y, 1)√

1 + 4x2 + 4y2

√
1 + 4x2 + 4y2 dy dx

=
∫ 2

−2

∫ √
4−x2

−
√

4−x2
(2x3y + 2xyz) dy dx

=
∫ 2

−2

∫ √
4−x2

−
√

4−x2
[2x3y + 2xy(4 − x2 − y2)] dy dx
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= 0.

When a surface does not project in a one-to-one fashion onto a coordinate plane
(such would be the case, for example, if the surface were closed), it must divided
into subsurfaces that do project one-to-one. Alternatively, if the surface is indeed
closed, the surface integral can be replaced by a triple integral over its interior. This
is the result of the following theorem.

Theorem C.2 (Divergence Theorem) Let S be a piecewise smooth surface enclosing a volume
V . Let F(x, y, z) be a vector function whose components have continuous first
partial derivatives in an open region containing S in its interior. If n̂ is the unit
outward-pointing normal to S, then

∫∫
⊂⊃

S

F · n̂ dS =
∫∫∫

V

∇ · F dV . (C.5)

For example, consider evaluating the surface
integral of F = x̂i + yĵ + zk̂ over the
surface S that encloses the volume described
by x2 + y2 ≤ 4, 0 ≤ z ≤ 2 (Figure C.2).
To do so by surface integrals would require
that the top and bottom of the cylinder be
projected onto the xy-plane and the cylindrical
side be divided into two parts, each of which x

z

y

x y2 2=4+

2
2

2

projects one-to-one onto the xz-pane (or yz-plane). Figure C.2
Alternatively, the divergence theorem yields

∫∫
⊂⊃

S

F · n̂ dS =
∫∫∫

V

∇ · F dV =
∫∫∫

V

(1 + 1 + 1) dV = 3
∫∫∫

V

dV = 3(volume of V ) = 24π.

If we set F = u∇v in equation C.5, where u and v are arbitrary functions of x,
y, and z, and use identity C.4b, we immediately obtain

∫∫
⊂⊃

S

(u∇v) · n̂ dS =
∫∫∫

V

(u∇2v + ∇u · ∇v) dV . (C.6)

This result is called Green’s first identity. When u and v are interchanged in
this equation and the equations are subtracted, the result is called Green’s second
identity,

∫∫
⊂⊃

S

(u∇v − v∇u) · n̂ dS =
∫∫∫

V

(u∇2v − v∇2u) dV . (C.7)

Stokes’s theorem relates line integals around closed curves to surface integals
over surfaces that have the curves as boundaries.

Theorem C.3 (Stokes’s Theorem) Let C be a closed, piecewise smooth, non-self-intersecting
curve, and let S be a piecewise smooth (orientable) surface with C as boundary
(Figure C.3). Let F be a vector function whose components have continuous first
partial derivatives in an open region that contains S and C in its interior. Then

∫
©

C

F · dr =
∫∫

S

(∇× F) · n̂ dS, (C.8)



Appendix C 749

where n̂ is the unit normal to S chosen in the following way. If when moving along
C, the surface S is on the left side, then n̂ must be chosen as the unit normal on
that side. On the other hand, if when moving along C, the surface is on the right,
then n̂ must be chosen on the opposite side of S.

x

z

y

C

S

n
F^

x

z

y

x y y

y z
C

2 2 2+ =

=

Figure C.3 Figure C.4

For example, consider the integral
∫
©

C

y2 dx+ xy dy + xz dz,

where C is the curve of intersection of the surfaces x2 +y2 = 2y and y = z, directed
so that y increases when x is positive (Figure C.4). If we choose S as that part of
the plane y = z interior to C, then

n̂ =
∇(z − y)
|∇(z − y)|

=
(0,−1, 1)√

2
.

Since ∇× F = (0,−z,−y), it follows by Stokes’s theorem that
∫
©

C

y2 dx+ xy dy + xz dz =
∫∫

S

(0,−z,−y) · (0,−1, 1)√
2

dS =
∫∫

S

z − y√
2
dS = 0,

since z = y at every point of S.
When C is a curve in the xy-plane

(directed counterclockwise) and S is
chosen as that part A of the xy-plane
interior to C, we obtain Green’s theorem
as a special case of Stokes’s theorem
(Figure C.5),

y

x

A

C

Figure C.5

∫
©∨

C

P (x, y) dx+Q(x, y) dy =
∫∫

A

(
∂Q

∂x
− ∂P

∂y

)
dy dx. (C.9)

The two-dimensional version of Green’s first identity is obtained from this equa-
tion by setting P = −u∂v/∂y and Q = u∂v/∂x, where u and v are functions of x
and y,

∫
©

C

(u∇v) · n̂ ds =
∫∫

A

(u∇2v + ∇u · ∇v) dA, (C.10)
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provided n̂ is the unit outward pointing normal to C. When u and v are interchanged
and the equations are subtracted, the result is Green’s second identity in the
plane,

∫
©

C

(u∇v − v∇u) · n̂ ds =
∫∫

A

(u∇2v − v∇2u) dA. (C.11)

An alternative form of Green’s theorem, which casts it as a two-dimensional
version of the divergence theorem is

∫
©

C

F · n̂ ds =
∫∫

A

∇ · F dA, (C.12)

where n̂ is the unit outward-pointing normal to C.
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APPENDIX D Complex Functions

In this appendix we present those elements of the theory of functions of a complex
variable that are necessary for thorough discussions of Laplace transforms (Chapter
10) and Fourier transforms (Chapter 11). No attempt is made at a complete treat-
ment of the subject. An exhaustive development can be found in the author’s text
Introduction to Complex Analysis and Its Applications.

Complex numbers can be represented in three forms, Cartesian, polar, and
exponential. The Cartesian form of a complex number is its representation z = x+yi
in terms of its real and imaginary parts x and y. The polar and exponential forms
of a complex number express the number in terms of its modulus r and argument
θ. They are essentially the same, the exponential form being more compact and
operationally more suggestive. The polar form is z = r(cos θ + sin θ i), and the
exponential form is z = reθi, replacing therefore cos θ + sin θ i with eθi.

A complex function f of the complex variable z is the assignment of a complex
number f(z) to each possible value of z. For example, the function might be a
polynomial f(z) = 2z3−z2+4, or a rational function f(z) = (2z2−4)/(z3+5z2−2z).
Since f(z) is a complex number, it has real and imaginary parts that we denote by
f(z) = u(x, y)+v(x, y)i, where z = x+yi. For example, when f(z) = z2 = (x+yi)2,
we find that u(x, y) = x2 − y2 and v(x, y) = 2xy. Below is a list of the complex
functions that are encountered in the text, identifying their real and imaginary
parts:

ez = ex(cos y + sin y i), (D.1a)
sin z = sin x cosh y + cosx sinh y i, (D.1b)
cos z = cosx cosh y − sinx sinh y i, (D.1c)

sinh z = sinhx cos y + coshx sin y i, (D.1d)
cosh z = coshx cos y + sinhx sin y i, (D.1e)

√
z =

√
reθi/2, (D.1f)

where θ is the value of the argument of z (satisfying 0 ≤ θ < 2π). This is one of
branches of the square root function.

Complex functions can be differentiated and the usual power, product, quotient,
and chain rules apply. Derivatives of the above functions are identical to what they
are for their real counterparts. A function f(z) is said to be analytic in an open set
S if f ′(z) exists at each point of S; it is said to be entire, if it is analytic at every
point in the complex plane. A complex function is said to be analytic at a point z0
if it is analytic in some open set containing z0. One way to verify that a function
is analytic in an open set is to show that the first partial derivatives of its real and
imaginary parts u(x, y) and v(x, y) are continuous and satisfy the Cauchy Riemann
equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (D.2)

One of the features of complex functions that make them so different from real
functions is that if a complex function has a derivative in an open set, then it
has derivatives of all orders in that set. Existence of the first derivative of a real



752 Appendix D

function does not guarantee existence of its second derivative, let alone derivatives
of all orders. For example, the function f(x) = x5/3 has a first derivative for all
values of x, but it does not have a second derivative at x = 0. Not so for complex
functions, existence of a first derivative guarantees existence of all derivatives.

Particularly important about complex functions are their zeros and singulari-
ties. A point z0 is called a zero of order m of a complex function f if f is analytic
at z0, and

0 = f(z0) = f ′(z0) = · · · = f (m−1)(z0), f (m)(z0) 6= 0. (D.3)

The above representations immediately show that ez has no zeros, sin z has zeros of
order 1 (also called simple zeros) at z = nπ, where n is an integer, cos z has simple
zeros at z = (2n+ 1)π/2, sinh z has simple zeros at z = nπi, and cosh z has simple
zeros at z = (2n+ 1)πi/2. The square root function

√
z has no zeros. The rational

function f(z) = (z3 + z2)/(z − 4)3 has a simple zero at z = −1 and a zero of order
two at z = 0.

A point z0 is called a singularity of a complex function f if f is not analytic
at z0, but every neighbourhood of z0 contains at least one point at which f is
analytic. The functions ez, sin z, cos z, sinh z, and cosh z have no singularities;
they are entire functions. The square root function, however, has singularities at
z = 0 and every point on the positive real axis, its branch cut. A singularity z0 is
said to be isolated, if there exists an open set containing z0 in which it is the only
singularity of the function. The singularities of

√
z are not isolated. The rational

function f(z) = (z + 1)/(z3 + z) has isolated singularities at z = 0 and z = ±i.
When a complex function f(z) is analytic at a point z0, it can be expanded in

a Taylor series around z0,

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n, (D.4)

and the series converges to f(z) in every circle that contains only points at which
the function is analytic. When z0 = 0, the series is called the Maclaurin series for
the function. Below are some useful Maclaurin series together with their circles of
convergence:

1
1 − z

=
∞∑

n=0

zn, |z| < 1, (D.5a)

ez =
∞∑

n=0

zn

n!
, |z| <∞, (D.5b)

sin z =
∞∑

n=0

(−1)nz2n+1

(2n+ 1)!
, |z| <∞, (D.5c)

cos z =
∞∑

n=0

(−1)nz2n

(2n)!
, |z| <∞, (D.5d)

sinh z =
∞∑

n=0

z2n+1

(2n+ 1)!
, |z| <∞, (D.5e)

cosh z =
∞∑

n=0

z2n

(2n)!
, |z| <∞. (D.5f)
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Taylor series can be used to verify the following useful result for determining the
order of a zero of a function. A function f has a zero of order m at z0 if and only
if it can be written in the form

f(z) = (z − z0)mg(z), (D.6)

valid in some circle |z − z0| < R, where g is analytic at z0 and g(z0) 6= 0.
When a complex function f(z) has an isolated singularity at a point z0, the

function can be expanded in a Laurent series valid in an open annulus 0 < |z−z0| <
R around the point,

f(z) =
∞∑

n=−∞
an(z − z0)n = · · · + a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · .(D.7)

Isolated singularities are classified according to the number of terms in the Laurent
series that have negative powers of z − z0:
(i) if an = 0 for all n < 0, z0 is called a removable singularity;
(ii) if an = 0 for n < −m, m a fixed positive integer, but a−m 6= 0, z0 is called a
pole of

order m;
(iii) if an 6= 0 for an infinity of negative integers n, z0 is called an essential singu-
larity.
Of particular importance is the coefficient a−1 in the Laurent series. It is called the
residue of f(z) at z = z0. We can find it by writing out the Laurent series for the
function around z0. Alternatively, when it is known that z0 is a pole of order m,
the residue at z0 is also given by the formula

Res [f(z), z0] = lim
z→z0

1
(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)]. (D.8)

To determine the order of the pole of a function, the following result is useful. A
function f has a pole of order m at z0 if and only if it can be written in the form

f(z) =
g(z)

(z − z0)m
, (D.9)

valid in some annulus 0 < |z − z0| < R, where g is analytic at z0 and g(z0) 6= 0.
The counterpart of the definite integral for a real function f(x) is the contour

integral of a complex function f(z). It is the integral of f(z) from some point z0 to
another point z1 along a curve C joining the points, denoted by

∫

C

f(z) dz. (D.10)

An indispensable property of contour integrals in applications is the fact that
∣∣∣∣
∫

C

f(z) dz
∣∣∣∣ leML, (D.11)

where M is the maximum value of |f(z)| on C, and L is the length of C.
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When f(z) and dz are expressed in terms of their real and imaginary parts,
this integral can be separated into two real line integrals,

∫

C

f(z) dz =
∫

C

(u+ vi)(dx+ dy i) =
∫

C

(u dx− v dy) + i

∫

C

(v dx+ u dy).(D.12)

These line integrals can be evaluated by substituting from parametric equations
for C; x = x(t), y = y(t), t0 ≤ t ≤ t1, but there are more efficient methods for
evaluating contour integrals, one of which is to use Cauchy’s residue theorem. It
states that if a function f is analytic inside and on a simple, closed, piecewise smooth
curve C, except at singularities z1, . . . , zn in its interior, then,

∫
©∨

C

f(z) dz = 2πi
n∑

j=1

Res[f, zj ]. (D.13)

Another feature of complex functions that make them so different from real functions
is that if a function f(z) is analytic in an open set containing a closed curve C, then
values of f(z) are completely determined by its values on C. This is a result called
Cauchy’s integral formula. It states that values of f(z) at points z interior to C are
given by the contour integral

f(z) =
1

2πi

∫
©∨

C

f(ζ)
ζ − z

dζ. (D.14)

Furthermore, values of all derivatives of f(z) at z interior to C are given by the
Cauchy’s generalized integral formula

f (n)(z) =
n!
2πi

∫
©∨

C

f(ζ)
(ζ − z)n+1

dζ. (D.15)

Contour integrals can be used to evaluate many real improper integrals with infi-
nite limits. We illustrate with one example, and then state some useful shortcuts.
Consider the improper integral

∫ ∞

−∞

1
1 + x4

dx.

It is fairly clear that were we to evaluate the contour integral
∫
©∨

C

1
1 + z4

dz

where C is the curve in the left figure below, and were we to let R → ∞, then
that part of the contour integral along the real axis would give rise to the required
improper integral. Let us consider this contour integral then.
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Im

Re

z

z

C

R-R

e i e i

>1

/43 /4p p

Im

Re

z

zR-R

e i e i

>1

/43 /4p p

G

The integrand (1 + z4)−1 has simple poles at the four fourth roots of −1,

eπi/4, e3πi/4, e5πi/4, e7πi/4,

only the first two of which are interior to C. L’Hôpital’s rule gives

Res
[

1
1 + z4

, eπi/4

]
= lim

z→eπi/4

z − eπi/4

1 + z4
= lim

z→eπi/4

1
4z3

=
1

4e3πi/4
= −

√
2

8
(1 + i).

Similarly, Res
[

1
1 + z4

, e3πi/4

]
=

√
2

8
(1− i). By Cauchy’s residue theorem then,

∫
©∨

C

1
1 + z4

dz = 2πi

[
−
√

2
8

(1 + i) +
√

2
8

(1 − i)

]
=

π√
2
.

Suppose we now divide C into a semicircular part Γ and a straight line part (right
figure above). Then

π√
2

=
∫ R

−R

1
1 + x4

dx+
∫

Γ

1
1 + z4

dz.

If we set z = Reθi, 0 ≤ θ ≤ π, on Γ, then on the semicircle,
∣∣∣∣

1
1 + z4

∣∣∣∣ ≤
1

|z4| − 1
=

1
R4 − 1

.

Hence, we can say that
∣∣∣∣
∫

Γ

1
1 + z4

dz

∣∣∣∣ ≤
1

R4 − 1
(πR).

It is clear that the limit of this expression is zero as R → ∞, and therefore

π√
2

= lim
R→∞

(∫ R

−R

1
1 + x4

dx+
∫

Γ

1
1 + z4

dz

)
=
∫ ∞

−∞

1
1 + x4

dx.

The following two results save most of the work in evaluating real improper
integrals like these.

Suppose that P (x) and Q(x) are polynomials (of degrees m and n), and Q(x) 6= 0
for all real x. When n ≥ m+ 2,

∫ ∞

−∞

P (x)
Q(x)

dx = 2πi
{

sum of the residues of P (z)/Q(z) at
its poles in the half-plane Im z > 0

}
. (D.16)

Suppose that P (x) and Q(x) are polynomials (of degrees m and n), and Q(x) 6= 0
for any real x. When a > 0 and n ≥ m+ 1,
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∫ ∞

−∞

P (x) cosax
Q(x)

dx = −2π Im
{

sum of the residues of P (z)eazi/Q(z)
at its poles in the half-plane Im z > 0

}
,(D.17a)

and

∫ ∞

−∞

P (x) sinax
Q(x)

dx = 2πRe
{

sum of the residues of P (z)eazi/Q(z)
at its poles in the half-plane Im z > 0

}
.(D.17b)
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APPENDIX E Numerical Answers to Exercises

Exercises 1.1
1. (a) u = −2x/(x2y+6y+ 8x) (b) u = −2x/[x2y+2x sin (y/x)] (c) u = −2x/(x2y+ 2ye−2y/x)
2. u = x 3. u = 3 − 2/x− 2/y 4. u = −(1/3)(u− 4y)e4(3x+u−4y)/3

5. u = (3/5)(u+y)ex−(u+y)/5 6. y = 2−
√

4 + x2 + y2 − 2x 7. u = (x2+y2+2)/(2−2xy)
8. No solution 9. (a) u = −1+

√
3 + 2c+ c2 − 2xy (b) u = −1+

√
1 + 2c+ c2 − 2xy (c) No

10. u = 2− 2
√

1 − x+ y, y ≥ x− 1 11. u = nx, n a constant, along the initial curve
12. (a) No solution (b) u = (a+

√
2x2 + 2y2 − a2)/2

13. (a) u = 4 ln (y − x) + x2/(y − x)2 (b) No solution (c) Infinite number of solutions
14. lx+my + nu = α, x2 + y2 + u2 = β
16. u = −2/(2 + x+ y) for y > x and y > −2− x; u = 2/(2− x− y) for y < x and y < 2− x
17. u = [tanx+ f(y − x)]/[1 − f(y − x) tanx]
19. u = 1 for y > x and x < 1; u = (1− x)/(1− y) for y < x and x < 1; u = 0 for y < x and

x > 1
20. (a) u = x (b) u2 = y + 2(u− x) + (u− x)2 + (u− x)

√
1 + 4(u− x) when x > 1/2;

u2 = y + 2(u− x) + (u− x)2 − (u− x)
√

1 + 4(u− x) when x < 1/2

21. y(x− u) = y2 −
(
x+ u

y
− 1
)3

− 2
(
x+ u

y
− 1
)

24. No

Exercises 1.2
1. u = x+4y 2. u = −(x±

√
2y)2/4 3. u = x2 +(1± y)2 4. u = (y− 1)e−x + e−2x

5. u = 2xy − 3y2/2
6. (a) u = 1 (b) u = x/(1 − y) (c) x = u(1 + u3 − y) (d) u = [y − 1 +

√
(y − 1)2 + 4x]/2

8. u = (x/2)
√

4y + x2

9. (u− u0)2 = 4(x− x0)(y − y0)
10. u = u0 + (x− x0)2/(2y − 2y0) + {u0 − (x− x0)2/[4(y − y0)2]}(y − y0)
11. (a) (u− u0)2 = 4u0(x− x0)(y − y0) (b)(i) No solution (ii) u = −[1 ± (x− y)/2]2

(iii) u = x(y + 1)
12. (a) k < −a2/2 (b) u = 2a(a−

√
x2 + y2)

13. (a) k2 < 1 − a2 (b) u = (a−
√
x2 + y2)/

√
a2 − 1

Exercises 1.3
2. t = 1/m
3. (a) u = x/t− [1 −

√
1 + 4t(t− x)]/(2t2), t+ 1/(4t) (b) Same solution as in part (a), 1/2

8. t = 1/(2a) 9. u = g(t− x/c) valid for x > ct, and u = f(x− ct) valid for x < ct
10. u = f(x− ct)e−βt

11. (a) u = f(x− ct) +
∫ t

0

F (x+ c(v − t), v) dv (b) f(x− ct) + xt+ (1 − c)t2/2

13. u = u0 + n[(x− x0) cos θ + (y − y0) sin θ], where cos θ + a sin θ = b/n
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Exercises 2.1

1. (a) V (0, y) = f1(y), 0 < y < L′,

V (L, y) = f2(y), 0 < y < L′,

V (x, 0) = f3(x), 0 < x < L,

V (x,L′) = f4(x), 0 < x < L

(b) −Vx(0, y) = f1(y), 0 < y < L′,

Vx(L, y) = f2(y), 0 < y < L′,

−Vy(x, 0) = f3(x), 0 < x < L,

Vy(x,L′) = f4(x), 0 < x < L

(c) −l1Vx(0, y) + h1V (0, y) = f1(y), 0 < y < L′,

l2Vx(L, y) + h2V (L, y) = f2(y), 0 < y < L′,

−l3Vy(x, 0) + h3V (x, 0) = f3(x), 0 < x < L,

l4Vy(x,L′) + h4V (x,L′) = f4(x), 0 < x < L

2. (a) V (0, y, z) = f1(y, z), y > 0, z > 0,
V (L, y, z) = f2(y, z), y > 0, z > 0,
V (x, 0, z) = f3(x, z), 0 < x < L, z > 0,
V (x, y, 0) = f4(x, y), 0 < x < L, y > 0

(b) −Vx(0, y, z) = f1(y, z), y > 0, z > 0,
Vx(L, y, z) = f2(y, z), y > 0, z > 0,

−Vy(x, 0, z) = f3(x, z), 0 < x < L, z > 0
−Vz(x, y, 0) = f4(x, y), 0 < x < L, y > 0

(c) −l1Vx(0, y, z) + h1V (0, y, z) = f1(y, z), y > 0, z > 0,
l2Vx(L, y, z) + h2V (L, y, z) = f2(y, z), y > 0, z > 0,
−l3Vy(x, 0, z) + h3V (x, 0, z) = f3(x, z), 0 < x < L, z > 0
−l4Vz(x, y, 0) + h4V (x, y, 0) = f4(x, y), 0 < x < L, y > 0

3. (a) V (r0, θ) = f(θ), −π < θ ≤ π (b) Vr(r0, θ) = f(θ), −π < θ ≤ π

(c) lVr(r0, θ) + hV (r0, θ) = f(θ), −π < θ ≤ π

4. (a) V (r0, θ) = f1(θ), 0 < θ < π,

V (r, 0) = f2(r), 0 < r < r0,

V (r, π) = f3(r), 0 < r < r0

(b) Vr(r0, θ) = f1(θ), 0 < θ < π,

−r−1Vθ(r, 0) = f2(r), 0 < r < r0,

r−1Vθ(r, π) = f3(r), 0 < r < r0

(c) l1Vr(r0, θ) + h1V (r0, θ) = f1(θ), 0 < θ < π,

−l2r−1Vθ(r, 0) + h2V (r, 0) = f2(r), 0 < r < r0,

l3r
−1Vθ(r, π) + h3V (r, π) = f3(r), 0 < r < r0

5. (a) V (r0, θ, z) = f1(θ, z), −π < θ ≤ π, z > 0,
V (r, θ, 0) = f2(r, θ), 0 ≤ r < r0, −π < θ ≤ π

(b) Vr(r0, θ, z) = f1(θ, z), −π < θ ≤ π, z > 0,
−Vz(r, θ, 0) = f2(r, θ), 0 ≤ r < r0, −π < θ ≤ π

(c) l1Vr(r0, θ, z) + h1V (r0, θ, z) = f1(θ, z), −π < θ ≤ π, z > 0,
−l2Vz(r, θ, 0) + h2V (r, θ, 0) = f2(r, θ), 0 ≤ r < r0, −π < θ ≤ π

6. (a) V (r0, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π

(b) Vr(r0, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π

(c) lVr(r0, φ, θ) + hV (r0, φ, θ) = f(φ, θ), 0 ≤ φ ≤ π, −π < θ ≤ π

7. (a) V (r0, φ, θ) = f1(φ, θ), 0 ≤ φ < π/2, −π < θ ≤ π,

V (r, π/2, θ) = f2(r, θ), 0 ≤ r < r0, −π < θ ≤ π

(b) Vr(r0, φ, θ) = f1(φ, θ), 0 ≤ φ < π/2, −π < θ ≤ π,

r−1Vφ(r, π/2, θ) = f2(r, θ), 0 < r < r0, −π < θ ≤ π

(c) l1Vr(r0, φ, θ) + h1V (r0, φ, θ) = f1(φ, θ), 0 ≤ φ < π/2, −π < θ ≤ π,

l2r
−1Vφ(r, π/2, θ) + h2V (r, π/2, θ) = f2(r, θ), 0 < r < r0, −π < θ ≤ π



APPENDIX E 759

Exercises 2.2

1. (b) −l1Ux(0, t) + h1U(0, t) = f1(t), t > 0 l2Ux(L, t) + h2U(L, t) = f2(t), t > 0

2.
∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 100, t > 0,
U(L, t) = 100, t > 0,
U(x, 0) = f(x), 0 < x < L

3.
∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

Ux(0, t) = 0, t > 0,
U(L, t) = 100, t > 0,
U(x, 0) = f(x), 0 < x < L

4.
∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 100, t > 0,
U(L, t) = {100t/T, 0 < t < T ; 100, t > T}
U(x, 0) = f(x), 0 < x < L

5.
∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

−κUx(0, t) + µ0U(0, t) = µ0U0, t > 0,
κUx(L, t) + µLU(L, t) = µLUL, t > 0,

U(x, 0) = f(x), 0 < x < L

6. ∂U

∂t
= k

∂2U

∂x2
+
kg(x, t)

κ
, 0 < x < L, t > 0,

Ux(0, t) = 0, t > 0,
Ux(L, t) = 0, t > 0,
U(x, 0) = f(x), 0 < x < L

g(x, t) =





0, 0 < x < L/4,
2.093 × 105q/3, L/4 < x < 3L/4,
0, 3L/4 < x < L

7.
∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

−Ux(0, t) = Q0/κ, t > 0,
Ux(L, t) = −QL(t)/(κA), t > 0,
U(x, 0) = f(x), 0 < x < L

8. ∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
, 0 < x < L, 0 < y < L′, t > 0,

U(0, y, t) = 50, 0 < y < L′, t > 0,
Ux(L, y, t) = 0, 0 < y < L′, t > 0,
Uy(x, 0, t) = 0, 0 < x < L, t > 0,
U(x,L′, t) = 50, 0 < x < L, t > 0,
U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′

9. ∂U

∂t
= k

(
∂2U

∂x2
+
∂2U

∂y2

)
+
kg(t)
κ

, 0 < x < L, 0 < y < L′, t > 0,

U(0, y, t) = 50, 0 < y < L′, t > 0,
Ux(L, y, t) = 0, 0 < y < L′, t > 0,

−κUy(x, 0, t) + µU(x, 0, t) = µf1(t), 0 < x < L, t > 0,
U(x,L′, t) = 50, 0 < x < L, t > 0,
U(x, y, 0) = f(x, y), 0 < x < L, 0 < y < L′
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where g(t) =
{
eαt, 0 < t < T
0, t > T .

10. ∂U
∂t

= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
+
kg(r)
κ

, 0 < r < r0, −π < θ ≤ π, t > 0,

κUr(r0, θ, t) + µU(r0, θ, t) = 0, −π < θ ≤ π, t > 0,
U(r, θ, 0) = f(r, θ), 0 ≤ r < r0, −π < θ ≤ π,

where g(r) =

{ 0, 0 < r < r1
q, r1 < r < r2
0, r2 < r < r0

11.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
, 0 < r < r0, −π < θ ≤ π, t > 0,

U(r0, θ, t) = f1(θ, t), −π < θ ≤ π, t > 0,
U(r, θ, 0) = f(r, θ), 0 ≤ r < r0, −π < θ ≤ π,

12.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2
+
∂2U

∂z2

)
, 0 < r < r0, −π < θ ≤ π, 0 < z < L, t > 0,

Uz(r, θ, 0, t) = 0, 0 ≤ r < r0, −π < θ ≤ π, t > 0
Uz(r, θ, L, t) = 0, 0 ≤ r < r0, −π < θ ≤ π, t > 0,
U(r0, θ, z, t) = f1(θ, t), −π < θ ≤ π, 0 < z < L, t > 0,
U(r, θ, z, 0) = f(r, θ, z), 0 ≤ r < r0, −π < θ ≤ π, 0 < z < L

13.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2
+
∂2U

∂z2

)
, 0 < r < r0, −π < θ ≤ π, 0 < z < L, t > 0,

U(r, θ, 0, t) = 100, 0 ≤ r < r0, −π < θ ≤ π, t > 0
U(r, θ, L, t) = 100, 0 ≤ r < r0, −π < θ ≤ π, t > 0,

Ur(r0, θ, z, t) = 0, −π < θ ≤ π, 0 < z < L, t > 0,
U(r, θ, z, 0) = f(r, θ), 0 ≤ r < r0, −π < θ ≤ π, 0 < z < L

14.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+
∂2U

∂z2

)
, 0 < r < r0, 0 < z < L, t > 0,

Uz(r, 0, t) = 0, 0 ≤ r < r0, t > 0
κUz(r, L, t) + µU(r, L, t) = 20µ, 0 ≤ r < r0, t > 0,
κUr(r0, z, t) + µU(r0, z, t) = 20µ, 0 < z < L, t > 0,

U(r, z, 0) = f(r), 0 ≤ r < r0, 0 < z < L

15.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r

)
, 0 < r < r0, t > 0,

U(r0, t) = f1(t), t > 0,
U(r, 0) = f(r), 0 ≤ r < r0
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16.
∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
, 0 < r < r0, 0 < θ < π, t > 0,

Ur(r0, θ, t) = 0, 0 < θ < π, t > 0,
Uθ(r, 0, t) = −qr/κ, 0 < r < r0, t > 0,
Uθ(r, π, t) = qr/κ, 0 < r < r0, t > 0,
U(r, θ, 0) = f(r, θ), 0 < r < r0, 0 < θ < π

17. ∂U

∂t
= k

(
∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2

)
, 0 < r < r0, 0 < θ < π, t > 0,

Ur(r0, θ, t) = −q/κ, 0 < θ < π, t > 0,
−κUθ(r, 0, t) + µrU(r, 0, t) = µU0r, 0 < r < r0, t > 0,
κUθ(r, π, t) + µrU(r, π, t) = µU0r, 0 < r < r0, t > 0,

U(r, θ, 0) = f(r, θ), 0 < r < r0, 0 < θ < π
18.

∂U

∂t
= k

(
∂2U

∂r2
+

2
r

∂U

∂r

)
, 0 < r < r0, t > 0,

κUr(r0, t) + µU(r0, t) = 10µ, t > 0,
U(r, 0) = 100, 0 ≤ r < r0

19.
∂2U

∂r2
+

2
r

∂U

∂r
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂U

∂φ

)
+

1
r2 sin2 φ

∂2U

∂θ2
= 0,

0 < r < r0, 0 < φ < π/2, −π < θ ≤ π,
Ur(r0, φ, θ) = 0, 0 ≤ φ < π/2, 0 < θ < π,

Uφ(r, π/2, θ) = rf(r, θ)/κ, 0 ≤ r < r0, −π < θ ≤ π
No

20.U(x) = (UL − U0)x/L+ U0 21.U(x) = −q0x/κ+B, where B is arbitrary
22. (a) Heat must flow (b) Temperature need not vary with time

23.U(x) =
µ0µL(UL − U0)x− κµLUL − µ0U0(κ+ LµL)

κµL + µ0(κ+ LµL)

24. (b)
∫∫

β(V )

−κf(x, y, z)dS =
∫∫∫

V

g(x, y, z) dV

25. κ
∫ L

0

[f3(x)− f4(x)] dx+ κ

∫ L′

0

[f1(y)− f2(y)] dy =
∫∫

R

g(x, y) dA

27. (a) U = Ub +G(b2 − r2)/(6κ) (b) D −Gr2/(6κ), D arbitrary
(c) U = Um +Gb/(3µ) +G(b2 − r2)/(6κ)

28.U(r) =
aUa(b− r) + bUb(r − a)

(b− a)r
29.U(r) = Ua +

b2Q

κ

(
1
a
− 1
r

)

30.U(r) =
µab2(Ua − Um)

[κa+ µb(b− a)]r
+
κaUa + µb(bUm − aUa)

κa+ µb(b− a)

31.U(r) =
a2Q

κr
+ Um +

Qa2(κ− µb)
µκb2

34. (a) 5Aκ(2e−t − 2 − t) +AL2t2/4 (b) No 35. 0
36. (a) −κA(Uout − Uin)/L W (b) 660 W

37. (a) −κ
r

[
Uout − Uin

ln (rout/rin)

]
(b) 2.36× 104 W (c) Yes

38. (b) −(κnπ/L)e−n2π2kt/L2
, −(κnπ/L)e−n2π2kt/L2

cos (nπ/2), (−)n+1(κnπ/L)e−n2π2kt/L2
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(c) Limits as t→ 0+ are −κnπ/L, −(κnπ/L) cos (nπ/2), (−1)n+1κnπ/L

Limits as t→ ∞ are zero.

39. (b) U(0−) = U(0+), −κ1
∂U(0−)
∂n

= −κ2
∂U(0+)
∂n

40. (a) U(r) = Um +QR/(3µ) +Q(R2 − r2)/(6κ)

(b) ∂U

∂t
= k

(
∂2U

∂r2
+

2
r

∂U

∂r

)
, 0 < r < R, t > 0,

κUr(R, t) + µU(R, t) = µUm, t > 0,

U(r, 0) = Um +QR/(3µ) +Q(R2 − r2)/(6κ), 0 ≤ r < R

43. (a) U(r) =
Ua[κ+ µb ln (b/r)] + µbUm ln (r/a)

κ+ µb ln (b/a)

44.U(r) =





−I2r2

4π2a4σκ
+ Um +

I2

4π2a2σ

[
1
κ

+
2
κ∗

ln (b/a) +
2
bµ∗

]
, 0 ≤ r ≤ a

I2

2π2a2σκ∗

[
ln (b/r) +

κ∗

bµ∗

]
+ Um, a < r < b

45.U(r) =





−I2r2

4π2a4σκ
+ Um +

I2

4π2a2σ

[
1
κ

+
2
κ∗

ln (b/a) + 2
(

1
aµ

+
1
bµ∗

)]
, 0 ≤ r ≤ a

I2

2π2a2σκ∗
ln (b/r) +

I2

2π2a2bσµ∗ + Um, a < r ≤ b

Exercises 2.3

1.
∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L

2.
∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
yx(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L

3.
∂2y

∂t2
= c2

∂2y

∂x2
− β

ρ

∂y

∂t
− g, 0 < x < L, t > 0,

−τyx(0, t) + k1y(0, t) = 0, t > 0,
τyx(L, t) + k2y(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L
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4.
∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

yx(0, t) = −τ−1 cosωt, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

5.
∂2y

∂t2
= c2

∂2y

∂x2
− β

ρ

∂y

∂t
− g, 0 < x < L, t > 0,

−τyx(0, t) + k1y(0, t) = cosωt, t > 0,
τyx(L, t) + k2y(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L

6.
∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
yx(L, t) = F/E, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

7.
∂2y

∂t2
= c2

∂2y

∂x2
+ g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
yx(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

8.
∂2y

∂t2
= c2

∂2y

∂x2
+ g, 0 < x < L, t > 0,

−AEyx(0, t) + ky(0, t) = 0, t > 0,
yx(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

9. y(L, t) and ∂y(L, t)/∂x have opposite signs 10.−AE∂y(0, t)
∂x

+ ky(0, t) = kg(t), t > 0

11.
∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

y(x) =
gx(x− L)

2c2



764 APPENDIX E

12.
∂2y

∂t2
= c2

∂2y

∂x2
− β

ρ

∂y

∂t
− g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

y(x) =
gx(x− L)

2c2

13.
∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
τyx(L, t) = FL, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

y(x) =
gx(x− 2L)

2c2
+
FLx

τ

14.
∂2y

∂t2
= c2

∂2y

∂x2
+ g, 0 < x < L, t > 0,

yx(0, t) = 0, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = 0, 0 < x < L,

yt(x, 0) = v, 0 < x < L

15.L+
gL2

2c2
16.L+

gL

2c2

(
L+

2AE
k

)

18.
∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,

m
∂2y(L, t)
∂t2

= −AE∂y(L, t)
∂x

+ F0 sinωt, t > 0,

y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L

21. (a) −ρg
∫ L

0

[y(x, t) − y(x, 0)] dx 22. (a)
∫ t

0

∫ L

0

−β
(
∂y

∂t

)2

dx dt

23. (a) −k
2

∫ L

0

{[y(x, t)]2 − [y(x, 0)]2} dx

25.
∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,
yx(L, t) = 0, t > 0,
y(x, 0) = Fx/(AE), 0 < x < L,

yt(x, 0) = 0, 0 < x < L

26. y(L, t) = 0

Exercises 2.4
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1.
∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2

)
, 0 < r < r1, −π < θ ≤ π, t > 0,

z(r1, θ, t) = 0, −π < θ ≤ π, t > 0,
z(r, θ, 0) = f(r, θ), 0 ≤ r < r1, −π < θ ≤ π,

zt(r, θ, 0) = 0, 0 ≤ r < r1, −π < θ ≤ π

2.
∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r

)
, 0 < r < r1, t > 0,

z(r1, t) = 0, t > 0,
z(r, 0) = f(r), 0 ≤ r < r1,

zt(r, 0) = 0, 0 ≤ r < r1

3. 0 =
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2
, 0 < r < r1, 0 < θ < α,

z(r1, θ) = f(θ), 0 < θ < α,

z(r, 0) = 0, 0 < r < r1,

z(r, α) = 0, 0 < r < r1

4.
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2
=
ρg

τ
, 0 < r < r1, 0 < θ < α,

z(r1, θ) = f(θ), 0 < θ < α,

z(r, 0) = 0, 0 < r < r1,

z(r, α) = 0, 0 < r < r1

5.
∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2
∂2z

∂θ2

)
− g − β

ρ

∂y

∂t
, 0 < r < r1, −π < θ ≤ π, t > 0,

z(r1, θ, t) = 0, −π < θ ≤ π, t > 0,
z(r, θ, 0) = f(r, θ), 0 ≤ r < r1, −π < θ ≤ π,

zt(r, θ, 0) = 0, 0 ≤ r < r1, −π < θ ≤ π

6.
∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
+

cosωt
ρ

, 0 < x < L, 0 < y < L′, t > 0

z(0, y, t) = 0, 0 < y < L′, t > 0,
z(L, y, t) = 0, 0 < y < L′, t > 0,
z(x, 0, t) = 0, 0 < x < L, t > 0,
z(x,L′, t) = 0, 0 < x < L, t > 0,
z(x, y, 0) = 0, 0 < x < L, 0 < y < L′,

zt(x, y, 0) = 0, 0 < x < L, 0 < y < L′

7.
∂2z

∂t2
= c2

(
∂2z

∂x2
+
∂2z

∂y2

)
+

cosωt
ρ

, 0 < x < L, 0 < y < L′, t > 0

−τzx(0, y, t) + k0z(0, y, t) = 0, 0 < y < L′, t > 0,
τzx(L, y, t) + kLz(L, y, t) = 0, 0 < y < L′, t > 0,

z(x, 0, t) = f1(x, t), 0 < x < L, t > 0,
z(x,L′, t) = f2(x, t), 0 < x < L, t > 0,
z(x, y, 0) = 0, 0 < x < L, 0 < y < L′,

zt(x, y, 0) = 0, 0 < x < L, 0 < y < L′
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8. z(r) =
ρg

4τ
(r2 − r22)

9. (a)
d2z

dr2
+

1
r

dz

dr
= −f(r)

τ
, 0 < r < r2,

z(r2) = 0

(f) z(r) =
k

36τ
(9r2r2 − 4r3 − 5r32)

Exercises 2.5

1.
∂2y

∂t2
+
EI

ρ

∂4y

∂x4
= −g, 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0, t > 0,
yxx(L, t) = yxxx(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L

2.
∂2y

∂t2
+
EI

ρ

∂4y

∂x4
= −g, 0 < x < L, t > 0,

y(0, t) = yxx(0, t) = 0, t > 0,
y(L, t) = yxx(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L

3.
∂2y

∂t2
+

EI

ρ+ ρ

∂4y

∂x4
= −g, 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0, t > 0,
y(L, t) = yx(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, 0 < x < L

4.
∂2y

∂t2
+
EI

ρ

∂4y

∂x4
= −g, 0 < x < L, t > 0,

y(0, t) = yx(0, t) = 0, t > 0,
yxx(L, t) = yxxx(L, t) = 0, t > 0,

y(x, 0) = − ρgx4

24EI
+

x3

6EI
(F + ρgL) − Lx2

4EI
(2F + ρgL), 0 < x < L,

yt(x, 0) = 0, 0 < x < L

5. (a) d4y

dx4
= F/(EI), 0 < x < L,

y(0) = y′′(0) = y(L) = y′′(L) = 0,

(b) −9.2 × 10−9 m (c) −1.68 × 109 N/m

Exercises 2.6

1.
∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′,

V (0, y) = 0, 0 < y < L′,

V (L, y) = 100, 0 < y < L′,

V (x, 0) = 0, 0 < x < L,

V (x,L′) = 100, 0 < x < L
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2.
∂2V

∂x2
+
∂2V

∂y2
= −σ(x, y)

ε0
, 0 < x < L, 0 < y < L′,

V (0, y) = 0, 0 < y < L′,

V (L, y) = 100, 0 < y < L′,

V (x, 0) = 0, 0 < x < L,

V (x,L′) = 100, 0 < x < L

σ(x, y) =
{
σ, L/4 < x < 3L/4, L′/4 < y < 3L′/4
0, otherwise

Exercises 2.8

2. Hyperbolic for |y| >
√

5; Elliptic for |y| <
√

5; Parabolic for |y| =
√

5
3. Hyperbolic for y < 0, but x 6= 0; Elliptic for y > 0, but x 6= 0; Parabolic for x = 0 and for
y = 0
4. Hyperbolic for y > −1/4, y 6= 0 and x 6= 0; Elliptic for y < −1/4; Parabolic for x = 0, y = 0,
and
y = −1/4

5. Hyperbolic for x < 4y and x < 0, and for x > 4y and x > 0; Elliptic for x > 4y and x < 0,
and for
x < 4y and x > 0; Parabolic for x = 0 and for x = 4y

6. Hyperbolic for (2n− 1)π/4 < x < (2n+ 1)π/4, n an even integer; Elliptic for
(2n− 1)π/4 < x < (2n+ 1)π/4, n an odd integer; Parabolic for x = (2n+ 1)π/4

7. Hyperbolic for x < 0 and y > 1, and for x > 0 and y < 1; Elliptic for x < 0 and y < 1, and
for
x > 0 and y > 1; Parabolic for x = 0 and for y = 1

8. Hyperbolic for y < x2/4; Elliptic for y > x2/4; Parabolic for y = x2/4
9. Parabolic: wνν = wν − (ν + 1)wη

10. Elliptic; wνν + wηη =
1
4

[
−3wν − 6wη +

(η
2
− ν
)
w
]

11. Hyperbolic: wνη = 0

12. Hyperbolic; wνη = w[(3 + 2
√

2)wν + (3 − 2
√

2)wη]/8

13. If we set ν = x, then wνν = 1 +
1
ν2

(ν + 2η)wη

14. (b) wνη =
−1

6(ν + η)
(wν + wη) (c) wνν + wηη = −wν/(3ν) (d) uyy = 0

15. Parabolic when x = 0 with uyy = u/4; Elliptic when x 6= 0 with wνν + wηη = (w − 2wη)/4
16.wνν = −2ηwη/(η− ν2) 17. y = x3/3 + x/2 +C1, y = −x/2 +C2 18.wνη = wη/ν
20. zνν + zηη = 45z/64 21. zνη = z/64 22. zνν = −2zη

Exercises 2.9

1. y(x, t) = (t− 1 + e−t)/ρ 2. y(x, t) = [2 sin x− sin (x+ ct) − sin (x− ct)]/(2ρc2)
3. y(x, t) = 5 + x2t+ c2t3/3 + (ex+ct + ex−ct − 2ex)/(2ρc2)
4. When x− ct > 0, y(x, t) = [e−(x+ct) + e−(x−ct) − 2e−x]/(2ρc2) .

When x− ct < 0 < x, y(x, t) = [ex−ct + e−(x+ct) − 2e−x − 2(x− ct)]/(2ρc2).
When x− ct < x < 0 < x+ ct, y(x, t) = [ex−ct + e−(x+ct) − 2ex + 2(x+ ct)]/(2ρc2).
When x+ ct < 0, y(x, t) = [ex+ct + ex−ct − 2ex]/(2ρc2)

5. y(x, t) =
1

2ρc2
{
ln (1 + x2) − 1

2
ln [1 + (x+ ct)2] − 1

2
ln [1 + (x− ct)2]

−2xTan−1x+ (x+ ct)Tan−1(x+ ct) + (x− ct)Tan−1(x− ct)
}

6. y(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ − gt2

2
7. No 8. No
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Exercises 2.10
1. y(x, t) = [f(x+ ct) + f(x− ct)]/2− gt2/2 2. No 3. No

Exercises 2.11
6. For nonhomogeneous problem, solution is 2.175. Drop the double integral for the homoge-
neous

problem.

7. y(x, t) = k(t− x/c) +
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA

For homogeneous problem, drop first and last terms.
8. For nonhomogeneous problem,

y(x, t) = k(t+ (x− L)/c) +
1
2
[f(x− ct) + f(2L− x− ct)] +

1
2c

∫ 2L−x−ct

x−ct

g(ζ) dζ

+
1
2c

∫∫

D

F (x, t)
ρ

dA.

For homogenous problem, drop first and last terms.
9. For nonhomogeneous problem

y(x, t) = k(t− x/c) +m(t+ (x− L)/c)− 1
2
[f(ct− x) + f(2L− x− ct)]

+
1
2c

∫ 2L−x−ct

ct−x

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA.

For homogeneous problem, drop the first two terms and the last term.
10. For nonhomogenous problem,

y(x, t) = k(t− x/c) +m(t+ (x− L)/c) +m(t− (L+ x)/c)

+
1
2
[f(2L− x− ct)− f(2L+ x− ct)] +

1
2c

∫ 2L+x−ct

2L−x−ct

g(ζ) dζ +
1
2c

∫∫

D

F (x, t)
ρ

dA.

For homogeneous problem, drop the first three terms and the last term.

Exercises 3.1

1. 8 − 12
π

∞∑

n=1

1
n

sin
nπx

2
2.

8L2

3
− 1 +

8L2

π2

∞∑

n=1

(
1
n2

cos
nπx

L
− π

n
sin

nπx

L

)

3.
2L2

3
− 1 +

8L2

π2

∞∑

n=1

(−1)n

n2
cos

nπx

L
4. 3L− 6L

π

∞∑

n=1

1
n

sin
nπx

L

5.
6L
π

∞∑

n=1

(−1)n+1

n
sin

nπx

L
6.

3L
4

+
L

π2

∞∑

n=1

{
3[1 + (−1)n+1

n2
cos

nπx

L
+
π

n
sin

nπx

L

}

7. 1 +
2
π

∞∑

n=1

1
n

[
1 + (−1)n+1 cos

nπ

3

]
sin

2nπx
3

8.
4
3
− 6
π2

∞∑

n=1

1
n2

[
1 + (−1)n+1 cos

nπ

3

]
cos

nπx

3
9. 1 + sin x− cos 2x

10. 2 cosx− 3 sin 10x+ 4 cos 2x 11. 1/2 + (1/2) cos 4x 12. (3/2)(sin7x+ sin 3x)

13.
e4 − 1

4
+ (e4 − 1)

∞∑

n=1

1
n2π2 + 4

(
2 cos

nπx

2
− nπ sin

nπx

2

)

14.
3
π
− 1

2
sinx− 6

π

∞∑

n=1

1
4n2 − 1

cos 2nx 16. No
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17. 8 − 6i
π

∞∑

n=−∞
n6=0

1
n
e−nπxi/2 18. 1 +

i

π

∞∑

n=−∞
n6=0

1
n

[
1 + (−1)n+1 cos

nπ

3

]
e−2nπxi/3

19.
2i
π

∞∑

n=−∞

1
2n− 1

e−(2n−1)πxi/L 4
π

∞∑

n=1

1
2n− 1

sin
(2n− 1)πx

L

20.
L

2
− 2L
π2

∞∑

n=−∞

1
(2n− 1)2

e−(2n−1)πxi/L L

2
− 4L
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

L

21.
L2

3
+

2L2

π2

∞∑

n=−∞
n6=0

(−1)n

n2
e−nπxi/L

22.
4
3

+
3

2π2

∞∑

n=−∞
n6=0

1
n2

(−2 + e2nπxi/3 + e4nπxi/3)e−nπxi/3

23.
8L2

3
− 1 +

4L2

π2

∞∑

n=−∞
n6=0

1 − nπi

n2
e−nπxi/L 24.

(
e4 − 1

2

) ∞∑

n=−∞

(
2 − nπi

n2π2 + 4

)
e−nπxi/2

25.
3L
4

+
L

2π

∞∑

n=−∞
n6=0

{
i

n
+

3
n2π

[1 + (−1)n+1]
}
e−nπxi/L

26.
1
π

+
1
2π




iπ

2
e−xi − iπ

2
exi +

∞∑

n=−∞
n6=0,±1

1 + (−1)n

1 − n2
e−nxi





27. Yes dn = (an − ibn)/2

Exercises 3.2

1. 2 sin 4x− 3 sinx 2.
π

2
− 4
π

∞∑

n=1

1
(2n− 1)2

cos (2n− 1)x

3.
32
π2

∞∑

n=1

(−1)n+1

(2n− 1)2
sin

(2n− 1)πx
8

4.
2L2

3
− 1 +

8L2

π2

∞∑

n=1

(−1)n

n2
cos

nπx

L

5.
1
π

+
1
2

cosx− 2
π

∞∑

n=1

(−1)n

4n2 − 1
cos 2nx 6.

2L
π

∞∑

n=1

(−1)n

n
sin

nπx

L

7.
2
π

∞∑

n=1

1
n

(
1 − cos

2nπ
3

)
sin

2nπx
L

8.
L

π2

∞∑

n=1

{
[1 + (−1)n+1]

2n2

(
nπ + 4 sin

nπ

4

)
− 4
n2

sin
nπ

2

}
sin

nπx

L

9.
8L2

π3

∞∑

n=1

1
(2n− 1)3

sin
(2n− 1)πx

L
10.

1
2

sin
2πx
L

11.−L
2

+
4L
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

L
12.

1
2

+
2
π

∞∑

n=1

(−1)n+1

2n− 1
cos

(2n− 1)πx
L

13.
L2

6
− L2

π2

∞∑

n=1

1
n2

cos
2nπx
L

14. 1 15.− 4
π

∞∑

n=1

1
(2n− 1)2 − 4

cos
(2n− 1)πx

L

16.
2
π
− 4
π

∞∑

n=1

1
4n2 − 1

cos 2nx 17.
∫ L

0

f(x) dx = 0 18. (c) Yes
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19. (a)
L

2
− 4L
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

L
(b)

L

2
+

4L
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

L

(c) L− 8L
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

2L
(d)

8L
π2

∞∑

n=1

(−1)n+1

(2n− 1)2
sin

(2n− 1)πx
2L

20. (d) No 21. (d) No

Exercises 3.4

6. (b) No 8. (a) Yes (b) No 9. (a) No (b) No (c) No

Exercises 4.1

1. Linear and homogeneous 2. Not linear 3. Not linear 4. Not linear
5. Linear and homogeneous 6. Linear and nonhomogeneous
7. Linear and nonhomogeneous 8. Not linear 9. Linear and homogeneous
10. Linear and homogeneous
11.

∇2V1 = F (x, y, z), 0 < x < L, 0 < y < L′, 0 < z < L′′,

V1(0, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V1(L, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V1(x, 0, z) = 0, 0 < x < L, 0 < z < L′′,

V1(x,L′, z) = 0, 0 < x < L, 0 < z < L′′,

V1(x, y, 0) = 0, 0 < x < L, 0 < y < L′,

V1(x, y, L′′) = 0, 0 < x < L, 0 < y < L′;

∇2V2 = 0, 0 < x < L, 0 < y < L′, 0 < z < L′′,

V2(0, y, z) = f1(y, z), 0 < y < L′, 0 < z < L′′,

V2(L, y, z) = f2(y, z), 0 < y < L′, 0 < z < L′′,

V2(x, 0, z) = 0, 0 < x < L, 0 < z < L′′,

V2(x,L′, z) = 0, 0 < x < L, 0 < z < L′′,

V2(x, y, 0) = 0, 0 < x < L, 0 < y < L′,

V2(x, y, L′′) = 0, 0 < x < L, 0 < y < L′;

∇2V3 = 0, 0 < x < L, 0 < y < L′, 0 < z < L′′,

V3(0, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V3(L, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V3(x, 0, z) = g1(x, z), 0 < x < L, 0 < z < L′′,

V3(x,L′, z) = g2(x, z), 0 < x < L, 0 < z < L′′,

V3(x, y, 0) = 0, 0 < x < L, 0 < y < L′,

V3(x, y, L′′) = 0, 0 < x < L, 0 < y < L′;
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∇2V4 = 0, 0 < x < L, 0 < y < L′, 0 < z < L′′,

V4(0, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V4(L, y, z) = 0, 0 < y < L′, 0 < z < L′′,

V4(x, 0, z) = 0, 0 < x < L, 0 < z < L′′,

V4(x,L′, z) = 0, 0 < x < L, 0 < z < L′′,

V4(x, y, 0) = h1(x, y), 0 < x < L, 0 < y < L′,

V4(x, y, L′′) = h2(x, y), 0 < x < L, 0 < y < L′.

12. (b) No

Exercises 4.2

1.U0 2.U(x, t) =
∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
where bn =

2
L

∫ L

0

f(x) sin
nπx

L
dx

3. (a) U(x, t) =
4L
π2

∞∑

n=1

(−1)n+1

(2n− 1)2
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

(b)
4κ
π

∞∑

n=1

(−1)n

2n− 1
e−(2n−1)2π2kt/L2

; 0; −4κ
π

∞∑

n=1

(−1)n

2n− 1
e−(2n−1)2π2kt/L2

(c) −κ, 0, κ; 0, 0, 0

4. (a) U(x, t) =
40
π

∞∑

n=1

1
2n− 1

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

(b) −40κ
L

∞∑

n=1

e−(2n−1)2π2kt/L2
; 0;

40κ
L

∞∑

n=1

e−(2n−1)2π2kt/L2

(c) −∞, 0, ∞; 0, 0, 0 (d) 10; 0

5. (a)
4κ
π

∞∑

n=1

(−1)n

2n− 1
e−(2n−1)2π2kt/L2

(b) −κ

6.U(x, t) =
a0

2
+

∞∑

n=1

ane
−n2π2kt/L2

cos
nπx

L
where an =

2
L

∫ L

0

f(x) cos
nπx

L
dx; a0/2

7.U(x, t) =
8L
π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/(4L2) cos
(2n− 1)πx

2L

8.U(x, t) =
∞∑

n=1

ane
−(2n−1)2π2kt/(4L2) cos

(2n− 1)πx
2L

where an =
2
L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx

9.U(x, t) =
4L
π2

∞∑

n=1

(2n− 1)π + 2(−1)n

(2n− 1)2
e−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

10.U(x, t) =
∞∑

n=1

ane
−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

where an =
2
L

∫ L

0

f(x) sin
(2n− 1)πx

2L
dx

11. (a) U(x, t) =
a0

2
eκt +

∞∑

n=1

ane
(κ−n2π2k/L2)t cos

nπx

L
, where an =

2
L

∫ L

0

f(x) cos
nπx

L
dx

(b) U(x, t) = Ceκt
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(c) U(x, t) = eκt

[
L

2
− 4L
π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/L2
cos

(2n− 1)πx
L

]

12. (b) U(r, t) =
1
r

∞∑

n=1

bne
−n2π2kt/a2

sin
nπr

a
where bn =

2
a

∫ a

0

rf(r) sin
nπr

a
dr

13. A Robin boundary condition results at r = a.

15.U(x, t) =
2
π

∞∑

n=1

1
n

[
(U1 − U0) cos

nπ

2
+ U0 + (−1)n+1U1

]
e−n2π2kt/L2

sin
nπx

L

16.U(x, t) = ekat/κ
∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
where bn =

2
L

∫ L

0

f(x) sin
nπx

L
dx a ≤ n2π2/L2

17.U(x, t) = ekat/κ

(
b0
2

+
∞∑

n=1

bne
−n2π2kt/L2

cos
nπx

L

)
where bn =

2
L

∫ L

0

f(x) cos
nπx

L
dx

a ≤ 0

18. (a) y(x, t) =
4L2

5π2

∞∑

n=1

(−1)n+1

(2n− 1)2
cos

(2n− 1)πct
L

sin
(2n− 1)πx

L

(b) y(x, t) = [f(x+ ct) + f(x− ct)]/2

19. (a) y(x, t) =
8L3

π4c

∞∑

n=1

1
(2n− 1)4

sin
(2n− 1)πct

L
sin

(2n− 1)πx
L

(b) y(x, t) =
1
2c

∫ x+ct

x−ct

g(u) du

20. y(x, t) =
4L
π2

∞∑

n=1

[ (−1)n+1

5(2n− 1)2
cos

(2n− 1)πct
L

+
2L2

π2c(2n− 1)4
sin

(2n− 1)πct
L

]
sin

(2n− 1)πx
L

21. (a) y(x, t) =
∞∑

n=1

(
an cos

√
n2π2c2

L2
+
k

ρ
t+ bn sin

√
n2π2c2

L2
+
k

ρ
t

)
sin

nπx

L
where

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx, bn =

2√
n2π2c2 +

kL2

ρ

∫ L

0

g(x) sin
nπx

L
dx

(b) No

22. (a) y(x, t) = e−βt/(2ρ)
∞∑

n=1

(an cosωnt+ bn sinωnt) sin
nπx

L
where ωn =

√
n2π2c2

L2
− β2

4ρ2
,

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx, bn =

2
ωnL

∫ L

0

g(x) sin
nπx

L
dx+

β

Lρωn

∫ L

0

f(x) sin
nπx

L
dx

(b) No

23. (a) y(x, t) =
a0 + b0t

2
+

∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
cos

nπx

L
where

an =
2
L

∫ L

0

f(x) cos
nπx

L
dx, b0 =

2
L

∫ L

0

g(x) dx, bn =
2
nπc

∫ L

0

g(x) cos
nπx

L
dx

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du
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24. y(x, t) =
∞∑

n=1

an cos
(2n− 1)πct

2L
cos

(2n− 1)πx
2L

where an =
2
L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx;

y(x, t) = [f(x+ ct) + f(x− ct)]/2

25. (b) W (r, t) =
1
r

∞∑

n=1

(
Fn cos

nπct

a
+Gn sin

nπct

a

)
sin

nπr

a
where

Fn =
2
a

∫ a

0

rf(r) sin
nπr

a
dr, Gn =

2
nπc

∫ a

0

rg(r) sin
nπr

a
dr

26. A Robin boundary condition at r = a is obtained.

27. (a) y(x, t) =
L∗ − L

2
+

4(L− L∗)
π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πct

L
cos

(2n− 1)πx
L

(b) y(x, t) = [f(x+ ct) + f(x− ct)]/2 (c) yt(x, t) = c[f ′(x+ ct) + f ′(x− ct)]/2, No

28. (a) y(x, t) =
8(L∗ − L)

π2

∞∑

n=1

(−1)n+1

(2n− 1)2
cos

(2n− 1)πct
2L

sin
(2n− 1)πx

2L
(b) [f(x+ ct) + f(x− ct)]/2 (c) yt(x, t) = (c/2)[f ′(x+ ct) − f ′(x− ct)] No

29. V (x, t) =
∞∑

n=1

ane
−(RC+LG)t/(2LC)

(
cosωnt+

RC + LG

2LCωn
sinωnt

)
sin

nπx

M
where

ωn =

√
4n2π2LC/M2 − R2C2 − L2G2

2LC
, an =

2
M

∫ M

0

f(x) sin
nπx

M
dx

30. V (x, y) =
400
π

∞∑

n=1

1
2n− 1

csch
(2n− 1)πL

L′ sinh
(2n− 1)π(L− x)

L′ sin
(2n− 1)πy

L′

31. V (x, y) =
400
π

∞∑

n=1

1
2n− 1

csch
(2n− 1)πL

L′ sinh
(2n− 1)π(L− x)

L′ sin
(2n− 1)πy

L′

+
400
π

∞∑

n=1

1
2n− 1

csch
(2n− 1)πL′

L
sinh

(2n− 1)π(L′ − y)
L

sin
(2n− 1)πx

L

32. V (x, y) =
400
π

∞∑

n=1

1
2n− 1

[
cosh

(2n− 1)πx
L′

+
1 − cosh

(2n− 1)πL
L′

sinh
(2n− 1)πL

L′

sinh
(2n− 1)πx

L′

]
sin

(2n− 1)πy
L′

33. V (x, y) =
−400L′

π2

∞∑

n=1

1
(2n− 1)2

sech
(2n− 1)πL

L′ sinh
(2n− 1)π(L− x)

L′ sin
(2n− 1)πy

L′

34. V (x, y) = 100x+B where B is arbitrary; V (x, y) = 100x− 50L
35. No

36.U(x, y) =
8L2

π3

∞∑

n=1

1
(2n− 1)3

{
cosh

(2n− 1)πy
L

−csch
(2n− 1)πL′

L

[
1 + cosh

(2n− 1)πL′

L

]
sinh

(2n− 1)πy
L

}
sin

(2n− 1)πx
L

37.U(x, y) =
4qL
π2κ

∞∑

n=1

1
(2n− 1)2

sech
(2n− 1)πL′

L
sinh

(2n− 1)π(L′ − y)
L

sin
(2n− 1)πx

L

38.U(x, y) = 10 +
4qL
π2κ

∞∑

n=1

1
(2n− 1)2

{
csch

(2n− 1)πL′

L

[
1 + cosh

(2n− 1)πL′

L

]
∗
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cosh
(2n− 1)πy

L
− sinh

(2n− 1)πy
L

}
sin

(2n− 1)πx
L

39. z(x, y) =
−2kL
π

∞∑

n=1

1
n

csch
nπL′

L
sinh

nπ(L′ − y)
L

sin
nπx

L

−2kL
π

∞∑

n=1

1
n

csch
nπL

L′ sinh
nπ(L− x)

L′ sin
nπy

L′

40. (a) V (x, y) =
∞∑

n=1

bn sin
nπx

L
sinh

nπ(L′ − y)
L

where bn =
2
L

csch
nπL′

L

∫ L

0

h1(x) sin
nπx

L
dx

(b) V (x, y) =
∞∑

n=1

bn sin
nπx

L
sinh

nπy

L
where bn =

2
L

csch
nπL′

L

∫ L

0

h2(x) sin
nπx

L
dx

(c) V (x, y) =
∞∑

n=1

(
an cosh

nπy

L
+ bn sinh

nπy

L

)
sin

nπx

L
where an =

2
L

∫ L

0

h1(x) sin
nπx

L
dx

and bn = csch
nπL′

L

[
2
L

∫ L

0

h2(x) sin
nπx

L
dx− 2

L
cosh

nπL′

L

∫ L

0

h1(x) sin
nπx

L
dx

]

(d) V (x, y) =
∞∑

n=1

(
an cosh

nπx

L′ + bn sinh
nπx

L′

)
sin

nπy

L′ where an =
2
L′

∫ L′

0

g1(y) sin
nπy

L′ dy

and

bn = csch
nπL

L′

[
2
L′

∫ L′

0

g2(y) sin
nπy

L′ dy −
2
L′ cosh

nπL

L′

∫ L′

0

g1(y) sin
nπy

L′ dy

]

41.U(x, y) =
16L2

π3

∞∑

n=1

2(−1)n + (2n− 1)π
(2n− 1)3

sech
(2n− 1)πL′

2L
∗

cosh
(2n− 1)π(L′ − y)

2L
cos

(2n− 1)πx
2L

44. No

Exercises 4.3

1.U(x, t) =
I2x(L− x)

2κA2σ
+

4
π

∞∑

n=1

[
20

2n− 1
− I2L2

κA2σπ2(2n− 1)3

]
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

2.U(x, t) = 100 +
I2x(L− x)

2κA2σ
− 4
π

∞∑

n=1

[
80

2n− 1
+

I2L2

κA2σπ2(2n− 1)3

]
∗

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

3.U(x, t) =
I2x(L− x)

2κA2σ
+
(
UL − U0

L

)
x+ U0 −

2
π

∞∑

n=1

U0 + UL(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L

+
4
π

∞∑

n=1

[
20

2n− 1
− I2L2

κA2σπ2(2n− 1)3

]
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

4.U(x, t) =
4
π

∞∑

n=1

{
20e−(2n−1)2π2kt/L2

2n− 1
+

kL2(e−2αt − e−(2n−1)2π2kt/L2
)

κA2σ(2n− 1)[(2n− 1)2π2k − 2αL2]

}
∗

sin
(2n− 1)πx

L
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5.U(x, t) =
100xe−t

L
+

200
π

∞∑

n=1

[
L2(−1)n+1(e−t − e−n2π2kt/L2

)
n(n2π2k − L2)

+
e−n2π2kt/L2

n

]
sin

nπx

L
;

U(x, t) =
100xe−t

L
+

200
mπ

[1 + (−1)m+1t]e−t sin
mπx

L

+
200
π

∞∑

n=1
n6=m

[
L2(−1)n+1(e−t − e−n2π2kt/L2

)
n(n2π2k − L2)

+
e−n2π2kt/L2

n

]
sin

nπx

L

6.U(x, t) =
kI2t

κA2σ
+ 20 7.U(x, t) = 20 +

k

2ακA2σ
(1 − e−2αt)

8. (a) U(x, t) =
kL2

κ(m2π2k − αL2)
(e−αt − e−m2π2kt/L2

) sin
mπx

L

(b) U(x, t) =
kt

κ
e−m2π2kt/L2

sin
mπx

L

11. (b) U(x, t) = ψ(x) − 4L2kI2e−ht

κA2σπ

∞∑

n=1

e−(2n−1)2π2kt/L2

(2n− 1)[hL2 + (2n− 1)2π2k]
sin

(2n− 1)πx
L

13.U(x, t) = − g
κ

(x− a)h(x− a) +
g

κL
(L− a)x− 2gL

π2κ

∞∑

n=1

1
n2

sin
nπa

L
e−n2π2kt/L2

sin
nπx

L

14.U(x, t) = − g

2κ(b− a)
[(x− a)2h(x− a) − (x− b)2h(x− b)]

+
g

2κL(b− a)
[(L− a)2 − (L− b)2]x

+
2gL2

κπ3

∞∑

n=1

1
(b− a)n3

(
cos

nπb

L
− cos

nπa

L

)
e−n2π2kt/L2

sin
nπx

L

15.U(r, t) =
1
r

[
gr(a2 − r2)

6κ
+

∞∑

n=1

bne
−n2π2kt/a2

sin
nπr

a

]
, where

bn =
2
a

∫ a

0

[
rf(r)− gr(a2 − r2)

6κ

]
sin

nπr

a
dr

16. (a) U(x, t) =
4
π

∞∑

n=1

{
10

2n− 1
e−(2n−1)2π2kt/L2

+
kL2[e−αt − e−(2n−1)2π2kt/L2

]
κ(2n− 1)[(2n− 1)2π2k − αL2]

}
∗

sin
(2n− 1)πx

L
(b) When m is an even integer, the solution is the same as that in part (a). When m is an

odd integer,

U(x, t) =
4
π

∞∑

n=1
2n−16=m

{
10

2n− 1
e−(2n−1)2π2kt/L2

+
L2[e−m2π2kt/L2 − e−(2n−1)2π2kt/L2

]
κπ2(2n− 1)[(2n− 1)2 −m2]

}
∗

sin
(2n− 1)πx

L
+

4
mπ

(
10 +

kt

κ

)
e−m2π2kt/L2

sin
mπx

L

17. (a) y(x, t) = ψ(x) +
∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
, where ψ(x) = −kx(L− x)

2ρc2

an =
2
L

∫ L

0

[f(x)− ψ(x)] sin
nπx

L
dx, bn =

2
nπc

∫ L

0

g(x) sin
nπx

L
dx

(b) y(x, t) = ψ(x) +
1
2
[f(x+ ct) + f(x− ct)] − 1

2
[ψ(x+ ct) + ψ(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du
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18. (a) y(x, t) = ψ(x) +
∞∑

n=1

bn cos
nπct

L
sin

nπx

L
where

ψ(x) =
mg

ρc2
(x− a)h(x− a) − mg(L− a)x

ρc2L
and bn =

2
L

∫ L

0

f(x) − ψ(x)] sin
nπx

L
dx

(b) y(x, t) = ψ(x) +
1
2
[f(x+ ct) + f(x− ct)] − 1

2
[ψ(x− ct) + ψ(x+ ct)]

19. (a) y(x, t) = ψ(x) +
∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
, where ψ(x) = yLx/L,

an =
2
L

∫ L

0

[f(x) − ψ(x)] sin
nπx

L
dx, bn =

2
nπc

∫ L

0

g(x) sin
nπx

L
dx

(b) y(x, t) = ψ(x) +
1
2
[f(x+ ct) + f(x− ct)] − 1

2
[ψ(x+ ct) + ψ(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du

20. (a) No (c) y(x, t) =
F

E

[
x+

8L
π2

∞∑

n=1

(−1)n

(2n− 1)2
sin

(2n− 1)πx
2L

cos
(2n− 1)πct

2L

]

(d) y(x, t) = ψ(x) − 1
2
[ψ(x+ ct) + ψ(x− ct)] where ψ(x) = Fx/E

22. y(x, t) =
2F0L

2

π2ρc

∞∑

n=1

1
n2(n2π2c2 − ω2L2)

[
cos

nπa

L
− cos

nπb

L

]
∗

[
cπn sinωt− ωL sin

nπct

L

]
sin

nπx

L

23. y(x, t) =
2F0L

πρc

∞∑

n=1

1
n(n2π2c2 − ω2L2)

sin
nπx0

L

[
cπn sinωt− ωL sin

nπct

L

]
sin

nπx

L

24. y(x, t) = − (ρ+ k)gx
24EI

(x3 − 2Lx2 + L3)

+
4(ρ+ k)gL4

EIπ5

∞∑

n=1

1
(2n− 1)5

sin
(2n− 1)πx

L
cos

(2n− 1)2π2ct

L2

25. y(x, t) = − (ρ+ k)gx
24EI

(x3 − 2Lx2 + L3) +
∞∑

n=1

an sin
nπx

L
cos

n2π2ct

L2

+
4(ρ+ k)gL4

EIπ5

∞∑

n=1

1
(2n− 1)5

sin
(2n− 1)πx

L
cos

(2n− 1)2π2ct

L2
, where

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx

27. V (x, y) =
∞∑

n=1

(
An cosh

nπy

L
+Dn sinh

nπy

L

)
sin

nπx

L

+
∞∑

n=1

(
Bn cosh

nπx

L′ + Cn sinh
nπx

L′

)
sin

nπy

L′

An =
2
L

∫ L

0

h1(x) sin
nπx

L
dx, Bn =

2
L′

∫ L′

0

g1(y) sin
nπy

L′ dy,

Cn =
2

L′ sinh (nπL/L′)

∫ L′

0

[
g2(y)− g1(y) cosh

nπL

L′

]
sin

nπy

L′ dy,

Dn =
2

L sinh (nπL′/L)

∫ L

0

[
h2(x)− h1(x) cosh

nπL′

L

]
sin

nπx

L
dx
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28. (a) ∂2V

∂x2
+
∂2V

∂y2
= −σ(x, y)

ε0
, 0 < x < L, 0 < y < L′,

V (0, y) = 0, 0 < y < L′,

V (L, y) = 0, 0 < y < L′,

V (x, 0) = 0, 0 < x < L,

V (x,L′) = 0, 0 < x < L

(b) V (x, y) =
−4L2σ

π3ε0

∞∑

n=1

1
(2n− 1)3 sinh [(2n− 1)πL′/L]

[
sinh

(2n− 1)π(L′ − y)
L

+sinh
(2n− 1)πy

L
− sinh

(2n− 1)πL′

L

]
sin

(2n− 1)πx
L

V (x, y) =
−4(L′)2σ
π3ε0

∞∑

n=1

1
(2n− 1)3 sinh [(2n− 1)πL/L′]

[
sinh

(2n− 1)π(L− x)
L′

+sinh
(2n− 1)πx

L′ − sinh
(2n− 1)πL

L′

]
sin

(2n− 1)πy
L′

(c) V (x, y) =
σx(L− x)

2ε0
− 4σL2

π3ε0

∞∑

n=1

1
(2n− 1)3

csch
(2n− 1)πL′

L

[
sinh

(2n− 1)π(L′ − y)
L

+sinh
(2n− 1)πy

L

]
sin

(2n− 1)πx
L

(d) V (x, y) =
L2

π2

∞∑

n=1

σn

n2

{
1

sinh (nπL′/L)

[
sinh

nπ(L′ − y)
L

+ sinh
nπy

L
− sinh

nπL′

L

]}
∗

sin
nπx

L
, where σn =

2
L

∫ L

0

−σ(x)
ε0

sin
nπx

L
dx

(e) V (x, y) =
yx(L2 − x2)

6ε0
+

2L3L′

π2ε0

∞∑

n=1

(−1)n sinh (nπy/L)
n3 sinh (nπL′/L)

sin
nπx

L

29.U(x, y) =
g(L2 − x2)

2κ
+

16L2

π3

∞∑

n=1

1
(2n− 1)3

[
g(−1)n

κ
+ 2(−1)n

+(2n− 1)π
]
sech

(2n− 1)πL′

2L
cosh

(2n− 1)π(L′ − y)
2L

cos
(2n− 1)πx

2L

Exercises 5.1
2. λn = n2π2/9, yn(x) =

√
2/3 sin (nπx/3)

3. λn = n2π2/16, y0(x) = 1/2, yn(x) = (1/
√

2) cos (nπx/4)
4. λn = (2n− 1)2π2/324, yn(x) = (

√
2/3) sin [(2n− 1)πx/18]

5. λn = (2n− 1)2π2/4, yn(x) =
√

2 cos [(2n− 1)πx/2]
6. λn = (2n− 1)2π2/(4L2), yn(x) =

√
2/L cos [(2n− 1)πx/(2L)]

7. λn = n2π2/81, yn(x) = (
√

2/3) sin [nπ(x− 1)/9]
8. λn = 1/4 + n2π2, yn(x) =

√
2ex/2 sinnπx

9. λn =
1
4

+
n2π2

16
, y0(x) =

1√
e5 − e

,

yn(x) =

√
2

n2π2 + 4
e−x/2

[
nπ

2
cos

nπ(x− 1)
4

+ sin
nπ(x− 1)

4

]

10. λn = n2π2, yn(x) =
√

2 sin (nπ lnx)
11. λn = n2π2/L2, y0(x) = A, yn(x) = A cos (nπx/L) +B sin (nπx/L)
12. Yes 17. Sometimes
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Exercises 5.2

2.
sin λnL cosλnL

(−1)n+1λn(h1/l1 + h2/l2)[(
λ2

n + h2
1/l

2
1

) (
λ2

n + h2
2/l

2
2

)]1/2

(−1)n+1
(
λ2

n − h1h2/(l1l2)
)

[(
λ2

n + h2
1/l

2
1

) (
λ2

n + h2
2/l

2
2

)]1/2

(−1)n+1(h1/l1)√
λ2

n + (h1/l1)2
(−1)n+1λn√
λ2

n + (h1/l1)2

(−1)n+1λn√
λ2

n + (h1/l1)2
(−1)n(h1/l1)√
λ2

n + (h1/l1)2

(−1)n+1(h2/l2)√
λ2

n + (h2/l2)2
(−1)n+1λn√
λ2

n + (h2/l2)2

0 (−1)n

(−1)n+1 0
(−1)n+1λn√
λ2

n + (h2/l2)2
(−1)n(h2/l2)√
λ2

n + (h2/l2)2

(−1)n+1 0

0 (−1)n

4.

√
2L3

π

∞∑

n=1

(−1)n+1

n

√
2
L

sin
nπx

L
, 0 ≤ x < L

5.
L3/2/2√

L
− 2

√
2L3

π2

∞∑

n=1

1
(2n− 1)2

√
2
L

cos
(2n− 1)πx

L
, 0 ≤ x ≤ L

6.
4
√

2L3

π2

∞∑

n=1

(−1)n+1

(2n− 1)2

√
2
L

sin
(2n− 1)πx

2L
, 0 ≤ x ≤ L

7.

√
8L3

π2

∞∑

n=1

[
π(−1)n+1

2n− 1
− 2

(2n− 1)2

]√
2
L

cos
(2n− 1)πx

2L
, 0 ≤ x ≤ L

8.
∞∑

n=1

cn
1
N

cosλnx, where 2N2 = L+
h2/l2

λ2
n + (h2/l2)2

and

cn =
1
N

[
L

λn
sin λnL+

1
λ2

n

(cosλnL− 1)
]

9.
∞∑

n=1

cn
1
N

sin λnx, where 2N2 = L+
h2/l2

λ2
n + (h2/l2)2

and cn =
1
N

(
− L

λn
cosλnL+

1
λ2

n

sinλnL

)

10.
8
√

2L5/2

π3

∞∑

n=1

[
(−1)n+1π

(2n− 1)2
− 2

(2n− 1)3

]√
2
L

sin
(2n− 1)πx

2L
, 0 ≤ x ≤ L

11. λ2
0 = 0, y0(x) =

√
2

e2L − 1
;

λ2
n = 1 + n2π2/L2, yn(x) =

√
2L√

n2π2 + L2
e−x

(nπ
L

cos
nπx

L
+ sin

nπx

L

)

12. λ2
n = β2/4 + n2π2/L2, yn(x) =

√
2
L
e−βx/2 sin

nπx

L
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13. λ2
0 = 0, y0(x) =

√
β

eβL − 1
; λ2

n =
β2

4
+
n2π2

L2
,

yn(x) =
β
√

2L√
β2L2 + 4n2π2

e−βx/2

(
2nπ
βL

cos
nπx

L
+ sin

nπx

L

)

14. (c) y0(x) =
1√
2L

, yn(x) =
1√
L

cos
nπ(x+ L)

2L
15. yn(x) =

√
2

lnL
sin

nπ lnx
lnL

16. (a) yn(x) =

√
2

lnL
cos

(2n− 1)π lnx
2 lnL

(b) yn(x) =

√
2

lnL
cos

nπ ln x
lnL

17. yn(x) =
1
N

sin λnx, tanλ lnL = −lλ/(hL), 2N2 = lnL+
(h/l)L

λ2
n + (h/l)2L2

18. yn(x) = cos (λn lnx) +
h1

l1λn
sin (λn ln x), where tanλ lnL =

λ(h1/l1 + h2/l2)
λ2 − h1h2/(l1l2)

19. (a) yn(x) =

√
2

ln (b/a)
sin

nπ ln (x/a)
ln (b/a)

(b) yn(x) =

√
2

ln (b/a)
cos

(2n− 1)π ln (x/a)
2 ln (b/a)

(c) y0(x) =
1√

ln (b/a)
, yn(x) =

√
2

ln (b/a)
cos

nπ ln (x/a)
ln (b/a)

20. yn(x) = N−1 sin [λn ln (x/a)] where 2N2 = ln (b/a) +
hb/l

λ2
n + h2b2/l2

and

cot [λ ln (b/a)] = −hb
lλ

21. λ2
1 = 2.46494, λ2

2 = 22.1844, λ2
3 = 61.6234, λ2

4 = 129.782
22. λ2

1 = 9.84006, λ2
2 = 39.3603, λ2

3 = 88.5606, λ2
4 = 157.441

23. λ2
1 = 1.79160, λ2

2 = 14.1550, λ2
3 = 44.2273, λ2

4 = 93.7048

24. (a)
2
√

2L
π

∞∑

n=1

(−1)n+1

2n− 1

√
2
L

cos
(2n− 1)πx

L
(b) 0 (c) 1,−1

25. (a)
2
√

2L
π

∞∑

n=1

1
2n− 1

√
2
L

sin
2(2n− 1)πx

L
(b) 0 (c) 0,0

26. No 28. Yes 29. Yes 30.A cosh
√
−λx

Exercises 5.3

1. (a)
4L
π2

∞∑

n=1

1
n2

sin
nπ

2
sin

nπx

L
(b)

4
π

∞∑

n=1

1
2n− 1

sin
(2n− 1)πx

L

2. (a)
8L2

π3

∞∑

n=1

1
(2n− 1)3

sin
(2n− 1)πx

L

3. (b) λn =
∫ b

a

{r(x)[y′n(x)]2 + q(x)[yn(x)]2} dx

Exercises 6.2

1. (a) U(x, t) =
8L
π2

∞∑

n=1

e−(2n−1)2π2kt/(4L2)

(2n− 1)2
cos

(2n− 1)πx
2L

(b)
4κ
π

∞∑

n=1

(−1)n+1e−(2n−1)2π2kt/(4L2)

2n− 1
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2.U(x, t) =
∞∑

n=1

cne
−(2n−1)2π2kt/(4L2)

√
2
L

cos
(2n− 1)πx

2L
where

cn =
∫ L

0

f(x)

√
2
L

cos
(2n− 1)πx

2L
dx

3.U(x, t) =
∞∑

n=1

cne
−kλ2

ntXn(x) , where Xn(x) =
1
N

sin λn(L− x)
sinλnL

,

2N2 = L

[
1 +

(
κ

λnµ

)2
]

+
κ/µ

λ2
n

, cotλL = − κ

λµ

4. (a) U(x, t) = e−ht

(
c0√
L

+
∞∑

n=1

cne
−n2π2kt/L2

√
2
L

cos
nπx

L

)
where c0 =

∫ L

0

f(x)√
L
dx

and cn =
∫ L

0

f(x)

√
2
L

cos
nπx

L
dx (b) Drop the e−ht factor

6. (a) y(x, t) =
∞∑

n=1

(
An cos

nπct

L
+Bn sin

nπct

L

)√
2
L

sin
nπx

L
where

An =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx and Bn =

L

nπc

∫ L

0

g(x)

√
2
L

sin
nπx

L
dx

(b)
√
A2

1 +B2
1

√
2
L

sin
πx

L
,
√
A2

2 + B2
2

√
2
L

sin
2πx
L

,
√
A2

3 + B2
3

√
2
L

sin
3πx
L

(c) No nodes; x = L/2; and x = L/3 and x = 2L/3

7. (a) y(x, t) =
∞∑

n=1

[
An cos

(2n− 1)πct
2L

+ Bn sin
(2n− 1)πct

2L

]√
2
L

sin
(2n− 1)πx

2L
where

An =
∫ L

0

f(x)

√
2
L

sin
(2n− 1)πx

2L
dx, Bn =

2L
(2n− 1)πc

∫ L

0

g(x)

√
2
L

sin
(2n− 1)πx

2L
dx

(b) y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du

8. (a) y(x, t) =
∞∑

n=1

(An cosωnt+Bn sinωnt)

√
2
L

sin
nπx

L
where ωn =

√
n2π2c2

L2
+
k

ρ
and

An =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx, Bn =

1
ωn

∫ L

0

g(x)

√
2
L

sin
nπx

L
dx

9. y(x, t) =
∞∑

n=1

e−βt/(2ρ)(An cosωnt+Bn sinωnt)

√
2
L

sin
nπx

L
where ωn =

1
2

√
4n2π2c2

L2
− β2

ρ2

and An =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx, Bn =

1
ωn

∫ L

0

[
g(x) +

β

2ρ
f(x)

]√
2
L

sin
nπx

L
dx

11. y(x, t) =
kL+AE

50

∞∑

n=1

(−1)n+1
√
A2E2λ2

n + k2

λn[L(A2E2λ2
n + k2) + kAE]

cos cλnt sinλnx , cotλL = − k

AEλ

Exercises 6.3

1. (a) V (x, y) =
400
π

∞∑

n=1

1
(2n− 1) sinh [(2n− 1)πL/L′]

sinh
(2n− 1)π(L− x)

L′ sin
(2n− 1)πy

L′

(b) 25
2. 50◦C 3.U0/4
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4. (a) U(x, y) = C +
∞∑

n=1

An cosh
nπy

L

√
2
L

cos
nπx

L
where

An =
L

nπ sinhnπ

∫ L

0

f(x)

√
2
L

cos
nπx

L
dx

Function f(x) must satisfy the condition
∫ L

0

f(x) dx = 0.

(b) U(x, y) = 50 +
4L2

π3

∞∑

n=1

csch(2n− 1)π
(2n− 1)3

cosh
(2n− 1)πy

L
cos

(2n− 1)πx
L

(c) No solution

5. (a) U(x, y) =
Ax+B√

L′
+

∞∑

n=1

(
An cosh

nπx

L′ + Bn sinh
nπx

L′

)√ 2
L′ cos

nπy

L′ , where

A =
∫ L′

0

f1(y)
1√
L′
dy, An =

1
cosh (nπL/L′)

[∫ L′

0

f2(y)Yn(y) dy − Bn sinh
nπL

L′

]
,

B =
∫ L′

0

f2(y)√
L′

dy − AL, Bn =
L′

nπ

∫ L′

0

f1(y)Yn(y) dy

(b) f1(x− L) + f2

6. z(x, y) =
∞∑

n=1

(
An cosh

nπy

L
+Bn sinh

nπy

L

)√ 2
L

sin
nπx

L

+
∞∑

n=1

(
Cn cosh

nπx

L′ +Dn sinh
nπx

L′

)√ 2
L′ sin

nπy

L′ where

An =
∫ L

0

g1(x)

√
2
L

sin
nπx

L
dx, Cn =

∫ L′

0

f1(y)

√
2
L′ sin

nπy

L′ dy,

Bn =
1

sinh (nπL′/L)

[∫ L

0

g2(x)

√
2
L

sin
nπx

L
dx− An cosh

nπL′

L

]
,

Dn =
1

sinh (nπL/L′)

[∫ L′

0

f2(y)

√
2
L′ sin

nπy

L′ dy − Cn cosh
nπL

L′

]

7. V (x, y) =
∞∑

n=1

[
An cosh

(2n− 1)πx
2L′ + Bn sinh

(2n− 1)πx
2L′

]√
2
L′ cos

(2n− 1)πy
2L′

+
∞∑

n=1

Cn cosh
(2n− 1)πy

2L

√
2
L

sin
(2n− 1)πx

2L
, where

An =
∫ L′

0

f1(y)

√
2
L′ cos

(2n− 1)πy
2L′ dy,

Bn =
2L′

(2n− 1)π cosh
(2n− 1)πL

2L′

[∫ L′

0

f2(y)

√
2
L′ cos

(2n− 1)πy
2L′ dy

− (2n− 1)πAn

2L′ sinh
(2n− 1)πL

2L′

]
,

Cn =
1

cosh [(2n− 1)πL′/(2L)]

∫ L

0

g(x)

√
2
L

sin
(2n− 1)πx

2L
dx
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8. (a) V (r, θ) =
∞∑

n=1

Anr
n

√
2
π

sinnθ where An = a−n

∫ π

0

f(θ)

√
2
π

sinnθ dθ

(b) V (r, θ) =
4
π

∞∑

n=1

1
2n− 1

( r
a

)2n−1

sin (2n− 1)θ, V (r, π/2) =
4
π

Tan−1
( r
a

)

9. (b) 1/2

10.U(r, θ) =
2
π
− 4
π

∞∑

n=1

1
4n2 − 1

( r
a

)2n

cos 2nθ

11. (a) V (r, θ) =
A0√
2π

+
∞∑

n=1

rn

(
An

cosnθ√
π

+Bn
sinnθ√

π

)
, where A0 is arbitrary and

An =
1

nan−1

∫ π

−π

f(θ)
cosnθ√

π
dθ, Bn =

1
nan−1

∫ π

−π

f(θ)
sinnθ√

π
dθ

12. V (r, θ) =
A0√
2π

+
∞∑

n=1

rn

(
An

cosnθ√
π

+Bn
sinnθ√

π

)
where A0 =

1
h

∫ π

−π

f(θ)√
2π
dθ and

An =
1

an−1(ha+ nl)

∫ π

−π

f(θ)
cosnθ√

π
dθ, Bn =

1
an−1(ha+ nl)

∫ π

−π

f(θ)
sinnθ√

π
dθ

13. (b) No 14. (b) Yes

15. (a) V (r, θ) =
A0√
2π

+
∞∑

n=1

r−n

(
An

cosnθ√
π

+ Bn
sinnθ√

π

)
, where A0 =

1
h

∫ π

−π

f(θ)√
2π

dθ,

An =
an+1

ha+ ln

∫ π

−π

f(θ)
cosnθ√

π
dθ, Bn =

an+1

ha+ ln

∫ π

−π

f(θ)
sinnθ√

π
dθ

(b) A0 must be zero

16. V (r, θ) =
A0 + B0 ln r√

2π
+

∞∑

n=1

[
(Anr

n +Bnr
−n)

cosnθ√
π

+ (Cnr
n +Dnr

−n)
sinnθ√

π

]
where

A0 =
1

ln (R/a)

∫ π

−π

f1(θ) lnR− f2(θ) lna√
2π

dθ, B0 =
1

ln (R/a)

∫ π

−π

f2(θ)− f1(θ)√
2π

dθ,

An =
1

R2n − a2n

∫ π

−π

[Rnf2(θ)− anf1(θ)]
cosnθ√

π
dθ,

Bn =
anRn

R2n − a2n

∫ π

−π

[Rnf1(θ)− anf2(θ)]
cosnθ√

π
dθ

Cn =
1

R2n − a2n

∫ π

−π

[Rnf2(θ)− anf1(θ)]
sinnθ√

π
dθ,

Dn =
anRn

R2n − a2n

∫ π

−π

[Rnf1(θ)− anf2(θ)]
sinnθ√

π
dθ

17. V (r, θ) =
A0 + B0 ln r√

2π
+

∞∑

n=1

[(
Anr

n + Bnr
−n
) cosnθ√

π
+
(
Cnr

n +Dnr
−n
) sinnθ√

π

]
,

where A0 is arbitrary, and

An =
1

n (R2n − a2n)

∫ π

−π

[
an+1f1(θ) +Rn+1f2(θ)

] cosnθ√
π

dθ

Bn =
(Ra)n+1

n (R2n − a2n)

∫ π

−π

[
an−1f2(θ) +Rn−1f1(θ)

] cosnθ√
π

dθ

Cn =
1

n (R2n − a2n)

∫ π

−π

[
an+1f1(θ) +Rn+1f2(θ)

] sinnθ√
π

dθ

Dn =
(Ra)n+1

n (R2n − a2n)

∫ π

−π

[
an−1f2(θ) + Rn−1f1(θ)

] sinnθ√
π

dθ
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18. V (r, θ) =
A0 + B0 ln r√

2π
+

∞∑

n=1

[
(Anr

n +Bnr
−n)

cosnθ√
π

+ (Cnr
n +Dnr

−n)
sinnθ√

π

]
where

A0 =
1
M

∫ π

−π

a(Rh2 lnR+ l2)f1(θ) + R(l1 − ah1 ln a)f2(θ)√
2π

dθ,

B0 =
Ra

M

∫ π

−π

h1f2(θ)− h2f1(θ)√
2π

dθ,

An =
1
G

∫ π

−π

[(h2R
−n − nl2R

−n−1)f1(θ)− (h1a
−n + nl1a

−n−1)f2(θ)]
cosnθ√

π
dθ,

Bn =
1
G

∫ π

−π

[(h1a
n − nl1a

n−1)f2(θ)− (h2R
n + nl2R

n−1)f1(θ)]
cosnθ√

π
dθ,

Cn =
1
G

∫ π

−π

[(h2R
−n − nl2R

−n−1)f1(θ)− (h1a
−n + nl1a

−n−1)f2(θ)]
sinnθ√

π
dθ,

Dn =
1
G

∫ π

−π

[(h1a
n − nl1a

n−1)f2(θ)− (h2R
n + nl2R

n−1)f1(θ)]
sinnθ√

π
dθ,

M = h1h2aR ln (R/a) + ah1l2 +Rh2l1,
G = (h2R

−n − nl2R
−n−1)(h1a

n − nl1a
n−1) − (h1a

−n + al1a
−n−1)(h2R

n + nl2R
n−1)

19. (a) U(r, θ) = A0H0(θ) +
∞∑

n=1

Anr
nπ/α

√
2
α

cos
nπθ

α
, where An = a−nπ/α

∫ α

0

f(θ)Hn(θ) dθ

(b) U(r, θ) =
α

2
− 4α
π2

∞∑

n=1

r(2n−1)π/α

(2n− 1)2
cos

(2n− 1)πθ
α

20. Sides must have constant temperatures k1 and k2, in which case U(θ) = k1 + (k2 − k1)θ/α.

21. (a) z(r, θ) =
∞∑

n=1

Anr
nπ/α

√
2
α

sin
nπθ

α
, where An = a−nπ/α

∫ α

0

f(θ)

√
2
α

sin
nπθ

α
dθ

(b) z(r, θ) =
∞∑

n=1

Anr
n/2

√
2
α

sin
nπθ

α
, where An = a−n/2

∫ 2π

0

f(θ)

√
2
α

sin
nπθ

α
dθ

(c) z(r, θ) =
√
r

a
sin
(
θ

2

)

22. (a) V (r, θ) =
∞∑

n=1

An

[( r
a

)n

−
(a
r

)n]√ 2
π

sinnθ where

An =
[(

b

a

)n

−
(a
b

)n
]−1∫ π

0

f(θ)

√
2
π

sinnθ dθ

(b) V (r, θ) =
4V0

π

∞∑

n=1

[(
b

a

)2n−1

−
(a
b

)2n−1
]−1

1
2n− 1

[( r
a

)2n−1

−
(a
r

)2n−1
]

sin (2n− 1)θ

23. (a) V (r, θ) =
∞∑

n=1

An sinh
nπθ

ln (b/a)

√
2

ln (b/a)
sin

nπ ln (r/a)
ln (b/a)

, where

An = csch
nπ2

ln (b/a)

∫ b

a

1
r
f(r)

√
2

ln (b/a)
sin

nπ ln (r/a)
ln (b/a)

dr

(b) V (r, θ) =
4V0

π

∞∑

n=1

1
2n− 1

csch
(2n− 1)π2

ln (b/a)
sinh

(2n− 1)πθ
ln (b/a)

sin
(2n− 1)π ln (r/a)

ln (b/a)
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24. V (r, θ) =
A0 + B0θ√

ln (b/a)
+

∞∑

n=1

[
An cosh

nπθ

ln (b/a)
+ Bn sinh

nπθ

ln (b/a)

]√
2

ln (b/a)
cos

nπ ln (r/a)
ln (b/a)

,

where A0 =
∫ b

a

1
r
g(r)

1√
ln (b/a)

dr, An =
∫ b

a

1
r
g(r)

√
2

ln (b/a)
cos

nπ ln (r/a)
ln (b/a)

dr,

B0 =
1
π

∫ b

a

1
r
[f(r)− g(r)]

1√
ln (b/a)

dr,

Bn = csch
nπ2

ln (b/a)

∫ b

a

1
r

[
f(r)− cosh

nπ2

ln (b/a)
g(r)

]√
2

ln (b/a)
cos

nπ ln (r/a)
ln (b/a)

dr

25. V (r, θ) =
∞∑

n=1

(An coshλnθ +Bn sinhλnθ)Rn(r) , where Rn(r) =
1
N

sin [λn ln (r/a)],

2N2 = ln
(
b

a

)
+

hb/l

λ2
n + h2b2/l2

, cot [λ ln (b/a)] = −hb/(lλ)

An =
∫ b

a

1
r
g(r)Rn(r) dr, Bn = cschλnπ

∫ b

a

1
r
[f(r)− coshλnπg(r)]Rn(r) dr

26. V (r, θ) = (A0 ln r +B0)

√
2
π

+
∞∑

n=1

(
Anr

2n +
Bn

r2n

)
2√
π

cos 2nθ, where

A0 =
1

ln (b/a)

∫ π/2

0

[g(θ)− f(θ)]

√
2
π
dθ,

B0 =
∫ π/2

0

[
f(θ − ln a

ln (b/a)
[g(θ)− f(θ)]

]√
2
π
dθ,

An =
1

(b/a)2n − (a/b)2n

∫ π/2

0

[
1
a2n

f(θ)− 1
b2n

g(θ)
]

2√
π

cos 2nθ dθ,

Bn =
1

(b/a)2n − (a/b)2n

∫ π/2

0

[
b2nf(θ)− a2ng(θ)

] 2√
π

cos 2nθ dθ

27. V (r, θ) = (A0θ +B0)R0(r) +
∞∑

n=1

[
An cosh

nπθ

ln (b/a)
+ Bn sinh

nπθ

ln (b/a)

]
Rn(r) , where

R0(r) =
1√

ln (b/a)
, Rn(r) =

√
2

ln (b/a)
cos

nπ ln (r/a)
ln (b/a)

, B0 =
∫ b

a

1
r
f(r)R0(r) dr,

A0 =
2
π

∫ b

a

1
r
[g(r)− f(r)]R0(r) dr, An =

∫ b

a

1
r
f(r)Rn(r) dr,

Bn = csch
nπ2

2 ln (b/a)

∫ b

a

1
r

[
g(r)− cosh

nπ2

2 ln (b/a)
f(r)

]
Rn(r) dr

29. (b) 1/2, 1/2 (d) r = a





− sin θ ±
√

sin2 θ + tan2 [(2V − 1)π/2]

tan [(2V − 1)π/2]





30. V (r, θ) =
1
2
(V1 + V2) +

1
π

(V1 − V2)Tan−1

(
2ar sin θ
a2 − r2

)

31. V (r, θ)=





1 +
1
π

{
Tan−1

[
a+ r

a− r
tan

(
θ

2

)]
− Tan−1

[
a+ r

a− r
tan

(
2θ − π

4

)]}
, −π<θ<−π

2
1
π

{
Tan−1

[
a+ r

a− r
tan

(
θ

2

)]
− Tan−1

[
a+ r

a− r
tan

(
2θ − π

4

)]}
, −π

2
≤θ≤π
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Exercises 6.4

1.U(x, y, t) =
2√
LL′

∞∑

m=1

∞∑

n=1

Cmne
−(n2/L2+m2/L′2)π2kt sin

nπx

L
sin

mπy

L′ , where

Cmn =
2√
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
sin

mπy

L′ dx dy

2.U(x, y, t) =
2√
LL′

∞∑

m=1

∞∑

n=1

Cmne
−[(2n−1)2/(4L2)+(2m−1)2/(4L′2)]π2kt∗

cos
(2n− 1)πx

2L
sin

(2m− 1)πy
2L′ ,

where Cmn =
2√
LL′

∫ L′

0

∫ L

0

f(x, y) cos
(2n− 1)πx

2L
sin

(2m− 1)πy
2L′ dx dy

3. (a) U(x, y, t) =
∞∑

n=1

C0ne
−n2π2kt/L2

√
2
L

sin
nπx

L

1√
L′

+
∞∑

m=1

∞∑

n=1

Cmne
−(n2/L2+m2/L′2)π2kt

√
2
L

sin
nπx

L

√
2
L′ cos

mπy

L′ ,

where C0n =

√
2
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
dxdy,

Cmn =
2√
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
cos

mπy

L′ dx dy

(b) U(x, t) =
∞∑

n=1

Cne
−n2π2kt/L2

sin
nπx

L
, where Cn =

2
L

∫ L

0

f(x) sin
nπx

L
dx

4.U(x, y, t) =
∞∑

m=1

∞∑

n=1

Cmne
−k(λ2

n+µ2
m)tXn(x)Ym(y), where

Cmn =
∫ L′

0

∫ L

0

f(x, y)Xn(x)Ym(y) dx dy,

Xn(x) = N−1 sin λnx, 2N2 = L+
h/l

λ2
n + (h/l)2

, Ym(y) =

√
2
L′ sin

mπy

L′

5.U(x, z, t) =
16U0

π2

∞∑

m=1

∞∑

n=1

e−kπ2[(2n−1)2/L2+(2m−1)2/(4L′′2)]t

(2m− 1)(2n− 1)
sin

(2n− 1)πx
L

sin
(2m− 1)πz

2L′′

6.U(x, z, t) =
4U0

π

∞∑

m=1

∞∑

n=1

sinµmL
′′

(2n− 1)µmN2
e−k[(2n−1)2π2/L2+µ2

m]t sin
(2n− 1)πx

L
cosµmz,

where 2N2 = L′′ +
h/l

µ2
m + (h/l)2

, tanµL′′ =
h

µl

7.U(x, t) =
4U0

π

∞∑

n=1

e−(2n−1)2π2kt/L2

2n− 1
sin

(2n− 1)πx
L

9.
64U0

π3

∞∑

m=1

∞∑

n=1

∞∑

j=1

(−1)m+1

(2n− 1)(2m− 1)(2j − 1)
e−kπ2[(2n−1)2/L2+(2m−1)2/(4L′2)+(2j−1)2/(4L′′2)]t∗

sin
(2n− 1)πx

L
cos

(2m− 1)πy
2L′ sin

(2j − 1)πz
2L′′
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10. (a) U(x, y, t) =
4LL′

π2

∞∑

m=1

1
(2m− 1)2

e−(2m−1)2π2kt/(4L′2) cos
(2m− 1)πy

2L′

−32LL′

π4

∞∑

m=1

∞∑

n=1

e−[(2n−1)2/L2+(2m−1)2/(4L′2)]π2kt

(2n− 1)2(2m− 1)2
cos

(2n− 1)πx
L

cos
(2m− 1)πy

2L′

11. (a) z(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn cos
√
n2 +m2πct

L

√
2
L

sin
nπx

L

√
2
L

sin
mπy

L
, where

Amn =
2
L

∫ L

0

∫ L

0

f(x, y) sin
nπx

L
sin

mπy

L
dxdy

(b)
2L
π4

∞∑

m=1

∞∑

n=1

(−1)n+m

(2n− 1)2(2m− 1)2
cos

cπ
√

(2n− 1)2 + (2m− 1)2t
L

∗

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

12. (a) z(x, y, t) =
∞∑

m=0

∞∑

n=1

Amn cos cπ
√
n2/L2 +m2/L′2tXn(x)Ym(y), where

Amn =
∫ L′

0

∫ L

0

f(x, y)Xn(x)Ym(y) dx dy, Xn(x) =

√
2
L

sin
nπx

L
, Y0(y) =

1√
L′

,

Ym(y) =

√
2
L′ cos

mπy

L′

(b) z(x, y, t) =
1

4π2

∞∑

n=1

(−1)n+1

(2n− 1)2
cos

(2n− 1)πct
L

sin
(2n− 1)πx

L

13. x = pL/n, p = 1, . . . , n− 1 and y = qL′/m, q = 1, . . . ,m− 1
14. No

15. V (x, y, z) =
2√
LL′

∞∑

m=1

∞∑

n=1

(
Amn cosh

√
n2

L2
+
m2

L′2 πz +Bmn sinh

√
n2

L2
+
m2

L′2 πz

)
∗

sin
nπx

L
sin

mπy

L′ ,

where Amn =
2√
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
sin

mπy

L′ dx dy,

Bmn =
2/

√
LL′

sinh

√
n2

L2
+
m2

L′2 πL
′′

∫ L′

0

∫ L

0

[
g(x, y) − f(x, y) cosh

√
n2

L2
+
m2

L′2 πL
′′

]
∗

sin
nπx

L
sin

mπy

L′ dx dy

16. V (x, y, z) =
2√
LL′

∞∑

m=1

∞∑

n=1

(
Amn cosh

√
n2

L2
+
m2

L′2 πz +Bmn sinh

√
n2

L2
+
m2

L′2 πz

)
∗

sin
nπx

L
sin

mπy

L′

+
2√
L′L′′

∞∑

m=1

∞∑

n=1

(
Cmn cosh

√
n2

L′2 +
m2

L′′2 πx+Dmn sinh

√
n2

L′2 +
m2

L′′2 πx

)
∗

sin
nπy

L′ sin
mπz

L′′

where Amn =
2√
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
sin

mπy

L′ dx dy,



APPENDIX E 787

Bmn =
2/

√
LL′

sinh

√
n2

L2
+
m2

L′2 πL
′′

∫ L′

0

∫ L

0

[
g(x, y) − f(x, y) cosh

√
n2

L2
+
m2

L′2 πL
′′

]
∗

sin
nπx

L
sin

mπy

L′ dx dy

Cmn =
2√
L′L′′

∫ L′

0

∫ L′′

0

h(y, z) sin
nπy

L′ sin
mπz

L′′ dz dy,

Dmn =
2/

√
L′L′′

sinh

√
n2

L′2 +
m2

L′′2 πL

∫ L′

0

∫ L′′

0

[
k(y, z) − h(y, z) cosh

√
n2

L′2 +
m2

L′′2 πL

]
∗

sin
nπy

L′ sin
mπz

L′′ dz dy

17.U(x, y, z) =
4L
π2κ

∞∑

n=1

csch(2n− 1)π
(2n− 1)2

[
Q cosh

(2n− 1)π(L− z)
L

+ q cosh
(2n− 1)πx

L

]
∗

sin
(2n− 1)πy

L

Exercises 6.5
3. a constant

4. λ2
mn =

(2n− 1)2π2

4L2
+
m2π2

L′2 , Wmn(x, y) =
2√
LL′

sin
(2n− 1)πx

2L
sin

mπy

L′

5. λ2
mn =

n2π2

L2
+
m2π2

L′2 , Wmn(x, y) =





√
2
LL′ sin

nπx

L
, m = 0

2√
LL′

sin
nπx

L
cos

mπy

L′ , m > 0.

6. λ2
mn =

(2n− 1)2π2

4L2
+

(2m− 1)2π2

4L′2 , Wmn(x, y) =
2√
LL′

cos
(2n− 1)πx

2L
sin

(2m− 1)πy
2L′

7. λ2
mn =

n2π2

L2
+ ν2

m , where tan νL′ =
h

νl
;

Wmn(x, y) =
√

2
N
√
L

sin
nπx

L
cos νmy, where 2N2 = L′ +

h/l

ν2
m + (h/l)2

8. λ2
mn = µ2

n + ν2
m, Wmn(x, y) = Xn(x)Ym(y), where µn, νm, Xn(x), and Ym(y) are given in

line 1 of
Table 5.1

12. (b) The line integral vanishes

Exercises 6.6
4. No

Exercises 6.8

1. (a) y(x, t) =
1
2
[f(x+ ct) + f(x− ct)]

2. (a) y(x, t) =
1
2c

∫ x+ct

x−ct

g(u) du
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Exercises 7.1

1.
8
√

2L3

(2n− 1)2π2

[
(−1)n+1(L− 1)− 2L

(2n− 1)π

]
2.

5
√

2L[1 + (−1)n+1]
nπ

3. f̃(0) = 5
√
L, f̃(λn) = 0 for n > 0

4.− L

Nλn
cosλnL+

1
Nλ2

n

sinλnL, where 2N2 = L+
h2/l2

λ2
n + (h2/l2)2

, cotλL = − h2

λl2

5.
1

Nλ2
n

(1 − cosλnL) , where 2N2 = L+
h2/l2

λ2
n + (h2/l2)2

, tanλL =
h2

λl2

6.
2
√

2L
(2n− 1)2π2 − 4L2

[
(−1)n+1(2n− 1)π sinL− 2L

]

7. f̃(0) =
1√
L

(eL − 1) , f̃(λn) =
−
√

2L3

n2π2 + L2

[
1 + (−1)n+1eL

]

8.

√
L5/2

(2n− 1)π

{
32

(2n− 1)2π2

[
cos

(2n− 1)π
4

− 1
]

+
8

(2n− 1)π
sin

(2n− 1)π
4

− cos
(2n− 1)π

4

}

9. f̃(λ2) =
√
L/8, f̃(λn) = 0 for n 6= 2

10. f̃(0) =

√
e2L − 1

2
, f̃(λn) = 0 for n > 0 11. 2x 12.−3x2 13. 2

√
2

14. 2x− 1

Exercises 7.2

1.U(x, t) =
ULx

L
+

∞∑

n=1

cne
−n2π2kt/L2

sin
nπx

L
, where cn =

2
L

∫ L

0

f(x) sin
nπx

L
dx+

2(−1)nUL

nπ

5.U(x, t) = U0 +
8U0

π2

∞∑

n=1

(−1)ne−(2n−1)2π2kt/(4L2)

(2n− 1)2
sin

(2n− 1)πx
2L

6.U(x, t) =
∞∑

n=1

[
f̃(λn)e−kλ2

nt +
k

κ

∫ t

0

g̃(λn, u)ekλ2
n(u−t) du

]√
2
L

sin
nπx

L
, where

f̃(λn) =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx, g̃(λn, t) =

∫ L

0

g(x, t)

√
2
L

sin
nπx

L
dx

7.U(x, t) =
∞∑

n=0

[
f̃(λn)e−kλ2

nt +
k

κ

∫ t

0

g̃(λn, u)ekλ2
n(u−t) du

]
Xn(x) , where X0(x) =

1√
L

,

Xn(x) =

√
2
L

cos
nπx

L
, f̃(λn) =

∫ L

0

f(x)Xn(x) dx, g̃(λn, t) =
∫ L

0

g(x, t)Xn(x) dx

8. (b) U(x, t) =
100x
L

e−t +
200
π

∞∑

n=1

[
1
n
e−n2π2kt/L2

+
(−1)nL2(e−n2π2kt/L2 − e−t)

n(n2π2k − L2)

]
sin

nπx

L

(c) U(x, t) =
100x
L

e−t +
200
π

∞∑

n=1
n6=m

[
1
n
e−n2π2kt/L2

+
(−1)nL2(e−n2π2kt/L2 − e−t)

n(n2π2k − L2)

]
sin

nπx

L

+
200
mπ

[1 + (−1)m+1t]e−t sin
mπx

L

9.U(x, t) =
2gL
κπ2

∞∑

n=1

1 − e−n2π2kt/L2

n2
sin

nπb

L
sin

nπx

L
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12. (a) U(x, t) = 4U0

∞∑

n=1

{[
1

(2n− 1)π
+

2(−1)n

(2n− 1)2π2

]
e−(2n−1)2π2kt/(4L2)

+
(2n− 1)kπ

(2n− 1)2π2k − 4αL2
[e−αt − e−(2n−1)2π2kt/(4L2)]

}
sin

(2n− 1)πx
2L

(b) U(x, t) = 4U0

∞∑

n=1
n6=m

{[
1

(2n− 1)π
+

2(−1)n

(2n− 1)2π2

]
e−(2n−1)2π2kt/(4L2)

+
(2n− 1)kπ

(2n− 1)2π2k − 4αL2
[e−αt − e−(2n−1)2π2kt/(4L2)]

}
sin

(2n− 1)πx
2L

+2U0

[
2

(2m− 1)π
+

4(−1)m

(2m− 1)2π2
+

(2m− 1)πkt
2L2

]
e−αt sin

(2m− 1)πx
2L

14.U(x, t) =
qx

κ
+ U0 +

8(U0κ+ qL)
κπ2

∞∑

n=1

(−1)n

(2n− 1)2
e−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

15. (a) U(x, t) = U0 +
q

κ
(L− x) − 8qL

κπ2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/(4L2) cos
(2n− 1)πx

2L

(b) U(x, t) = U0 +
8qL
κπ2

∞∑

n=1

1
(2n− 1)2

[
e−(2n−1)2π2k(t−t0)/(4L2) − e−(2n−1)2π2kt/(4L2)

]
∗

cos
(2n− 1)πx

2L
(c) U = U0

16. (a) U(x, t) = U0 +
kqt

κL
+

q

6κL
(3x2 − 6Lx+ 2L2) − 2qL

π2κ

∞∑

n=1

1
n2
e−n2π2kt/L2

cos
nπx

L

(b) U(x, t) = U0 +
kqt0
κL

+
2qL
κπ2

∞∑

n=1

1
n2

[
e−n2π2k(t−t0)/L2

− e−n2π2kt/L2
]
cos

nπx

L

(c) U = U0 +
kqt0
κL

19. (a) y(x, t) =
kx(x− L)

2ρc2
+

∞∑

n=1

{[
f̃(λn) +

k1̃n

ρc2λ2
n

]
cos

nπct

L
+
Lg̃(λn)
nπc

sin
nπct

L

}
∗

√
2
L

sin
nπx

L
, where 1̃n =

√
2L[1 + (−1)n+1]

nπ
,

f̃(λn) =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx, g̃(λn) =

∫ L

0

g(x)

√
2
L

sin
nπx

L
dx

(b) y(x, t) = ψ(x) +
1
2

[f(x+ ct) + f(x− ct)]− 1
2

[ψ(x+ ct) + ψ(x− ct)]

+
1
2c

∫ x+ct

x−ct

g(u) du, where ψ(x) =
kx(x− L)

2ρc2

20. (a) y(x, t) =
yLx

L
+

∞∑

n=1

{[
f̃(λn) +

√
2L(−1)nyL

nπ

]
cos

nπct

L
+
Lg̃(λn)
nπc

sin
nπct

L

}
∗

√
2
L

sin
nπx

L
,

where f̃(λn) =
∫ L

0

f(x)

√
2
L

sin
nπx

L
dx, g̃(λn) =

∫ L

0

g(x)

√
2
L

sin
nπx

L
dx
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(b) y(x, t) = ψ(x) +
1
2

[f(x+ ct) + f(x− ct)]− 1
2

[ψ(x+ ct) + ψ(x− ct)]

+
1
2c

∫ x+ct

x−ct

g(u) du, where ψ(x) = yLx/L

21. (a) y(x, t) = ψ(x) +
∞∑

n=1

[
f̃(λn) +

mg

ρc2λ2
n

Xn(a)
]

cos
nπct

L
Xn(x) , where

Xn(x) =

√
2
L

sin
nπx

L
, ψ(x) =

mg

ρc2
(x− a)h(x− a) − mg(L− a)x

ρc2L

(b) y(x, t) = ψ(x) +
1
2

[f(x+ ct) + f(x− ct)]− 1
2

[ψ(x+ ct) + ψ(x− ct)]

22. y(x, t) =
2L2F0

π2ρc

∞∑

n=1

1
n2(n2π2c2 − ω2L2)

[
cos

nπa

L
− cos

nπb

L

]
∗

[
nπc sinωt− ωL sin

nπct

L

]
sin

nπx

L

23. y(x, t) =
2LF0

ρπc

∞∑

n=1

1
n(n2π2c2 − ω2L2)

sin
nπx0

L

[
nπc sinωt− ωL sin

nπct

L

]
sin

nπx

L

24. (a) y(x, t) =
Fx

E
− 8LF
Eπ2

∞∑

n=1

(−1)n+1

(2n− 1)2
cos

(2n− 1)πct
2L

sin
(2n− 1)πx

2L

(b) y(x, t) = ψ(x) − 1
2

[ψ(x+ ct) + ψ(x− ct)], where ψ(x) = Fx/E

(c) y(L, t) =
FL

E
− ψ(L+ ct)

25. y(x, t) =
kL

2
+
c2Ft2

2EL
+

F

6EL
(3x2 − 6Lx+ 2L2)

−2L
π2

∞∑

n=1

1
n2

[
F

E
+ k[1 + (−1)n+1]

]
cos

nπct

L
cos

nπx

L

26. (a) y(x, t) = −4ωF0L
3

ρπ2c

∞∑

n=1

1
(2n− 1)2[(2n− 1)2π2c2 − ω2L2]

sin
(2n− 1)πct

L
sin

(2n− 1)πx
L

+
2F0

ρω2
ψ(x) sinωt where ψ(x) = sec

ωL

2c
sin

ωx

2c
sin

ω(L− x)
2c

(b) y(x, t) =
2F0L

m2π2ρc

(
L

mπc
sin

mπct

L
− t cos

mπct

L

)
sin

mπx

L

+
4L2F0

ρc2π3

∞∑

n=1
2n−1 6=m

1
(2n− 1)[(2n− 1)2 −m2]

[
sin

mπct

L
− m

2n− 1
sin

(2n− 1)πct
L

]
∗

sin
(2n− 1)πx

L

27. (a) y(x, t) =
8cLF0

Eπ

∞∑

n=1

(−1)n

(2n− 1)2π2c2 − 4ω2L2

[
2ωL

2n− 1
sin

(2n− 1)πct
2L

− cπ sinωt
]
∗

sin
(2n− 1)πx

2L

(b) y(x, t) =
2F0(−1)m+1

(2m− 1)πE

[
2L

(2m− 1)π
sin

(2m− 1)πct
2L

− ct cos
(2m− 1)πct

2L

]
∗

sin
(2m− 1)πx

2L
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+
8LF0

Eπ2

∞∑

n=1
n6=m

(−1)n

(2n− 1)2 − (2m− 1)2

[
2m− 1
2n− 1

sin
(2m− 1)πct

2L
− sin

(2n− 1)πct
2L

]
∗

sin
(2n− 1)πx

2L

28. (a) y(x, t) = 2πAc2
∞∑

n=1

n(−1)n

n2π2c2 − ω2L2

(
ωL

nπc
sin

nπct

L
− sinωt

)
sin

nπx

L

(b) y(x, t) =
A(−1)m

L

(
ct cos

mπct

L
− L

mπ
sin

mπct

L

)
sin

mπx

L

+
2A
π

∞∑

n=1
n6=m

n(−1)n

n2 −m2

(
m

n
sin

nπct

L
− sin

mπct

L

)
sin

nπx

L

29.ω = (2n− 1)πc/(2L) 30. y(x, t) =
F0

ρω2
(ωt− sinωt) 31. ω = (2n− 1)πc/(2L)

32.ω = nπc/L 33. ω = nπc/L 34.ω = (2n− 1)πc/(2L)
35.ω = nπc/L or φ = nπc/L. If ω = φ and A0 = B0, then ω = (2n− 1)πc/L. If ω = φ

and A0 = −B0, then ω = 2nπc/L.
36.ω = nπc/L or φ = nπc/L. If ω = φ and F0 = G0, then ω = 2nπc/L. If ω = φ

and F0 = −G0, then ω = (2n− 1)πc/L.

37. (b) y(x, t) = ψ(x) − 1
2
ψ(x+ ct)− 1

2
ψ(x− ct) , where ψ(x) =

gx(2L− x)
2c2

(c) Yes

38. (a) y(x, t) = f(x)− gk

AEc2

∞∑

n=1

1
Nλ4

n

cos cλntXn(x), f(x)=
g

2c2

(
−x2 + 2Lx+

2LAE
k

)
,

Xn(x) =
1

N cosλnL
cosλn(L− x), and 2N2 = L

[
1 +

(
k

AEλn

)2
]

+
k

AEλ2
n

(b) Yes

39. y(x, t) = 2Aπc2
∞∑

n=1

n(−1)n

{
e−βt/(2ρ)

[
−βωρL2

ρ2(n2π2c2 − ω2L2)2 + β2ω2L4
cosωnt

+
2ωρ2(n2π2c2 − ω2L2) − β2ωL2

2ωn[ρ2(n2π2c2 − ω2L2)2 + β2ω2L4]
sinωnt

]

+
ρ

ρ2(n2π2c2 − ω2L2)2 + β2ω2L4
[ρ(ω2L2 − n2π2c2) sinωt+ βωL2 cosωt]

}
sin

nπx

L

40. (a) y(x, t) = −4L2g

c2π3

∞∑

n=1

1
(2n− 1)3

[
1 − cos

(2n− 1)πct
L

]
sin

(2n− 1)πx
L

41. (a) y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] + ψ(x) − 1

2
[ψ(x+ ct) + ψ(x− ct)] , where

ψ(x) =
g

2c2
(x2 − Lx)

42. y(x, t) =
t2

2

(
c2F0

τL
− g

)
+ ψ(x) − 1

2
[ψ(x+ ct) + ψ(x− ct)], where ψ(x) =

F0x
2

2Lτ

43. y(x, t) =
2AL3

EIπ4

∞∑

n=1

(−1)n

(2n− 1)4

[
1 − cos

(2n− 1)2π2ct

L2

]
sin

(2n− 1)πx
L

45. (b) No 46. (b) No 47. (b) No

48. (a) V (x, y) = −4σL2

ε0π3

∞∑

n=1

sinh [(2n− 1)πy/L] + sinh [(2n− 1)π(L′ − y)/L]
(2n− 1)3 sinh [(2n− 1)πL′/L]

sin
(2n− 1)πx

L
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+
σx(L− x)

2ε0

V (x, y) = −4σL′2

ε0π3

∞∑

n=1

sinh [(2n− 1)πx/L′] + sinh [(2n− 1)π(L− x)/L′]
(2n− 1)3 sinh [(2n− 1)πL/L′]

sin
(2n− 1)πy

L′

+
σy(L′ − y)

2ε0

(b) V (x, y) =

√
2L3

ε0π2

∞∑

n=1

σ̃(λn)
n2

[
1 − sinh (nπy/L) + sinh [nπ(L′ − y)/L]

sinh (nπL′/L)

]
sin

nπx

L
, where

σ̃(λn) =
∫ L

0

σ(x)

√
2
L

sin
nπx

L
dx

(c) V (x, y) =
2L3

π3ε0

∞∑

n=1

(−1)n

n3

[
L′ sinh (nπy/L)
sinh (nπL′/L)

− y

]
sin

nπx

L

49. V (x, y) =

√
2
L′

∞∑

n=1

f̃(λn)
sinh (nπL/L′)

sinh
nπx

L′ sin
nπy

L′ +
σy(L′ − y)

2ε0

−4σL′2

ε0π3

∞∑

n=1

sinh [(2n− 1)πx/L′] + sinh [(2n− 1)π(L− x)/L′]
(2n− 1)3 sinh [(2n− 1)πL/L′]

sin
(2n− 1)πy

L′ ,

where f̃(λn) =
∫ L′

0

f(y)Yn(y) dy

50. V (x, y) =

√
2
L

∞∑

n=1

g̃(λn)
sinh (nπL′/L)

sinh
nπ(L′ − y)

L
sin

nπx

L
+
σx(L− x)

2ε0

−4σL2

ε0π3

∞∑

n=1

sinh [(2n− 1)πy/L] + sinh [(2n− 1)π(L′ − y)/L]
(2n− 1)3 sinh [(2n− 1)πL′/L]

sin
(2n− 1)πx

L
, where

g̃(λn) =
∫ L

0

g(x)

√
2
L

sin
nπx

L
dx

51. V (x, y) =
σx(L− x)

2ε0
− 4σL2

ε0π3

∞∑

n=1

sinh [(2n− 1)πy/L] + sinh [(2n− 1)π(L′ − y)/L]
(2n− 1)3 sinh [(2n− 1)πL′/L]

∗

sin
(2n− 1)πx

L

+
∞∑

n=1

bn sinh
nπ(L′ − y)

L
sin

nπx

L
+

∞∑

n=1

Cn sinh
nπ(L− x)

L′ sin
nπy

L′ , where

bn =
2

L sinh (nπL′/L)

∫ L

0

g(x) sin
nπx

L
dx, Cn =

2
L′ sinh (nπL/L′)

∫ L′

0

f(y) sin
nπy

L′ dy

52.U(x, y) =
C

2
(L2 − x2) +

16CL2

π3

∞∑

n=1

(−1)n cosh
(2n− 1)πy

2L

(2n− 1)3 cosh
(2n− 1)πL′

2L

cos
(2n− 1)πx

2L

54. (a) r2
d2Ũ

dr2
+ r

dŨ

dr
− λ2

nŨ = g(r)H ′
n(α) − f(r)H ′

n(0), Ũ ′(a, λn) = 0

(b) U(θ) = k1 + (k2 − k1)
θ

α

(c) U(r, θ) = 2a
∞∑

n=1

1
n2π2 − α2

[
nπ
(r
a

)
− α

(r
a

)nπ/α
]

sin
nπθ

α
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Exercises 7.3

1.U(x, y, t) =
2√
LL′

∞∑

m=1

∞∑

n=1

{
˜̃
f(λn, µm)e−kπ2(n2/L2+m2/L′2)t

+
A(λn, µm)

kπ2(n2/L2 +m2/L′2)
[1 − e−kπ2(n2/L2+m2/L′2)t]

}
sin

nπx

L
sin

mπy

L′ , where

˜̃
f(λn, µm) =

2√
LL′

∫ L′

0

∫ L

0

f(x, y) sin
nπx

L
sin

mπy

L′ dx dy,

A(λn, µm) =
2k√
L3L′3

{L′2n

m
[U1 + U2(−1)n+1][1 + (−1)m+1]

+
L2m

n
[U3 + U4(−1)m+1][1 + (−1)n+1]

}

2. (a) U(x, y, t) =
2

L′π3

∞∑

n=1

π2L′n2[U1 + U2(−1)n+1] − L2(κ−1
2 φ2 + κ−1

1 φ1)[1 + (−1)n+1]
n3

∗
[
1 − e−n2π2kt/L2

]
sin

nπx

L

+
8L2L′

π3

∞∑

m=1

∞∑

n=1

κ−1
2 φ2(−1)m+1 − κ−1

1 φ1

(2n− 1)[(2n− 1)2L′2 +m2L2]

[
1 − e−[(2n−1)2/L2+m2/L′2)π2kt

]
∗

sin
(2n− 1)πx

L
cos

mπy

L′

(b) U(x, t) = U1 +
(U2 − U1)x

L
− 2
π

∞∑

n=1

U1 + U2(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L

5. z(x, y, t) =
∞∑

m=1

∞∑

n=1

[
−g˜̃1nm

c2(λ2
n + µ2

m)
(1− cos c

√
λ2

n + µ2
mt) + ˜̃f(λn, µm) cos c

√
λ2

n + µ2
mt

]
∗

Xn(x)Ym(y),

where λn = nπ/L, µm = mπ/L′, Xn(x) =

√
2
L

sin
nπx

L
, Ym(y) =

√
2
L′ sin

mπy

L′ ,

˜̃1nm =
2
√
LL′[1 + (−1)n+1][1 + (−1)m+1]

mnπ2
,

˜̃
f(λn, µm) =

2√
LL′

∫ L′

0

∫ L

0

f(x, y)Xn(x)Ym(y) dx dy

6. z(x, y, t) =
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2m− 1)(2n− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}∗

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

7. z(x, y, t) =
4
√

2AL
ρπ3c

t sin
√

2πct
L

sin
πx

L
sin

πy

L

+
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}

∗

nm6=1

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

8. z(x, y, t) =
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}∗
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sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

9. z(x, y, t) =
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}∗

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

10. z(x, y, t) =
8AL

3
√

10ρπ3c
t sin

√
10πct
L

(
sin

πx

L
sin

3πy
L

+ sin
3πx
L

sin
πy

L

)

+
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}∗

(2n−1)(2m−1)6=3

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

11. z(x, y, t) =
8AL√

130ρπ3c
t sin

√
130πct
L

[
1
63

(
sin

7πx
L

sin
9πy
L

+ sin
9πx
L

sin
7πy
L

)

+
1
33

(
sin

3πx
L

sin
11πy
L

+ sin
11πx
L

sin
3πy
L

)]

+
16AL2

ρπ2

∞∑

m=1

∞∑

n=1

cosωt− cos [cπ
√

(2n− 1)2 + (2m− 1)2t/L]
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2]}∗

(2n−1)(2m−1)6=(7,9),(9,7),(3,11),(11,3)

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

Exercises 8.2

1.U(x, t) =
2
π

∫ ∞

0

e−kλ2t

λ3
[2(1− cosλL) − λL sin λL] sin λxdλ

2.U(x, t) =
2
π

∫ ∞

0

e−kλ2t

λ3
[2 sinλL− λL(1 + cosλL)] cosλxdλ

3.U(x, t) =
1√
aπ

∫ ∞

0

e−λ2[kt+1/(4a)] cosλxdλ

5. (a) U(x, t) =
1

2
√
kπt

∫ L

0

u(L− u)e−(u−x)2/(4kt)du

6. (a) U(x, t) =
1

2
√
kπt

∫ ∞

0

f(u)
[
e−(u−x)2/(4kt) − e−(u+x)2/(4kt)

]
du

7. (a) U(x, t) =
1

2
√
kπt

∫ ∞

0

f(u)
[
e−(u−x)2/(4kt) + e−(u+x)2/(4kt)

]
du (b) U0

9. (a) y(0, t) = f(ct) (b) y(x0, t) =
1
2
[f(x0 + ct) + f(x0 − ct)]

10. (a) y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] (b) y(x0, t) =

1
2
[f(x0 + ct) + f(x0 − ct)]

11. y(x, t) =
1
2c

∫ x+ct

x−ct

g(u) du

12. V (x, y) =
2
π

∫ ∞

0

cosλy
sinhλL

{∫ ∞

0

[f1(u) sinhλ(L− x) + f2(u) sinhλx] cosλu du
}
dλ

13. (b) V (x, y) =
2V0

π
Tan−1

[
sin (πx/L)
sinh (πy/L)

]
14.

2a
π

∫ ∞

0

cosλx
a2 + λ2

dλ
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15.
2
π

∫ ∞

0

1
λ

cos
λ(a+ b− 2x)

2
sin

λ(b− a)
2

dλ 16.
4b
πa

∫ ∞

0

1
λ2

sin2

(
λa

2

)
cosλxdλ

17.
4b
πa2

∫ ∞

0

1
λ3

(sinλa− aλ cos λa) cosλx dλ 18.
1
π

∫ ∞

0

(
a cosλx+ λ sinλx

a2 + λ2

)
dλ

19.
∫ ∞

0

e−λ2/(4k)

√
kπ

cosλx dλ

20.
2
π

∫ ∞

0

1
λ

(cosλa− cosλb) sinλx dλ,
2
π

∫ ∞

0

1
λ

(sinλb− sin λa) cosλxdλ; 0,0

21.
8b
πa

∫ ∞

0

1
λ2

sin2

(
λa

2

)
sinλc sin λxdλ,

8b
πa

∫ ∞

0

1
λ2

sin2

(
λa

2

)
cosλc cosλxdλ; 0,0

22.
1
π

∫ ∞

0

[
λ+ b

a2 + (b+ λ)2
+

λ− b

a2 + (b− λ)2

]
sinλx dλ,

a

π

∫ ∞

0

[
1

a2 + (b+ λ)2
+

1
a2 + (b− λ)2

]
cosλx dλ; 0,1

23.
a

π

∫ ∞

0

[
−1

a2 + (b+ λ)2
+

1
a2 + (b− λ)2

]
sinλx dλ,

1
π

∫ ∞

0

[
b+ λ

a2 + (b+ λ)2
+

b− λ

a2 + (b− λ)2

]
cosλx dλ; 0,0

24. (b) I =
√
π

k
e−λ2/(4k)

Exercises 8.3

4. (a) F{f (n)(x)} = (iω)nF{f(x)}, F−1{ωnf̃(ω)} = i−n dn

dxn
F−1{f̃(ω)}

5.FS{xf(x)} = − d

dω
FC{f(x)}, FS{x2f(x)} = − d2

dω2
FS{f(x)}

FC{xf(x)} =
d

dω
FS{f(x)}, FC{x2f(x)} = − d2

dω2
FC{f(x)}

9. (b) FC{f̃(x)} =
π

2
f(ω), FS{f̃(x)} =

π

2
f(ω)

10. (b) FC

{∫ x

0

f(u) du
}

= − 1
ω
FS{f(x)}, FS

{∫ x

0

f(u) du
}

=
1
ω
FC{f(x)}

11.
2a

ω2 + a2
12.

n!
(a+ iω)n+1

13.
2
ω
e−iω(a+b)/2 sin

ω(b− a)
2

14. π[h(ω+a)−h(ω−a)]

15.
4b
aω2

sin2
(aω

2

)
16.

4b
a2ω3

sin aω − 4b
aω2

cos aω

17. e−ω2/(4a)

∫ ω/(2a)

0

eax2
dx,

1
2

√
π

a
e−ω2/(4a)

18.
1
ω

(cos aω − cos bω),
1
ω

(sin bω − sin aω)

19.
4b
aω2

sin cω sin2
(aω

2

)
,

4b
aω2

cos cω sin2
(aω

2

)

23. (a)
ω(h+ al)

(a2 + ω2)
√
h2 + ω2l2

(b)
1

ω
√
h2 + ω2l2

[ωl(sinωb+ sinωa)− h(cosωa− cosωb]

24. (b)
2
ω
e−iω(a+b)/2 sin

ω(b− a)
2

,
n!

(a+ iω)n+1

(c)
1
ω

(cosaω − cos bω),
1
ω

(sin bω − sin aω);
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4b
aω2

sin cω sin2
(aω

2

)
,

4b
aω2

cos cω sin2
(aω

2

)

25. (a)(i)
{

(x2/2)e−8x, x > 0
0, x < 0

(ii)

{
b

a
(x− a)[h(x− a) − 1], x > 0

0, x < 0
(b) No

26. (b)(i) − L

ω2
(1 + eiωL) − 2i

ω3
(eiωL − 1) (ii)

eb(c−iω) − ea(c−iω)

c− iω

27. (b)(i)
4b
aω2

sin2
(aω

2

)
(ii)

2ia
a2 − ω2

sin
(

2πnω
a

)

Exercises 8.4

1. (a) U(x, t) =
1

2
√
kπt

∫ ∞

−∞
f(u)e−(x−u)2/(4kt) du

+
k

2πκ

∫ ∞

−∞

[∫ t

0

g̃(ω, u)e−kω2(t−u) du

]
eiωx dω

(b)(i) U(x, t) =
1
2

erf
(
x+ a

2
√
kt

)
− 1

2
erf
(
x− a

2
√
kt

)

(ii) U(x, t) = 1 − 1
2

erf
(
x+ a

2
√
kt

)
+

1
2

erf
(
x− a

2
√
kt

)

2. (a) Uerfc
(

x

2
√
kt

)
(b) No

3. (a) U(x, t) =
Q0

κ

[
−x erfc

(
x

2
√
kt

)
+ 2

√
kt

π
e−x2/(4kt)

]
(b)

(
2Q0

√
k

κ
√
π

)
√
t

4. (a) U(x, t) =
1

2
√
kπt

∫ ∞

0

f(u)
[
e−(x−u)2/(4kt) − e−(x+u)2/(4kt)

]
du

+
2
π

∫ ∞

0

sinωx
{∫ t

0

e−kω2(t−u)

[
kωf1(u) +

k

κ
g̃(ω, u)

]
du

}
dω

(b) U0erf
(

x

2
√
kt

)
(c) Uerfc

(
x

2
√
kt

)

5. (a) U(x, t) =
1

2
√
kπt

∫ ∞

0

f(u)
[
e−(x−u)2/(4kt) + e−(x+u)2/(4kt)

]
du

+
2k
κπ

∫ ∞

0

cosωx
{∫ t

0

e−kω2(t−u) [f1(u) + g̃(ω, u)] du
}
dω

(b) U0 (c)
Q0

κ

[
−x erfc

(
x

2
√
kt

)
+

2
√
kt√
π
e−x2/(4kt)

]

6.U(x, t) =
2
π

∫ ∞

0

Ũ (ω, t)Xω(x) dω, where Ũ(ω, t) =
µUmXω(0)

κω2
(1 − e−kω2t)

7.U(x, t) =
2
π

∫ ∞

0

Ũ (ω, t)Xω(x) dω, where

Ũ(ω, t) = f̃(ω)e−kω2t +
k

κ

∫ t

0

e−kω2(t−u) [g̃(ω, u) +Xω(0)f1(u)] du

8.U(x, t) =
∫ ∞

−∞
f(u)

1√
4kπt

e−(x−u+αt)2/(4kt)du

9. y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(v) dv +
c

τ
F1(t− x/c)h(t− x/c),
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where F1(t) =
∫ t

0

f1(u) du

10. y(x, t) =
1
2π

∫ ∞

−∞

[
f̃(ω) cos cωt+

g̃(ω)
cω

sin cωt
]
eiωxdω

y(x, t) =
1
2
[f(x+ ct) + f(x− ct)] +

1
2c

∫ x+ct

x−ct

g(u) du

11. y(x, t) =
1
2π

∫ ∞

−∞

[
f̃(ω) cos

√
k + c2ω2t+

g̃(ω)
cω

sin
√
k + c2ω2t

]
eiωxdω No

12. y(x, t)=
1
2π

∫ −β/(2c)

−∞
e−βt

[
f̃(ω) cos

√
4c2ω2 − β2t+

g̃(ω) + βf̃(ω)√
4c2ω2 − β2

sin
√

4c2ω2 − β2t

]
eiωxdω

+
1
2π

∫ β/(2c)

−β/(2c)

e−βt

[
f̃(ω) cosh

√
β2 − 4c2ω2t+

g̃(ω) + βf̃(ω)√
β2 − 4c2ω2

sinh
√
β2 − 4c2ω2t

]
eiωxdω

+
1
2π

∫ ∞

β/(2c)

e−βt

[
f̃(ω) cos

√
4c2ω2 − β2t+

g̃(ω) + βf̃(ω)√
4c2ω2 − β2

sin
√

4c2ω2 − β2t

]
eiωxdω

No d’Alembert solution

13. V (x, y) =
2
π

∫ ∞

0

[
f̃1(ω) sinhω(L− x)

sinhωL
+
f̃2(ω) sinhωx

sinhωL

]
sinωy dω

14.U(x, y) =
1
2π

∫ ∞

−∞

[
f̃(ω) sinhω(L′ − y)

sinhωL′ +
g̃(ω) sinhωy

sinhωL′

]
eiωx dω

15.U(x, t) =
1
2π

∫ ∞

−∞

[
g̃(ω) coshωy

coshωL′ − f̃(ω) sinhω(L′ − y)
ω coshωL′

]
eiωx dω

16. (a)(i) V (x, y) =
∞∑

n=1

Bne
−nπx/L′

√
2
L′ sin

nπy

L′ , where Bn =
∫ L′

0

f(y)

√
2
L′ sin

nπy

L′ dy

V (x, y) =
4k
π

∞∑

n=1

1
2n− 1

e−(2n−1)πx/L′
sin

(2n− 1)πy
L′

(ii) V (x, y) =
2
π

∫ ∞

0

g̃(ω)
sinhωL′ sinhωy sinωx dω

(iii) V (x, y) =
2
π

∫ ∞

0

g̃(ω)
sinhωL′ sinhω(L′ − y) sinωxdω

(iv) V (x, y) =
∞∑

n=1

[∫ L′

0

f(u)

√
2
L′ sin

nπy

L′ du

]
e−nπx/L′

√
2
L′ sin

nπy

L′

+
2
π

∫ ∞

0

g̃1(ω)
sinhωL′ sinhω(L′ − y) sinωx dω +

2
π

∫ ∞

0

g̃2(ω)
sinhωL′ sinhωy sinωxdω

(b)(i) V (x, y) =
2
π

∫ ∞

0

{
g̃1(ω) coshωy +

sinhωy
sinhωL′

[
g̃2(ω)− g̃1(ω) coshωL′

+
∫ L′

0

f(u) sinhω(L′ − u) du

]
−
∫ y

0

f(u) sinhω(y − u) du

}
sinωx dω

(ii) Fails

17. (a) U(x, y) =
4U0

π

∞∑

n=1

1
2n− 1

e−(2n−1)πx/(2L′) sin
(2n− 1)πy

2L′
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(b) U(x, y) =
8L′Q0

π2κ

∞∑

n=1

1
(2n− 1)2

[
1− 2 cos

(2n− 1)π
4

]
e−(2n−1)πx/(2L′) sin

(2n− 1)πy
2L′

(c) U(x, y) =
8µL′Um

π

∞∑

n=1

1
(2n− 1)[2µL′ + (2n− 1)πκ]

e−(2n−1)πx/(2L′) sin
(2n− 1)πy

2L′

18. (a) U(x, y) = U0 (b) U(x, y) =
B0√
L′

+
4L′Q0

π2κ

∞∑

n=1

(−1)n+1

(2n− 1)2
e−(2n−1)πx/L′

cos
(2n− 1)πy

L′

(c) U(x, y) = Um

19. Yes It is unbounded.

20. (a) U(x, y) =
∞∑

n=1

[
f̃(λn)e−λnx +

µUm sin λnL
′

Nκλ2
n

(1 − e−λnx)
]

1
N

sin λny, where

f̃(λn) =
∫ L′

0

f(y)
1
N

sinλny dy, 2N2 = L′ +
κ/µ

λ2
n + κ2/µ2

, cotλL′ = − κ

λµ

(b) U(x, y) = 2U0

∞∑

n=1

κ2 + µ2λ2
n

λn[κµ+ L′(µ2λ2
n + κ2)]

[
1 +

(−1)n+1κ√
µ2λ2

n + κ2

]
e−λnx sin λny

21. (a) U(x, y) =
∞∑

n=1

[
f̃(λn)e−λnx +

µUm cosλnL
′

Nκλ2
n

(1− e−λnx)
]

1
N

cosλny, where

f̃(λn) =
∫ L′

0

f(y)
1
N

cosλny dy, 2N2 = L′ +
κ/µ

λ2
n + κ2/µ2

, tanλL′ =
κ

λµ

(b) U(x, y) = 2lU0

∞∑

n=1

(−1)n+1
√
µ2λ2

n + κ2

L′(µ2λ2
n + κ2) + κµ

e−λnx cosλny

22. (a)(i) V (x, y) =
σx(L− x)

2ε
+
VLx

L
+

2L
π2

∞∑

n=1

{
−σL[1 + (−1)n+1]

n3πε
+

(−1)nπVL

nL

}
∗

e−nπy/L sin
nπx

L

(ii) −σx
2

2ε
+
(
VL

L
+
σL

2ε

)
x+

2
π

∞∑

n=1

{
(−1)nVL

n
− σL2[1 + (−1)n+1]

n3π2ε

}
e−nπy/L sin

nπx

L

(b) No

23. V (x, y) =
VLx

L
+
e−y

ε

[
sin (L− x) + sinx

sinL
− 1
]

+
2
π

∞∑

n=1

[
VL(−1)n

n
− L2[1 + (−1)n+1]

nε(n2π2 − L2)

]
e−nπy/L sin

nπx

L

24. (a) V (x, y) =
e−y

ε

[
sin (L− x) + sinx

sinL
− 1
]

−4L2

πε

∞∑

n=1

e−(2n−1)πy/L

(2n− 1)[(2n− 1)2π2 − L2]
sin

(2n− 1)πx
L

(b) V (x, y) =
2
πε

∫ ∞

0

1
ω(1 + ω2)

[
sinωL− sinωx− sinω(L− x)

sinωL

]
sinωx dω

25. (d) V (x, y) =
2
π

Tan−1

(
x

y

)

(e) V (x, y) =
y

π

∫ ∞

0

f(u)
[

1
(x− u)2 + y2

− 1
(x+ u)2 + y2

]
du

+
x

π

∫ ∞

0

g(u)
[

1
x2 + (y − u)2

− 1
x2 + (y + u)2

]
du
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26. (b) V (x, y) =
1
2

+
1
π

Tan−1

(
x

y

)
27. V (x, y) =

2
π

Tan−1

(
sin πy

L′

sinh πx
L′

)

Exercises 9.2

1. (a) 120 (b) 2.9812 (c) 7.3619 (d) −5.7386 (e) 0.6891 (f) −1.0276

Exercises 9.3

3. (a) 0.9604 (b) 0.6201 (c) 0.3688 (d) 0.0955 (e) 0.4448 (f) −0.2769 (g) 0.4333
(h) 0.1190

4. (a) 0.4448 (b) −0.2769 (c) 0.4333 (d) 0.1190

Exercises 9.4

2. (a) 2aν−1
∞∑

n=1

Jν(λνnr)
λνnJν+1(λνna)

(b) 2νaν
∞∑

n=1

Jν(λνnr)
[λ2

νna
2 − ν2]Jν(λνna)

3. When hl/ 6= 0,
2
a

∞∑

n=1

J1(λ0na)J0(λ0nr)

λ0n

[
1 +

(
h

λ0nl

)2
]

[J0(λ0na)]2
;

when l = 0,
2
a

∞∑

n=1

J0(λ0nr)
λ0nJ1(λ0na)

; when h = 0,
a√
2
R00(r)

Exercises 9.5

1. P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), P3(x) =

1
2
(5x3 − 3x),

P4(x) =
1
8
(35x4 − 30x2 + 3), P5(x) =

1
8
(63x5 − 70x3 + 15x),

P6(x) =
1
16

(231x6 − 315x4 + 105x2 − 5)

10. (b) Q2(x) =
(

3x2

2
− 1

2

)
Q0 −

3x
2

, Q3(x) =
(

5x3

2
− 3x

2

)
Q0 −

5x2

2
+

2
3

Q4(x) =
(

35x4

8
− 15x2

4
+

3
8

)
Q0 −

35x3

8
+

55x
24

(c) Q2(x) = P2(x)Q0(x)−
3x
2

, Q3(x) = P3(x)Q0(x)−
5x2

2
+

2
3

Q4(x) = P4(x)Q0(x)−
35x3

8
+

55x
24

Exercises 9.6

1.
1
2

+
∞∑

n=1

(−1)n−1(2n− 2)!(4n− 1)
22nn!(n− 1)!

P2n−1(cosφ)

2.

√
2

5

(
1√
2

)
+

4
√

10
35

[√
5
2
P2(cosφ)

]
+

8
√

2
105

[
3√
2
P4(cosφ)

]

3.
1
4

+
1
2

cosφ+
∞∑

n=1

(−1)n−1(2n− 2)!(4n+ 1)
22n+1(n− 1)!(n+ 1)!

P2n(cosφ)

4.
1
2

+
∞∑

n=1

(−1)n−1(4n+ 1)(2n− 2)!
22n(n− 1)!(n+ 1)!

P2n(cosφ)
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5. λn = 2n(2n− 1), n ≥ 1; Φn(φ) =
√

4n− 1P2n−1(cosφ)
6. λn = 2n(2n+ 1), n ≥ 0; Φn(φ) =

√
4n+ 1P2n(cosφ)

Exercises 10.1

1. (a) U(r, t) =
∞∑

n=1

Cne
−kλ2

nt

√
2J0(λnr)
aJ1(λna)

, where Cn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr

(b) U(r, t) =
2U0

a

∞∑

n=1

1
λnJ1(λna)

e−kλ2
ntJ0(λnr) (c) U(r, t) =

8
a

∞∑

n=1

1
λ3

n

e−kλ2
nt J0(λnr)
J1(λna)

2. (a) U(r, t) =
∞∑

n=0

Cne
−kλ2

nt

√
2J0(λnr)
aJ0(λna)

, where Cn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ0(λna)

dr

(b)
1
πa2

∫ π

−π

∫ a

0

rf(r) dr dθ

3.U(r, θ, t) =
∞∑

n=1

A0n
1√
2π
R0n(r)e−kλ2

0nt

+
∞∑

m=1

∞∑

n=1

Rmn(r)
(
Amn

cosmθ√
π

+Bmn
sinmθ√

π

)
e−kλ2

mnt,

where Rmn(r) =
√

2Jm(λmnr)
aJm+1(λmna)

, A0n =
∫ π

−π

∫ a

0

rf(r, θ)
R0n(r)√

2π
dr dθ,

Amn =
∫ π

−π

∫ a

0

rf(r, θ)Rmn(r)
cosmθ√

π
dr dθ, Bmn =

∫ π

−π

∫ a

0

rf(r, θ)Rmn(r)
sinmθ√

π
dr dθ

5.U(r, θ, t) =
∞∑

m=1

∞∑

n=1

Cmne
−kλ2

mntRmn(r)Hm(θ), where

Cmn =
∫ π/2

0

∫ a

0

rf(r, θ)Rmn(r)Hm(θ) dr dθ, Hm(θ) =
2√
π

sin 2mθ,

Rmn(r) =
√

2J2m(λmnr)
J2m+1(λmna)

6.U(r, θ, t) =
∞∑

m=0

∞∑

n=1

Cmne
−kλ2

mntRmn(r)Hm(θ), where

Cmn =
∫ π/2

0

∫ a

0

rf(r, θ)Rmn(r)Hm(θ) dr dθ, H0(θ) =

√
2
π

,

Hm(θ) =
2√
π

cos 2mθ, Rmn(r) =
√

2J2m(λmnr)
J2m+1(λmna)

7.U(r, θ, t) =
∞∑

m=1

∞∑

n=1

Cmne
−kλ2

mntRmn(r)Hm(θ), where

Cmn =
∫ π/2

0

∫ a

0

rf(r, θ)Rmn(r)Hm(θ) dr dθ,

Rmn(r) = Rmn(r) = N−1J2m(λmnr), 2N2 = a2

[
1 −

(
2m
λmna

)2
]

[J2m(λmna)]2

8.U(r, θ, t) =
∞∑

m=0

∞∑

n=0

Cmne
−kλ2

mntRmn(r)Hm(θ), where

Cmn =
∫ π/2

0

∫ a

0

rf(r, θ)Rmn(r)Hm(θ) dr dθ, H0(θ) =

√
2
π

,
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Hm(θ) =
2√
π

cos 2mθ, Rmn(r) = N−1J2m(λmnr),

2N2 = a2

[
1 −

(
2m
λmna

)2
]

[J2m(λmna)]2

9.U(r, θ, t) =
∞∑

m=1

∞∑

n=1

Cmne
−kλ2

mntRmn(r)Hm(θ), where Cmn =
2
√

2αŪ
(2m− 1)π

∫ 1

0

r2Rmn(r) dr,

Hm(θ) =

√
2
α

sin
(2m− 1)πθ

α
, Rmn(r) = N−1J(2m−1)π/α(λmnr),

2N2 =

[
1 −

(
(2m− 1)π
αλmn

)2
]
[
J(2m−1)π/α(λmn)

]2

10.U(r, t) =
∞∑

n=1

Cne
−kλ2

nt

√
2J0(λnr)
J1(λn)

, where Cn =
∫ 1

0

rf(r)
√

2J0(λnr)
J1(λn)

dr

11.U(r, θ, t) =
∞∑

n=1

C0ne
−kλ2

0nt 1√
α
R0n(r) +

∞∑

m=1

∞∑

n=1

Cmne
−kλ2

mnt

√
2
α

cos
mπθ

α
Rmn(r), where

C0n =
∫ α

0

∫ 1

0

f(r, θ)
r√
α
R0n(r) dr dθ,

Cmn =
∫ α

0

∫ 1

0

f(r, θ)

√
2
α

cos
mπθ

α
Rmn(r)r dr dθ,

H0(θ) =
1√
α
, Hm(θ) =

√
2
α

cos
mπθ

α
, Rmn(r) =

√
2Jmπ/α(λmnr)
Jmπ/α+1(λmn)

12.U(r, z, t) =
∞∑

m=1

∞∑

n=1

Cmne
−k(ν2

m+λ2
n)tRn(r)Zm(z), where

Cmn =
∫ L

0

∫ a

0

rf(r, z)Rn(r)Zm(z) dr dz,

Zm(z) =

√
2
L

cos
(2m− 1)πz

2L
, νm =

(2m− 1)π
2L

, Rn(r) =
√

2
a

J0(λnr)
J1(λna)

13. (a) U(r, t) =
∞∑

n=1

Cne
−kλ2

ntRn(r), where Cn =
∫ a

0

rf(r)Rn(r) dr,

Rn(r) =
1
N
J0(λnr),

1
N

=
√

2

a

[
1 +

(
h

λnl

)2
]1/2

J0(λna)

(b) U(r, t) =
2U0hl

a

∞∑

n=1

1
(h2 + l2λ2

n)
J0(λnr)
J0(λna)

e−kλ2
nt

14. (a) U(r, t) =
∞∑

n=1

Cne
−n2π2kt/a2

√
2
a
r−1 sin

nπr

a
, where Cn =

∫ a

0

r2f(r)

√
2
a
r−1 sin

nπr

a
dr

(b) U(r, t) =
2U0a

πr

∞∑

n=1

(−1)n+1

n
e−n2π2kt/a2

sin
nπr

a
(c) 0.318U0 (d) U0

15. (a) U(r, t) =
∞∑

n=0

Cne
−kλ2

ntRn(r), where Cn =
∫ a

0

r2f(r)Rn(r) dr,

R0(r) =
√

3
a3/2

, Rn(r) =

√
2
√

1 + λ2
na

2

λna3/2

sinλnr

r
,
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lim
t→∞

U(r, t) =
1

(4/3)πa3

∫ π

−π

∫ π

0

∫ a

0

f(r) r2 sinφdr dφ dθ (b) U0

16. (a) U(r, t) =
∞∑

n=1

Cne
−kλ2

ntRn(r), where Cn =
∫ a

0

r2f(r)Rn(r) dr,

Rn(r) =
1
Nr

sin λnr, N2 =
a

2

[
1 +

µa/κ− 1

λ2
na

2 +
(
1 − µa

κ

)2

]

(b) U(r, t) =
2U0µa

κr

∞∑

n=1

(−1)n+1
√
λ2

na
2 + (1 − µa/κ)2

λn

[
λ2

na
2 + µa

κ

(
µa
κ − 1

)] e−kλ2
nt sinλnr

17. (a) U(r, φ, t) =
∞∑

m=0

∞∑

n=1

Cmne
−kλ2

mntΦm(φ)Rmn(r), where

Cmn =
∫ a

0

∫ π

0

r2 sinφ f(r, φ)Φm(φ)Rmn(r) dφ dr,

Φm(φ) =

√
2m+ 1

2
Pm(cosφ), Rmn(r) =

√
2Jm+1/2(λmnr)

a
√
rJm+3/2(λmna)

18. (a) U(r, φ, t) =
∞∑

m=0

∞∑

n=0

Cmne
−kλ2

mntΦm(φ)Rmn(r), where

Cmn =
∫ a

0

∫ π

0

r2 sinφ f(r, φ)Φm(φ)Rmn(r) dφ dr, Φm(φ) =

√
2m+ 1

2
Pm(cosφ),

Rmn(r) =
1

N
√
r
Jm+1/2(λmnr),

2N2 = a2

[
1 −

(
m+ 1/2
λmna

)2

+
(

1
2λmna

)2
]

[Jm+1/2(λmna)]2

(b)
1

(4/3)πa3

∫ π

−π

∫ π

0

∫ a

0

f(r, φ)r2 sinφdr dφ dθ

20.U(r, z, t) =
4La2

π2

∞∑

m=1

1
(2m− 1)2

e−(2m−1)2π2kt/(4L2) cos
(2m− 1)πz

2L

−32L
π2

∞∑

n=1

∞∑

m=1

1
(2m− 1)2λ2

n

e−k[λ2
n+(2m−1)2π2/(4L2)]t J0(λnr)

J0(λna)
cos

(2m− 1)πz
2L

21. (a) An =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr (b) No nodal curves (c) Nodal curve r = 0.4356

(d) No, yes

22. z(r, θ, t) =
∞∑

m=1

∞∑

n=1

Amn cos cλmntHm(θ)Rmn(r), where

Amn =
∫ 2π

0

∫ a

0

f(r, θ)Hm(θ)Rmn(r)r dr dθ

Hm(θ) =
1√
π

sin
mθ

2
, Rmn(r) =

√
2Jm/2(λmnr)

aJm/2+1(λmna)

23. z(r, t) =
8
a

∞∑

n=1

J0(λnr)
λ3

nJ1(λna)
cos cλnt

24. z(r, t) = −2v0
ca

∞∑

n=1

J0(λnr)
λ2

nJ1(λna)
sin cλnt
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25. (b) r = 2.4048a/5.5201 (c) r = 2.4048a/8.6537, r = 5.5201a/8.6537 (e) y axis; x axis
(f) y axis and r = 3.8317a/7.0156; x axis and r = 3.8317a/7.0156
(g) y = ±x, r = 5.1356a/11.620, r = 8.4172a/11.620; x and y axes, r = 5.1356a/11.620,

r = 8.4172a/11.620

26. (b) y(x, t) =
1
L

∞∑

n=1

{
J0(αn

√
x/L) cos [αn

√
g/(4L)t]

[J1(αn)]2

∫ L

0

f(u)J0(αn

√
u/L) du

+
2
√
L/gJ0(αn

√
x/L) sin [αn

√
g/(4L)t]

αn[J1(αn)]2

∫ L

0

h(u)J0(αn

√
u/L) du

}
where J0(αn) = 0

27. (a)
1√
2π
R0n(r),

1√
π
Rmn(r) cosmθ,

1√
π
Rmn(r) sinmθ, where

Rmn(r) =
√

2Jm(λmnr)
aJm+1(λmna)

(b) z(r, θ, t) =
∞∑

n=1

A0n
R0n(r)√

2π
+

∞∑

m=1

∞∑

n=1

Rmn(r)
(
Amn

cosmθ√
π

+ Bmn
sinmθ√

π

)
cos cλmnt,

where A0n =
∫ π

−π

∫ a

0

f(r, θ)
R0n(r)√

2π
r dr dθ, Amn =

∫ π

−π

∫ a

0

f(r, θ)
Rmn(r)√

π
cosmθ r dr dθ,

Bmn =
∫ π

−π

∫ a

0

f(r, θ)
Rmn(r)√

π
sinmθ r dr dθ

28. (a) V (r, θ) =
A0J0(kr)√

2π
+

∞∑

n=1

Jn(kr)
(
An

cosnθ√
π

+ Bn
sinnθ√

π

)
, where

A0 =
1

J0(ka)

∫ π

−π

f(θ)√
2π

dθ, An =
1

Jn(ka)

∫ π

−π

f(θ)
cosnθ√

π
dθ,

Bn =
1

Jn(ka)

∫ π

−π

f(θ)
sinnθ√

π
dθ

(b) 1/J0(ka) times the average value (c) V (r, θ) =
J0(kr)
J0(ka)

29. V (r, z) =
∞∑

n=1

An sinhλnz

√
2J0(λnr)
aJ1(λna)

, where An =
√

2
aJ1(λna) sinh λnL

∫ a

0

rf(r)J0(λnr) dr

31. (a) U(r, z) = U(r, z) =
∞∑

n=1

Cn sinhλn(L− z)Rn(r), where

Cn =
1

sinhλnL

∫ a

0

rf(r)Rn(r) dr, Rn(r) =
1
N
J0(λnr),

1
N

=
√

2

a

[
1 +

(
µ

λnκ

)2
]1/2

J0(λna)

(b) U(r, z) =
2U0µκ

a

∞∑

n=1

1
(µ2 + λ2

nκ
2) sinhλnL

sinhλn(L− z)
J0(λnr)
J0(λna)

32.U(r, z) =
∞∑

n=1

Cne
−λnz

√
2J0(λnr)
aJ1(λna)

, where Cn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr

33.U(r, z) =
∞∑

n=1

Cne
−λnz

√
2J0(λnr)
aJ0(λna)

, where Cn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ0(λna)

dr
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34. V (r, φ) =
∞∑

n=0

Anr
n

√
2n+ 1

2
Pn(cosφ), where

An =
1
an

∫ π

0

f(φ) sinφ

√
2n+ 1

2
Pn(cosφ) dφ When f(φ) = k, V (r, φ) = k.

36. V (r, φ, θ) =
∞∑

n=0

1√
2π
A0nr

nΦ0n(φ) +
∞∑

m=1

∞∑

n=m

rnΦmn(φ)
(
Amn

cosmθ√
π

+ Bmn
sinmθ√

π

)
,

where Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ),

A0n =
1

nan−1

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ0n(φ) dφ dθ, n > 0,

Amn =
1

nan−1

∫ π

−π

∫ π

0

f(φ, θ)
cosmθ√

π
sinφΦmn(φ) dφ dθ,

Bmn =
1

nan−1

∫ π

−π

∫ π

0

f(φ, θ)
sinmθ√

π
sinφΦmn(φ) dφ dθ

37. V (r, φ, θ) =
∞∑

n=0

1√
2π
A0nr

nΦ0n(φ) +
∞∑

m=1

∞∑

n=m

rnΦmn(φ)
(
Amn

cosmθ√
π

+ Bmn
sinmθ√

π

)
,

where Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ),

A00 =
1
h

∫ π

−π

f(φ, θ)
1√
2π

sinφΦ00(φ) dφ,

A0n =
1

an−1(ln+ ha)

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ0n(φ) dφ dθ, n > 0,

Amn =
1

an−1(ln+ ha)

∫ π

−π

∫ π

0

f(φ, θ)
cosmθ√

π
sinφΦmn(φ) dφ dθ,

Bmn =
1

an−1(ln+ ha)

∫ π

−π

∫ π

0

f(φ, θ)
sinmθ√

π
sinφΦmn(φ) dφ dθ

38.U(r, φ) =
∞∑

n=1

Anr
2n−1

√
4n− 1P2n−1(cosφ), where

An =
1

a2n−1

∫ π/2

0

f(φ) sinφ
√

4n− 1P2n−1(cosφ) dφ

When f(φ) = k, U(r, φ) = k

∞∑

n=1

(−1)n−1(4n− 1)(2n− 2)!
22n−1n!(n− 1)!

( r
a

)2n−1

P2n−1(cosφ)

39.U(r, φ) =
∞∑

n=1

Anr
2n
√

4n+ 1P2n(cosφ), where

An =
1
a2n

∫ π/2

0

f(φ) sinφ
√

4n+ 1P2n(cosφ) dφ When f(φ) = k, U(r, φ) = k

40.U(r, φ) =
∞∑

n=1

An

r2n

√
4n− 1P2n−1(cosφ), where

An = a2n

∫ π/2

0

f(φ) sinφ
√

4n− 1P2n−1(cosφ) dφ

41. V (r, φ) = V0

[
1
2

+
∞∑

n=1

(−1)n−1(4n− 1)(2n− 2)!
22nn! (n− 1)!

( r
a

)2n−1

P2n−1(cosφ)

]
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42. V (r, φ) =
1
2
(V0 + V1) + (V0 − V1)

∞∑

n=1

(−1)n−1(4n− 1)(2n− 2)!
22nn! (n− 1)!

( r
a

)2n−1

P2n−1(cosφ)

45. (a) V0 (b) aV0/r

46. V (r, φ, θ) =
∞∑

n=0

1√
2π

A0n

rn+1
Φ0n(φ) +

∞∑

m=1

∞∑

n=m

1
rn+1

Φmn(φ)
(
Amn

cosmθ√
π

+Bmn
sinmθ√

π

)
,

where Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ),

A0n =
an+2

n+ 1

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ0n(φ) dφ dθ,

Amn =
an+2

n+ 1

∫ π

−π

∫ π

0

f(φ, θ)
cosmθ√

π
sinφΦmn(φ) dφ dθ,

Bmn =
an+2

n+ 1

∫ π

−π

∫ π

0

f(φ, θ)
sinmθ√

π
sinφΦmn(φ) dφ dθ

47. V (r, φ, θ) =
∞∑

n=0

1√
2π

A0n

rn+1
Φ0n(φ) +

∞∑

m=1

∞∑

n=m

1
rn+1

Φmn(φ)
(
Amn

cosmθ√
π

+Bmn
sinmθ√

π

)
,

where Φmn(φ) =

√
(2n+ 1)(n−m)!

2(n+m)!
Pmn(cosφ),

A00 =
a

h

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ00(φ) dφ dθ,

A0n =
an+2

l(n+ 1) + ha

∫ π

−π

∫ π

0

f(φ, θ)
1√
2π

sinφΦ0n(φ) dφ dθ,

Amn =
an+2

l(n+ 1) + ha

∫ π

−π

∫ π

0

f(φ, θ)
cosmθ√

π
sinφΦmn(φ) dφ dθ,

Bmn =
an+2

l(n+ 1) + ha

∫ π

−π

∫ π

0

f(φ, θ)
sinmθ√

π
sinφΦmn(φ) dφ dθ

48. (c) U(r, z) =
∞∑

n=1

AnI0(λnr)Zn(z), where An =
1

I0(λna)

∫ L

0

f(z)Zn(z) dz

(d)
4U0

π

∞∑

n=1

1
2n− 1

I0[(2n− 1)πr/L]
I0[(2n− 1)πa/L]

sin
(2n− 1)πz

L

49.U(r, z) =
∞∑

n=0

AnI0(λnr)Zn(z), where An =
1

I0(λna)

∫ L

0

f(z)Zn(z) dz

When f(z) = U0, U(r, z) = U0.

50. (b) V (r, 0) =
∞∑

n=0

(
Anr

n +
Bn

rn+1

)√
2n+ 1

2

(c) For r < a, V (r, φ) =
Q

4πε0a

∞∑

n=0

(−1)n(2n)!
22n(n!)2

( r
a

)2n

P2n(cosφ)

For r > a, V (r, φ) =
Q

4πε0r

∞∑

n=0

(−1)n(2n)!
22n(n!)2

(a
r

)2n

P2n(cosφ)

51. For r < a, V (r, φ) =
Q

2πε0a

[
1 −

( r
a

)
cosφ+

∞∑

n=1

(−1)n+1(2n− 2)!
22n−1n! (n− 1)!

( r
a

)2n

P2n(cosφ)

]
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For r > a, V (r, φ) =
Q

4πε0a

∞∑

n=0

(−1)n(2n)!
22nn! (n+ 1)!

(a
r

)2n+1

P2n(cosφ)

Exercises 10.2

1.U(r, t) =
2k
a

∞∑

n=1

Anλne
−kλ2

nt J0(λnr)
J1(λna)

, where An =
∫ t

0

f(u)ekλ2
nu du

2. (a) U(r, t) =
2k
κa

∞∑

n=0

Ane
−kλ2

nt J0(λnr)
J0(λna)

, where An =
∫ t

0

f1(u)ekλ2
nu du

(b) U(t, r) =
Q

4κa
(2r2 − a2 + 8kt)− 2Q

κa

∞∑

n=1

e−kλ2
nt

λ2
n

J0(λnr)
J0(λna)

(c) No

3. (a) U(r, t) =
√

2
a

∞∑

n=1

[
f̃(λn)e−kλ2

nt +
k

κ

∫ t

0

g̃(λn, u)e−kλ2
n(t−u) du

]
J0(λnr)
J1(λna)

, where

f̃(λn) =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr, g̃(λn, t) =
∫ a

0

rg(r, t)
√

2J0(λnr)
aJ1(λna)

dr

(b) U(r, t) =
2g
κa

∞∑

n=1

1 − e−kλ2
nt

λ3
n

J0(λnr)
J1(λna)

4. (a)
√

2
a

∞∑

n=0

[
f̃(λn)e−kλ2

nt +
k

κ

∫ t

0

g̃(λn, u)e−kλ2
n(t−u) du

]
J0(λnr)
J0(λna)

, where

f̃(λn) =
∫ a

0

rf(r)
√

2J0(λnr)
aJ0(λna)

dr, g̃(λn, t) =
∫ a

0

rg(r, t)
√

2J0(λnr)
aJ0(λna)

dr

(b) U(r, t) =
kgt

κ

5. (b) U(r, t) =
2µ
a

∞∑

n=1

(
g + κUmλ

2
n

µ2 + κ2λ2
n

)
1 − e−kλ2

nt

λ2
n

J0(λnr)
J0(λna)

6. (a) U(r, t) =

√
2/a
r

∞∑

n=1

{
f̃(λn)e−kλ2

nt + k

∫ t

0

[
g̃(λn, u)

κ
− a2f1(u)R′

n(a)
]
e−kλ2

n(t−u) du

}
∗

sin
nπr

a
,

where Rn(r) =

√
2
a
r−1 sinλnr, f̃(λn) =

∫ a

0

r2f(r)Rn(r) dr,

g̃(λn, t) =
∫ a

0

r2g(r, t)Rn(r) dr

(b) U(r, t) =
2a3g

π3κr

∞∑

n=1

(−1)n+1

n3
(1 − e−n2π2kt/a2

) sin
nπr

a

(c) U(r, t) =
g

6κ
(a2 − r2) +

2a3g

π3κr

∞∑

n=1

(−1)n

n3
e−n2π2kt/a2

sin
nπr

a

(d) U(r, t) =
2af1
πr

∞∑

n=1

(−1)n+1

n
(1 − e−n2π2kt/a2

) sin
nπr

a

(e) U(r, t) = f1

[
1 +

2a
πr

∞∑

n=1

(−1)n

n
e−n2π2kt/a2

sin
nπr

a

]
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7. (a) U(r, t) =
∞∑

n=0

[
f̃(λn)e−kλ2

nt +
k

κ

∫ t

0

[g̃(λn, u) + a2Rn(a)f1(u)]e−kλ2
n(t−u) du

]
Rn(r),

where R0(r) =
√

3
a3/2

, Rn(r) =
1
rN

sinλnr,
1
N

=

√
2 + 2λ2

na
2

λna3/2
,

f̃(λn) =
∫ a

0

r2f(r)Rn(r) dr, g̃(λn, t) =
∫ a

0

r2g(r, t)Rn(r) dr

(b) U(r, t) =
3kf1t
κa

+
f1

10κa
(5r2 − 3a2) +

2f1
κar

∞∑

n=1

(−1)n+1

λ3
n

√
1 + λ2

na
2e−kλ2

nt sinλnr

(c) Yes

8.U(r, z, t) =
∞∑

m=1

∞∑

n=1

{∫ t

0

k

[
−f1(u)Z ′

m(L)
√

2
λn

− af2(u)R′
n(a)

√
2/L(−1)m+1

µm

]
∗

ek(λ2
n+µ2

m)(u−t)du+ Cmne
−k(λ2

n+µ2
m)t

}
Rn(r)Zm(z), where Rn(r) =

√
2J0(λnr)
aJ1(λna)

Cmn =
∫ a

0

∫ L

0

f(r, z)Rn(r)Zm(z) dz dr, Zm(z) =

√
2
L

cos
(2m− 1)πz

2L
,

9.U(r, φ, t) =
∞∑

m=1

∞∑

n=1

[
−ka2

√
4m− 1(−1)m−1(2m− 2)!

22m−1m! (m− 1)!
R′

mn(a)
∫ t

0

f1(u)ekλ2
mn(u−t)du

]
∗

Rmn(r)Φm(φ),

where Φm(φ) =
√

4m− 1P2m−1(cosφ), Rmn(r) =
1

N
√
r
J(4m−1)/2(λmnr),

2N2 = a2[J(4m+1)/2(λmna)]2

10.U(r, θ, t) = −2 sin θ
a

∞∑

n=1

1 − e−kλ2
nt

λn

J1(λnr)
J0(λna)

11. (a)
1
2π

∞∑

n=1

[
˜̃
f(λ0n, 0)e−kλ2

0nt +
2πaUR′

0n(a)
λ2

0n

(e−kλ2
0nt − 1)

]
R0n(r)

+
1
2π

∞∑

m=1

∞∑

n=1

Re
[
˜̃
f(λmn,m)eimθ

]
e−kλ2

mntRmn(r), where

˜̃
f(λmn,m) =

∫ π

−π

∫ a

0

f(r, θ)e−imθRmn(r) dr dθ, Rmn(r) =
√

2Jm(λmnr)
aJm+1(λmna)

,

(b) Yes

12. (a)
1
2π

∞∑

n=0

[
˜̃f(λ0n, 0)e−kλ2

0nt +
2πakR0n(a)

κ

∫ t

0

f1(u)e−kλ2
0n(u−t) du

]
R0n(r)

+
1
π

∞∑

m=1

∞∑

n=1

Re
[
˜̃
f(λmn,m)eimθ

]
e−kλ2

mntRmn(r), where

˜̃f(λmn,m) =
∫ π

−π

∫ a

0

f(r, θ)e−imθRmn(r) dr dθ, Rmn(r) = N−1Jm(λmnr),

2N2 = a2

[
1 −

(
m

λmna

)2
]

[Jm(λmna)]2

(b) U(r, θ, t) =
Q

4κa
(2r2 − a2 + 8kt)− 2Q

κa

∞∑

n=1

e−kλ2
0nt

λ2
0n

J0(λ0nr)
J0(λ0na)
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+
1
2π

∞∑

n=1

˜̃
f(λ0n, 0)e−kλ2

0ntR0n(r) +
1
π

∞∑

m=1

∞∑

n=1

Re [˜̃f(λmn,m)eimθ]e−kλ2
mntRmn(r)

13.U(r, θ, t) =
1
2π

∞∑

n=1

[
˜̃
f(λ0n, 0)e−kλ2

0nt +
2πaµUeR0n(a)

κλ2
0n

(1− e−kλ2
0nt)

]
R0n(r)

+
1
π

∞∑

m=1

∞∑

n=1

Re
[˜̃
f(λmn,m)eimθ

]
e−kλ2

mntRmn(r), where

˜̃f(λmn,m) =
∫ π

−π

∫ a

0

f(r, θ)e−imθRmn(r) dr dθ, Rmn(r) =
1
N
Jm(λmnr),

2N2 = a2

[
1 −

(
m

λmna

)2

+
(

µ

λmnκ

)2
]

[Jm(λmna)]2

14.U(r, t) = Uo +
2(Ui − Uo)r1

r22

∞∑

n=1

J1(λnr1)
λn[J1(λnr2)]2

e−kλ2
ntJ0(λnr)

15. (a) U(r, t) =
√

2
r2 − r1

1
r

∞∑

n=1

{
f̃(λn)e−kλ2

nt + k

∫ t

0

[
g̃(λn, u)

κ
+ [r21f1(u)R

′
n(r1)

−r22f2(u)R′
n(r2)]

]
e−kλ2

n(t−u) du

}
sin

nπ(r − r1)
r2 − r1

,

where f̃(λn) =
∫ r2

r1

r2f(r)Rn(r) dr, g̃(λn, t) =
∫ r2

r1

r2g(r, t)Rn(r) dr

Rn(r) =
√

2
r2 − r1

1
r

sinλn(r − r1)

(b) U(r, t) =
2(r2 − r1)2g

π3κr

∞∑

n=1

[r1 + (−1)n+1r2]
n3

[1 − e−n2π2kt/(r2−r1)
2
] sin

nπ(r − r1)
r2 − r1

(c) U(r, t) =
g

6κ

[
r21 + r1r2 + r22) −

r1r2(r1 + r2)
r

− r2
]

−2(r2 − r1)2g
π3κr

∞∑

n=1

[r1 + (−1)n+1r2]
n3

e−n2π2kt/(r2−r1)
2
sin

nπ(r − r1)
r2 − r1

(d) U(r, t) =
2
πr

∞∑

n=1

[r1f1 + (−1)n+1r2f2]
n

[1 − e−n2π2kt/(r2−r1)
2
] sin

nπ(r − r1)
r2 − r1

(e) U(r, t) =
r1r2(f1 − f2)

(r2 − r1)r
+
r2f2 − r1f1
r2 − r1

− 2
πr

∞∑

n=1

[r1f1 + (−1)n+1r2f2]
n

e−n2π2kt/(r2−r1)
2
sin

nπ(r − r1)
r2 − r1

16. (a) U(r, t) =
∞∑

n=1

{
f̃(λn)e−kλ2

nt + k

∫ t

0

[
g̃(λn, u)

κ
+ [κ−1r21Rn(r1)Q(u)

−r22f2(u)R′
n(r2)]

]
e−kλ2

n(t−u) du

}
1
Nr

sinλn(r2 − r), where

f̃(λn) =
∫ r2

r1

r2f(r)Rn(r) dr, Rn(r) =
1
Nr

sinλn(r2 − r),

2N2 = r2 − r1 +
r1

1 + λ2
nr

2
1

(b) U(r, t) =
r21Q

κ

(
1
r
− 1
r2

)
+

2r21Q
κr

∞∑

n=1

(−1)n
√

1 + λ2
nr

2
1

λn[r2 + (r2 − r1)r21λ2
n]
e−kλ2

nt sinλn(r2 − r)
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17. z(r, t) =
F

4ρc2
(a2 − r2) +

∞∑

n=1

Bn cos cλnt

√
2J0(λnr)
aJ1(λna)

− 2F
ρc2a

∞∑

n=1

J0(λnr) cos cλnt

λ3
nJ1(λna)

,

where Bn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr

18. z(r, t) =
k

16ρc2
(a4 − r4) +

∞∑

n=1

Bn cos cλnt

√
2J0(λnr)
aJ1(λna)

+
2k
ρc2a

∞∑

n=1

(λ2
na

2 − 1)J0(λnr) cos cλnt

λ5
nJ1(λna)

,

where Bn =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr

19. z(r, t) =
g

4c2
(r2 − a2) − 2v0

ca

∞∑

n=1

J0(λnr) sin cλnt

λ2
nJ1(λna)

20. (a) z(r, θ, t) =
1
2π

∞∑

m=−∞

∞∑

n=1

{[
˜̃
f(λmn,m) +

af̃1(m)R′
mn(a)

λ2
mn

]
cos cλmnt

−af̃1(m)R′
mn(a)

λ2
mn

}
eimθRmn(r), where f̃1(m) =

∫ π

−π

f1(θ)e−imθdθ,

˜̃
f(λmn,m) =

∫ π

−π

∫ a

0

f(r, θ)e−imθRmn(r) r dr dθ,
√

2Jm(λmnr)
aJm+1(λmna)

(b) z(r, t) =
∞∑

n=1

[(
f̃(λn) +

af1R
′
n(a)

λ2
n

)
cos cλnt−

af1R
′
n(a)

λ2
n

]
Rn(r), where

Rn(r) =
√

2J0(λnr)
aJ1(λna)

(c) z(r, t) = f1 +
∞∑

n=1

[
an −

√
2f1
λn

]
cos cλnt

√
2J0(λnr)
aJ1(λna)

, where an =
∫ a

0

rf(r)
√

2J0(λnr)
aJ1(λna)

dr

21. y(x, t) =
∞∑

n=1

[
f̃(λn) cosλnt+

h̃(λn)
λn

sinλnt+
1
ρ

∫ t

0

F̃ (λn, u) sin λn(t− u) du

]
Zn(

√
4x/g),

where Zn(z) =
√

2J0(λnz)
MJ1(λnM)

, f̃(λn) =
∫ M

0

zf(z)Zn(z) dz,

F̃ (λn, t) =
∫ M

0

zF (z, t)Zn(z) dz

22. z(r, t) =
−2Ac
a

∞∑

n=1

cλn sinωt− ω sin cλnt

(ω2 − c2λ2
n)J1(λna)

J0(λnr) When ω = cλm,

z(r, t) =
A(sin cλmt− cλmt cos cλmt)

aλmJ1(λma)
J0(λmr)

−2A
a

∞∑

n=1
n6=m

λn sin cλmt− λm sin cλnt

(λ2
m − λ2

n)J1(λna)
J0(λnr)

23. (a) z(r, t) =
2F0

ρca

∞∑

n=1

1
λ2

n(c2λ2
n − ω2)

(cλn sinωt− ω sin cλnt)
J0(λnr)
J1(λna)

(b) z(r, t) =
F0J0(λmr)

ρac2λ3
mJ1(λma)

(sin cλmt− cλmt cos cλmt)
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+
2F0

ρc2a

∞∑

n=1
n6=m

1
λ2

n(λ2
n − λ2

m)
(λn sin cλmt− λm sin cλnt)

J0(λnr)
J1(λna)

24. z(r, θ, t) =
1
2π

[
˜̃
f(λ0k, 0) cos cλ0kt−

πaAR′
0k(a)

λ2
0k

sin cλ0kt+
πcaAR′

0k(a)
λ0k

t cos cλ0kt

]
R0k(r)

+
1
2π

∞∑

n=1
n6=k

[
˜̃
f(λ0n, 0) cos cλ0nt+

2πAaR′
0n(a)

λ0n(λ2
0k − λ2

0n)
(λ0n sin cλ0kt− λ0k sin cλ0nt)

]
R0n(r)

+
1
π

∞∑

m=1

∞∑

n=1

Re[˜̃f(λmn,m)eimθ] cos cλmntRmn(r)

25. Yes

26. V (r, θ) =
4σβ2

πε

∞∑

n=1

r2

(2n− 1)[(2n− 1)2π2 − 4β2]

[
1 −

( r
a

)(2n−1)π/β−2
]

sin
(2n− 1)πθ

β

(a) V (r, θ) =
σr2

επ
ln
(a
r

)
sin 2θ

+
σ

επ

∞∑

n=2

r2

(2n− 1)[(2n− 1)2 − 1]

[
1 −

( r
a

)4n−4
]

sin 2(2n− 1)θ

(b) V (r, θ) =
4σ
πε

∞∑

n=1

r2

(2n− 1)[(2n− 1)2 − 4]

[
1 −

( r
a

)2n−3
]

sin (2n− 1)θ

(c) V (r, θ) =
9σr2

8επ

[(a
r

)4/3

− 1
]

sin
2θ
3

+
σr2

3πε
ln
(a
r

)
sin 2θ

+
9σ
πε

∞∑

n=3

r2

(2n− 1)[(2n− 1)2 − 9]

[
1 −

( r
a

)4(n−2)/3
]

sin
2(2n− 1)θ

3

27. V (r, φ) =
1
2π

∫ π

−π

f(θ) dθ+
k(an+2 − rn+2)

ε(n+ 2)2
+

1
π

∞∑

m=1

( r
a

)m
∫ π

−π

f(u) cosm(θ − u) du

28. V (r, φ) =
∞∑

n=1

{[
V11̃n − (σ/ε)1̃na

2

2(2n2 − n+ 1)
+
V2Φ′

n(π/2)
2n(2n− 1)

]( r
a

)2n−1

+
(σ/ε)1̃nr

2

2(2n2 − n+ 1)

−V2Φ′
n(π/2)

2n(2n− 1)

}
Φn(φ), where 1̃n =

√
4n− 1(−1)n−1(2n− 2)!

22n−1 n! (n− 1)!
,

Φn(φ) =
√

4n− 3P2n−1(cosφ)
29. (a) ∂2U

∂r2
+

1
r

∂U

∂r
+

1
r2
∂2U

∂θ2
= − g

κ
, 0 < r < a, 0 < θ < β,

Ur(a, θ) = −Q/κ, 0 < θ < β,

Uθ(r, 0) = qr/κ, 0 < r < a,

Uθ(r, β) = 0, 0 < r < a.

gaβ = 2q + 2βQ

(b) U(r, θ) =
A0√
β
− gr2

4κ
+
qr cos (β − θ)

κ sinβ
+

2qβ2a

κπ

∞∑

n=1

(r/a)nπ/β

n(n2π2 − β2)
cos

nπθ

β

30. (a) U(r, z) =
∞∑

n=1

{[
f̃(λn) − g̃(λn)

κλ2
n

]
I0(λnr)
I0(λna)

+
g̃(λn)
κλ2

n

}√
2
L

sin
nπz

L
,

where f̃(λn) =
∫ L

0

f(z)

√
2
L

sin
nπz

L
dz, g̃(λn) =

∫ L

0

g(z)

√
2
L

sin
nπz

L
dz
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(b) U(r, z) =
Gz(L− z)

2κ

+
4
π

∞∑

n=1

[
U0

2n− 1
− L2G

(2n− 1)3π2κ

]
I0[(2n− 1)πr/L]
I0[(2n− 1)πa/L]

sin
(2n− 1)πz

L

Exercises 10.3

1.U(r, t) =
ag

κ

∫ ∞

0

1
λ2

(
1 − e−kλ2t

)
J1(λa)J0(λr) dλ

2.U(r, θ, t) = U − 4U
α

∞∑

n=1

[∫ ∞

0

1
λ
e−kλ2tJ(2n−1)π/α(λr) dλ

]
sin

(2n− 1)πθ
α

3. (a) z(r, t) =
∫ ∞

0

λf̃(λ) cos cλtJ0(λr) dλ 4. z(r, t) =
1
c

∫ ∞

0

f̃(λ) sin cλtJ0(λr) dλ

5.U(r, z) =
aQ

κ

∫ ∞

0

1
λ
e−λzJ1(λa)J0(λr) dλ 6.U(r, z) = aU

∫ ∞

0

e−λzJ1(λa)J0(λr) dλ

7.U(r, z) =
2U
π

∫ ∞

0

1
λ
e−λzJ0(λr) sinλa dλ 8.U(r, z) =

2U
π

∫ ∞

0

1
λ
e−λ|z|J0(λr) sinλa dλ

Exercises 11.1

1. (b)(i)
6

(s+ 5)4
(ii)

s+ 1
(s+ 1)2 + 4

+
2

(s− 3)2 + 4
(iii)

s− a

(s− a)2 − 16
− 4

(s+ a)2 − 16

(c)(i)
1
2
et sin 2t (ii)

1√
πt
e−3t (c) e−2t

(
cosh

√
3t− 2√

3
sinh

√
3t
)

2. (b)(i) e−3s

(
1
s2

+
1
s

)
(ii)

e−as

s
(iii)

1
s

(
1 − e−as

)
(iv)

1
s

(
e−as − e−bs

)

(c)(i) (t− 2)h(t− 2) (ii) sin (t− 3)h(t− 3) (iii) cosh
√

2(t− 5)h(t− 5)

3. (b)(i)
1

1− e−as

[
1
s2

− e−as

(
1
s2

+
a

s

)]
(ii)

1 − e−as

s(1 + e−as)
(iii)

a
(
1 + e−πs/a

)

(s2 + a2)
(
1− e−πs/a

)

5. 1 − e−t 6.
1
6
(− sin 2t+ 2 sin t) 7.−2

7
e−4t +

2
7

cosh
√

2t−
√

2
14

sinh
√

2t

8.
1
5
(cosh3t− cosh 2t) 9.

2
s2

− e−s

(
1
s

+
1
s2

)
10. e−s

(
1
s
− 2
s3

)
+

2
s3

11.
1 − e−as

s2(1 + e−as)
12.

1
s(1 + e−as)

13.
e−as

s
14.

(1 − e−s)e−as

s
15. 2e2t − et

16.−1 + e−t − e−t/2 + et/2 17. e−5(t−3)h(t− 3) 18. [−e−2(t−2) + e−(t−2)]h(t− 2)

19.
1
3
e−t +

1
3
et/2

(
− cos

√
3t
2

+
√

3 sin
√

3t
2

)
20.

1
3
e−2t/3

(
5 cos

2
√

5t
3

− 8
√

5
5

sin
2
√

5t
3

)

21. [1 − cos (t− 1)]h(t− 1)− [1 − cos (t− 2)]h(t− 2) 22. e−t

(
t3

6
− t4

24

)

23.
1
3
e−t(sin t+ sin 2t) 24.

1
4
(sinh 2t+ 2t cosh 2t)

25. y(t) =
1
2
et +

1
2
e−t

(
cosh

√
2t+

4√
2

sinh
√

2t
)

26. y(t) = e−t − cos t+ sin t

27. y(t) = −2 + t+ 2e−t + 2te−t 28. y(t) =
t5

60
et + et − tet − t2

2
et

29. y(t) =
1
5

cos 2t+
4
5

cos 3t+
4
5

sin 3t 30. y(t) =
(
t5

60
+ C1 + C2t+ C4t

2

)
et
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31. y(t) =
1
a

∫ t

0

f(u) sinh a(t− u) du+A cosh at+
B

a
sinh at

34. (b) L{f ′(t)} = sf̃(s) − f(0+)

Exercises 11.2

3. (a) U(x, t) = U0

[
1 − erfc

(
x

2
√
kt

)]
+

x

2
√
kπ

∫ t

0

f1(t− u)u−3/2e−x2/(4ku) du

(b) U0 + (U − U0)erfc
(

x

2
√
kt

)

4. (a) U(x, t) = U0 +

√
k

κ

∫ t

0

f1(t− u)
1√
πu

e−x2/(4ku) du

(b) U0 +
Q0

κ

[
2

√
kt

π
e−x2/(4kt) − x erfc

(
x

2
√
kt

)]

5. (a) U(x, t) =
µ

κ

∫ t

0

f1(t− u)

[√
k

πu
e−x2/(4ku) − µk

κ
eµx/κ+µ2ku/κ2

erfc

(
x

2
√
ku

+
µ
√
ku

κ

)]
du

(b) U(x, t) = Um

[
erfc

(
x

2
√
kt

)
− eµx/κ+kµ2t/κ2

erfc

(
x

2
√
kt

+
µ
√
kt

κ

)]

6. (c) U(x, t) =
U0

2

[
1 + erf

(
x

2
√
kt

)]

8. y(x, t) = f1(t− x/c)h(t− x/c)

9. y(x, t) =
c

τ
F1(t− x/c)h(t− x/c), where F1(t) =

∫ t

0

f1(u) du

Exercises 11.3

1.
t

2
(t+ 2)et 2.

t

4
sin 2t 3.

3t− 1
9

+
1
9
e−3t

4.− 1
256

(1 + 12t)e−t +
1

256
(1 + 8t+ 88t2)e3t 5.−1

3
sin t+

2
3

sin 2t 6. cosh t

7.
t2

8
cosh 2t+

3t
16

sinh 2t 8.
et

2
(sin t− t cos t) 9.

t

2
et sin t 10. (t+ 1)et sin t

11.
2
π

∞∑

n=1

(−1)n+1

n
e−n2π2t sinnπx 12.

2
π

∞∑

n=1

1
n

sinnπt sinnπx sinnπu

13.
8
π3

∞∑

n=1

1
(2n− 1)3

cos (2n− 1)πt sin (2n− 1)πx

14. t2 +
(
x2

2
− 1

6

)
+

2
π2

∞∑

n=1

(−1)n+1

n2
cosnπt cosnπx

15.
1
2π

sin
πt

2
sin

πx

2
+

2
π2

∞∑

n=1

(−1)n

4n2 − 1
sinnπt sinnπx

16.
1

2π2
[−2πt cosπt sin πx+ (sinπx− 2πx cosπx) sinπt] +

2
π2

∞∑

n=2

(−1)n

n2 − 1
sinnπt sinnπx

17.
et

2π

∫ ∞

−∞

(1− y2) cos yt+ 2y sin yt
(1 + y2)2

dt+
iet

2π

∫ ∞

−∞

(−2y cos yt+ (1 − y2) sin yt
(1 + y2)2

dt
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Exercises 11.4

1.U(x, t) = e−m2π2kt/L2
sin

mπx

L
2.U(x, t) = U0

3.U(x, t) =
40
π

∞∑

n=1

1
2n− 1

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

4. (a) U(x, t) =
kL2

κ(m2π2k − αL2)

(
e−αt − e−m2π2kt/L2

)
sin

mπx

L

(b) U(x, t) =
kt

κ
e−m2π2kt/L2

sin
mπx

L

5.U(x, t) =
2
L

∞∑

n=1

[∫ L

0

f(u) sin
nπu

L
du

]
e−n2π2kt/L2

sin
nπx

L

6.U(x, t) =
1
L

∫ L

0

f(u) du+
∞∑

n=1

[
2
L

∫ L

0

f(u) cos
nπu

L
du

]
e−n2π2kt/L2

cos
nπx

L

7.U(x, t) = UL

[
x

L
+

2
π

∞∑

n=1

(−1)n

n
e−n2π2kt/L2

sin
nπx

L

]

U(x, t) = UL

∞∑

n=0

{
erf
[
(2n+ 1)L+ x

2
√
kt

]
− erf

[
(2n+ 1)L− x

2
√
kt

]}

8.U(x, t) = U0 +
Q(3x2 − L2)

6Lκ
+
Qkt

Lκ
+

2LQ
κπ2

∞∑

n=1

(−1)n+1

n2
e−n2π2kt/L2

cos
nπx

L

10.U(x, t) =
Qx

κ
+

8QL
κπ2

∞∑

n=1

(−1)n

(2n− 1)2
e−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

U(x, t) =
√
kQ

κ

∞∑

n=0

(−1)n

{
4

√
t

π
e−[(2n+1)2L2+x2]/(4kt) sinh

(2n+ 1)Lx
2kt

+
(2n+ 1)L√

k

[
erf
(

(2n+ 1)L− x

2
√
kt

)
− erf

(
(2n+ 1)L+ x

2
√
kt

)]

− x√
k

[
erf
(

(2n+ 1)L− x

2
√
kt

)
+ erf

(
(2n+ 1)L+ x

2
√
kt

)]
+

2x√
k

}

13.U(x, t) = ULx/L

14.U(x, t) = U0 +
(UL − U0)x

L
− 2
π

∞∑

n=1

[U0 + (−1)n+1(UL − aL)]
n

e−n2π2kt/L2
sin

nπx

L

15.U(x, t) = 100e−t sin (x/
√
k)

sin (L/
√
k)

+
200
π

∞∑

n=1

1
n

[
1 +

(−1)n+1L2

L2 − n2π2k

]
e−n2π2kt/L2

sin
nπx

L

16. (a) U(x, t) =
ke−αt

κα

[
−1 +

cos
√

α
k

(
L
2
− x

)

cos
√

α
k

L
2

]

+
4kL2

κπ

∞∑

n=1

e−(2n−1)2π2kt/L2

(2n− 1)[αL2 − (2n− 1)2π2k]
sin

(2n− 1)πx
L

(b) U(x, t) =
1
κ
e−m2π2kt/L2

[
− L2

m2π2
+

L

m2π2
(L− 2x) cos

mπx

L

+
(

4kt
mπ

+
3L2

m3π3

)
sin

mπx

L

]
+

4L2

κπ3

∞∑

n=1
2n−1 6=m

e−(2n−1)2π2kt/L2

(2n− 1)[m2 − (2n− 1)2]
sin

(2n− 1)πx
L
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17. y(x, t) =
8kL2

π3

∞∑

n=1

1
(2n− 1)3

cos
(2n− 1)πct

L
sin

(2n− 1)πx
L

18. y(x, t) =
8L3

π4c

∞∑

n=1

1
(2n− 1)4

sin
(2n− 1)πct

L
sin

(2n− 1)πx
L

19. y(x, t) =
2
cπ

∞∑

n=1

[
1
n

∫ L

0

g(u) sin
nπu

L
du

]
sin

nπx

L
sin

nπct

L

20. y(x, t) =
gx(2L− x)

2c2
− 16L2g

π3c2

∞∑

n=1

1
(2n− 1)3

cos
(2n− 1)πct

2L
sin

(2n− 1)πx
2L

21. y(x, t) =
2F0

ρω2




sin
ω(L− x)

2c
sin

ωx

2c

cos
ωL

2c


 sinωt

+
4F0ωL

3

ρcπ2

∞∑

n=1

1
(2n− 1)2[ω2L2 − (2n− 1)2π2c2]

sin
(2n− 1)πct

L
sin

(2n− 1)πx
L

22.
2
L

∞∑

n=1

{∫ L

0


f(u) cos

√
n2π2c2

L2
+
k

ρ
t+

g(u)√
n2π2c2

L2 + k
ρ

sin

√
n2π2c2

L2
+
k

ρ
t


 ∗

sin
nπu

L
du

}
sin

nπx

L

29. y(x, t) =
gx(x− L)

2c2
+

4gL2

π3c2

∞∑

n=1

1
(2n− 1)3

cos
(2n− 1)πct

L
sin

(2n− 1)πx
L

+
2
L

∞∑

n=1

[∫ L

0

f(u) sin
nπu

L
du

]
cos

nπct

L
sin

nπx

L

30. (a) y(x, t) = A
sin (ωx/c) sinωt

sin (ωL/c)
+ 2AωLc

∞∑

n=1

(−1)n

n2π2c2 − ω2L2
sin

nπct

L
sin

nπx

L

(b) y(x, t) =
A(−1)m

2mπL

(
2mπct sin

mπx

L
cos

mπct

L
− L sin

mπx

L
sin

mπct

L

+2mπx cos
mπx

L
sin

mπct

L

)
+

2Am
π

∞∑

n=1
n6=m

(−1)n

n2 −m2
sin

nπct

L
sin

nπx

L

32. (a)
4cF0

AEπ

∞∑

n=1

(−1)n+1

2n− 1
sin

(2n− 1)πct
2L

sin
(2n− 1)πx

2L

33. y(x, t) = ψ(x) − 1
2
[ψ(x+ ct) + ψ(x− ct)] +

t2

2

(
c2F0

τL
− g

)
, where ψ(x) =

F0x
2

2τL

34. y(x, t) =
2c
L

∞∑

n=1

Cn(t) sin
nπx

L
, where

Cn(t) =
∫ t

0

[
f1(u) + (−1)n+1f2(u)

]
sin

nπc(t− u)
L

du

36. y(x, t) =
∞∑

n=1

[
2
L

∫ L

0

f(u) sin
nπu

L
du

]
cos

n2π2ct

L2
sin

nπx

L

37. (b) − g

2c2

(
x2 − 2Lx− 2AEL

k

)
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(d) y(x, t) = − g

2c2

(
x2 − 2Lx− 2AEL

k

)
− kg

AEc2

∞∑

n=1

cos cλnt cosλn(L− x)
N2λ4

n cosλnL
, where

2N2 = L

[
1 +

(
k

AEλn

)2
]

+
k

AEλ2
n

39. When v > 2Lg/c, t = 2L/c; when v < 2Lg/c, t = 4L/c− v/g. 9.6 × 10−5 s

Exercises 11.5

1.U(r, t) =
2U0

a

∞∑

n=1

e−kλ2
nt

λn
e−kλ2

nt J0(λnr)
J1(λna)

2.U(r, t) =
8
a

∞∑

n=1

1
λ3

n

e−kλ2
nt J0(λnr)
J1(λna)

5. (a) U(r, t) =
2k
a

∞∑

n=1

Anλne
−kλ2

nt J0(λnr)
J1(λna)

, where An =
∫ t

0

f(u)ekλ2
nu du

(b) U(r, t) = U − 2U
a

∞∑

n=1

1
λn
e−kλ2

nt J0(λnr)
J1(λna)

6.U(r, t) =
Q

4κa
(2r2 − a2 + 8kt)− 2Q

κa

∞∑

n=1

e−kλ2
nt

λ2
n

J0(λnr)
J0(λna)

7. (f) U(r, t) =
8U0

aπ

∞∑

m=1

∞∑

n=1

1
(2m− 1)λn

e−k[λ2
n+(2m−1)2π2/L2]t J0(λnr)

J1(λna)
sin

(2m− 1)πz
L

8. z(r, t) =
8
a

∞∑

n=1

1
λ3

n

cos cλnt
J0(λnr)
J1(λna)

9. z(r, t) =
2v0
ca

∞∑

n=1

1
λ2

n

sin cλnt
J0(λnr)
J1(λna)

10. z(r, t) =
F0

ρω2

[
J0(ωr/c)
J0(ωa/c)

− 1
]
− 2F0ω

ρac

∞∑

n=1

sin cλnt

λ2
n(c2λ2

n − ω2)
J0(λnr)
J1(λna)

Exercises 12.1

1. 3 2. sin 1 3. e−3 + 9 4. 0 5. 100 6.−39− cos 10

7. y(x) =
1
τ





x/2, 0 ≤ x ≤ L/2− ε
1

6ε2
(−x+ L/2 − ε)3 + x/2, L/2 − ε ≤ x ≤ L/2

1
6ε2

(x− L/2− ε)3 − x/2 + L/2, L/2 ≤ x ≤ L/2 + ε

−x/2 + L/2, L/2 + ε ≤ x ≤ L

9. (a) y(x) =





−gx/τ, 0 ≤ x ≤ L/3
−gL/(3τ), L/3 ≤ x ≤ 2L/3
g(x− L)/τ, 2L/3 ≤ x ≤ L

(b) y(x) =
g

τ
[(x− L/3)h(x− L/3) + (x− 2L/3)h(x− 2L/3)] − gx

τ

10. (a) y(x) =
1
EI





x3

6
− Lx2

4
, 0 ≤ x ≤ L/2

−L
2x

8
+
L3

48
, L/2 ≤ x ≤ L.

(b) y(x) =
1
EI

[
−1

6
(x− L/2)3h(x− L/2) +

x3

6
− Lx2

4

]
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11. (a) y(x) =
1
EI

(
x3

6
− Lx2

2

)
(b) y(x) =

1
EI

(
x3

6
− Lx2

2

)

12. (a),(b) y(t) =
{

0, 0 ≤ t ≤ T
(1/

√
kM) sin

√
k/M(t− T ), t ≥ T .

(c) y(t) =
1√
kM

sin
√
k/M(t− T )h(t− T )

14. (a) z(x, y) =
∞∑

n=1

an(y)

√
2
L

sin
nπx

L
, where

an(y) =
L2Fn

n2π2τ





1
cosh (nπ/2)

sinh
nπε

2L
sinh

nπy

L
, 0≤y≤ L− ε

2
,

cosh
nπ(L− ε)

2L

[
− cosh

nπy

L
+

coshnπ − 1
sinhnπ

sinh
nπy

L

]
+1,

L− ε

2
≤y≤ L+ ε

2
,

1
cosh (nπ/2)

sinh
nπε

2L
sinh

nπ(L− y)
L

,
L+ ε

2
≤y≤L,

(b) z(x, y) = − 1
πτ





∞∑

n=1

sin (nπ/2)
n cosh (nπ/2)

sinh
nπy

L
sin

nπx

L
, 0 ≤ y ≤ L/2

∞∑

n=1

sin (nπ/2)
n cosh (nπ/2)

sinh
nπ(L− y)

L
sin

nπx

L
, L/2 ≤ y ≤ L

(d) No

15. (a) z(r) =





r2

4πε2τ
− [1 + 2 ln (R/ε)]

4πτ
, 0 ≤ r ≤ ε

ln r
2πτ

− lnR
2πτ

, ε ≤ r ≤ R

(b) z(r) =
1

2πτ
ln
( r
R

)
(c) z(r) =

1
2πτ

ln
( r
R

)

Exercises 12.3

1.
d

dx

(
x
dy

dx

)
+ 3y = F (x) 2.

d

dx

(
ex dy

dx

)
− 2exy = exF (x)

3.
d

dx

(
x2 dy

dx

)
− (x+ 1)y = F (x) 4.

d

dx

(
1
x

dy

dx

)
− x+ 1

x3
y =

F (x)
x3

5.
d

dx

(
e4x dy

dx

)
= e4xF (x) 6. g(x;X) = −X h(x−X) − xh(X − x)

7. g(x;X) =
−1

cosL
[sinx cos (L−X)h(X − x) + sinX cos (L− x)h(x−X)]

8. g(x;X) =
−1

k sin kπ
[sin kx sin k(π −X)h(X − x) + sin kX sin k(π − x)h(x−X)]

9. g(x;X) = −1 − xh(X − x) −X h(x−X)

10. g(x;X) =
1

5 (1 + 4e5L)
[(
e−x − e4x

) (
4e5L−X + e4X

)
h(X − x)

+
(
e−X − e4X

) (
4e5L−x + 4e4x

)
h(x−X)

]

11. g(x;X) =
1
4
e−(x+X)[(2 cos 2x+ sin 2x) sin 2X h(X − x)

(2 cos 2X + sin 2X) sin 2xh(x−X)]

12. g(x;X) = −
(

9X5 + 86
530X3

)
x2 −

(
3X5 + 64
265X3

)
1
x3

− 1
5

[
x2

X3
h(X − x) +

X2

x3
h(x−X)

]

13. g(x;X) = − 1
k sin kL

[sin kx sin k(L−X)h(X − x) + sin kX sin k(L− x)h(x−X)],



APPENDIX E 817

provided k 6= nπ/L for any positive integer n

14. g(x;X) = − 1
k cos kL

[sin kx cosk(L−X)h(X − x) + sin kX cos k(L− x)h(x−X)],

provided k 6= (2n− 1)π/(2L) for any positive n

15. g(x;X) =
1

2k[1− cos k(β − α)]
{[sin k(β − α−X + x) + sin k(X − x)]h(X − x)

+[sin k(β − α− x+X) + sin k(x−X)]h(x−X)},
provided k(β − α) 6= 2nπ for any positive n

16. g(x;X) =
π

2[J0(α)Y0(β)− J0(β)Y0(α)]
[u(x)v(X)h(X − x) + u(X)v(x)h(x−X)]

17. g(x;X) =
xX

L+ l2/h2
− xh(X − x) −X h(x−X)

18. (a) g(x;X) =
x(X + l1/h1)

L+ l1/h1 + l2/h2
+

(l1/h1)(X − L− l2/h2)
L+ l1/h1 + l2/h2

− xh(X − x) −Xh(x−X)

(b) g(x;X) =
1

L+ l1/h1 + l2/h2
[(x+ l1/h1)(X − L− l2/h2)h(X − x)

+(X + l1/h1)(x− L− l2/h2)h(x−X)]

20. g(x;X) =
1

6EI
(x−X)3h(x−X)− x3

6EI
+
Xx2

2EI

21. g(x;X) =
1

6EI
(x−X)3h(x−X)− x3(L−X)

6EIL
+
x(−3LX2 + 2L2X +X3)

6EIL

22. g(x;X) =
1

6EI
(x−X)3h(x−X) +

x3

6EIL3
(−L3 + 3LX2 − 2X3)

+
x2

2EIL2
(X3 − 2LX2 + L2X)

23. g(x;X) =
1

6EI
(x−X)3h(x−X) +

x3

12EIL3
(3LX2 −X3 − 2L3)

+
x2

4EIL2
(X3 − 3LX2 + 2L2X)

26. g(x;X) =
−2L
π2

∞∑

n=1

1
n2

sin
nπX

L
sin

nπx

L

Exercises 12.4

1. g(x;X) =
1
κL

[x(L−X)h(X − x) +X(L− x)h(x−X)]

2.U(x) =
∫ β

α

g(x;X)F (X) dX, where

g(x;X) =
1

∫ β

α

1
κ(τ)

dτ

{[∫ β

X

1
κ(τ)

dτ

][∫ x

α

1
κ(τ)

dτ

]
h(X − x)

+

[∫ X

α

1
κ(τ)

dτ

][∫ β

x

1
κ(τ)

dτ

]
h(x−X)

}

3. g(x;X) =
1

κ1L2 + κ2L1





X(L1 + L2 − x), 0 ≤ X ≤ L1 ≤ x

[κ2L1 + κ1(X − L1)](L1 + L2 − x)
κ2

, L1 ≤ X ≤ x

(L1 + L2 −X)[κ2L1 + κ1(x− L1)]
κ2

, x ≤ X ≤ L1 + L2
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4. y(x) =
k

2τ
x(x− L) 5. y(x) =

kx

24τ
(4x2 − 3L2)

6. y(x) =





−kLx
4τ

, 0 ≤ x ≤ L/4
k

32τ
(L2 − 16Lx+ 16x2), L/4 ≤ x ≤ 3L/4

kL

4τ
(x− L), 3L/4 ≤ x ≤ L

7. y(x) =
−k
τ




x, 0 < x ≤ L/4
L/4, L/4 ≤ x ≤ 3L/4
L− x, 3L/4 ≤ x < L.

8. y(x) =
1
4τ





2kx(x− L) − 4kx, 0 < x ≤ L/4
2kx(x− L) − kL, L/4 ≤ x ≤ 3L/4
2kx(x− L) − 4k(L− x), 3L/4 ≤ x < L

9. y(x) = − k

4τ
(L− x)(2x− L) 10.L+

gL2

2c2
11.L+

gL2

2c2
+
mgL

2AE

12.L+
gL2

2c2
+
MgL

AE

13. y(x) =





gx(2L− x)
2c2

+
mg

AE

(
x+

AE

k

)
+
Mgx

AE
+
Mg

k
+
AELg

kc2
, 0 ≤ x ≤ L/2

gx(2L− x)
2c2

+
mg

AE

(
L

2
+
AE

k

)
+
Mgx

AE
+
Mg

k
+
AELg

kc2
, L/2 ≤ x ≤ L

14. y(x) =
1

48EI

{
8x3 − 12Lx2, 0 ≤ x ≤ L/2
L3 − 6L2x, L/2 ≤ x ≤ L,

15. y(x) =
x3

6EI
− Lx2

2EI

16. y(x) =
wx(L− x)(x2 − Lx− L2)

24EI

17. y(x) = −wx
2(L− x)2

24EI
− k

48EI

{
3Lx2 − 4x3, 0 ≤ x ≤ L/2,
−(L− x)2(L− 4x), L/2 ≤ x ≤ L

18. y(x) =
w

24EI
(4Lx3 − 6L2x2 − x4)

+
W

24EI




Lx2(2x− 3L), 0 ≤ x ≤ L/4
−x4 + 3Lx3 − 27L2x2/8 + L3x/16− L4/256, L/4 ≤ x ≤ 3L/4
5L4/16 − 13L3x/8, 3L/4 ≤ x ≤ L.

19. y(x) = −k(x− L/4)3

6EI
+

3kx2(13x− 7L)
256EI

+
W (2L4 − 16L3x+ 21L2x2 − 7Lx3 − 32x4)

768EI

20. y(x) = (x− 2)
∫ x

1

F (X) dX +
∫ 2

x

(X − 2)F (X) dX +m1(x− 2) +m2

y(x) = (x− 2)ex +m1(x− 2) +m2

21. y(x) = −cos (1− x)
cos 1

∫ x

0

F (X) sinX dX − sinx
cos 1

∫ 1

x

F (X) cos (1−X)dX

+
m2 sin x+m1 cos (1 − x)

cos 1

y(x) =
1
2
x sin x− sinx

2 cos 1
(sin 1 + cos 1) +

m2 sinx+m1 cos (1− x)
cos 1

22. y(x) =
− cos k(β − x)
k cos k(β − α)

∫ x

α

sin k(X − α)F (X) dX

− sin k(x− α)
k cos k(β − α)

∫ β

x

cosk(β −X)F (X) dX +
sin k(x− α)
k cosk(β − α)

, k(β−α) 6= nπ−π/2
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y(x) =
1
k2

+
k sin k(x− α) − cos k(β − x)

k2 cosk(β − α)

23. y(x) =
∫ β

α

1
2k[1 − cosk(β − α)]

{[sin k(β − α−X + x) + sin k(X − x)]h(X − x)

+[sin k(β − α− x+X) + sin k(x−X)]h(x−X)}F (X) dX

y(x) =
x

k2
+

(β − α)[cos k(x− α) − cos k(β − x)]
2k2[1 − cos k(β − α)]

24. y(x) =
ln (x+ 1) − ln 2

ln 2

∫ x

0

ln (X + 1)F (X) dX +
ln (x+ 1)

ln 2

∫ 1

x

ln
(
X + 1

2

)
F (X) dX

y(x) =
x2

4
− x

2
+

ln (x+ 1)
4 ln 2

25. y(x) =
e2x

2 (e2π − 1)

∫ x

0

[
e2(π−X)(sin 2x cos 2X − sin 2x sin 2X)

+e−2X sin 2(X − x)
]
F (X) dX

+
e2(x+π)

2 (e2π − 1)

∫ π

x

[
e−2X(cos 2x− sin 2x) sin 2X

]
F (X) dX

y(x) =
1
4
e2x(1 − cos 2x)

Exercises 12.5

1. y(x) = D +
1
κ

∫ L

x

(x−X)F (X) dX y(x) = E +
L2

κπ2
cos

πx

L

3. (a) y(x) =
(
D +

x

4

)
sin 2x (b) y(x) =

(
D +

x

4

)
sin 2x+m1 cos 2x, m1 = m2

4. y(x) = D sin
nπx

L
+

L

nπ

∫ L

x

sin
nπ(X − x)

L
F (X) dX

5. (a) y(x) = D sin
3πx
L

−m2 cos
3πx
L

+
L

3π

∫ L

x

F (X) sin
3π(X − x)

L
dX

(b) y(x) = E sin
3πx
L

+
(
−m2 +

L3

9π2

)
cos

3πx
L

+
L2x

9π2
, m1 +m2 =

L3

9π2

6. y(x) = D sin
(2n− 1)πx

2L
+

2L
(2n− 1)π

∫ L

x

F (X) sin
(2n− 1)π(X − x)

2L
dX

7. (a) y(x) = E sin
5πx
2L

− 2Lm2

5π
cos

5πx
2L

+
2L
5π

∫ L

x

F (X) sin
5π(X − x)

2L
dX

(b) y(x) = F sin
5πx
2L

+
(

16L4

125π3
− 2Lm2

5π

)
cos

5πx
2L

+
4L2x2

25π2
− 32L4

625π4
,

5πm1

2L
+m2 =

8L3

25π2
− 16L3

125π3

8. (c) U(x) =
L2

kπ2
cos

πx

L
+ E 9. (b) Yes

10. gs(x;X) =





1
2kL

(x2 +X2) − X

k
+

L

3k
, 0 ≤ x ≤ X

1
2kL

(x2 +X2) − x

k
+

L

3k
, X < x ≤ L

11. gs(x;X) =
1
8π

{
(4x cos 2x− sin 2x) sin 2X + 4(X − π) sin 2x cos 2X, 0 ≤ x ≤ X

(4X cos 2X − sin 2X) sin 2x+ 4(x− π) sin 2X cos 2x, X < x ≤ π
12. (b) Yes
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13. gs(x;X) =
X − x

2π
sin (x−X) + C sin x sinX +D cosx cosX

+





−1
2

sin (x−X), 0 ≤ x ≤ X

1
2

sin (x−X), X < x ≤ 2π

Exercises 12.6

1. x(t) =
1
M

∫ t

0

(t− T )F (T ) dT + x0 + v0t

2. x(t) =
1
Mω

∫ t

0

e−β(t−T )/(2M) sinω(t− T )F (T ) dT

+e−βt/(2M)

[
x0 cosωt+

(
v0
ω

+
βx0

2Mω

)
sinωt

]

Exercises 13.2

3.G(r, θ;R,Θ) = − 1
πa2

∞∑

n=1

J0(λ0nr)J0(λ0nR)
λ2

0n[J1(λ0na)]2

− 2
πa2

∞∑

m=1

∞∑

n=1

Jm(λmnr)Jm(λmnR) cosm(θ − Θ)
λ2

mn[Jm+1(λmna)]2

4.G(r, θ;R,Θ) =
−4
πa2

∞∑

m=1

∞∑

n=1

Jm(λmnr)Jm(λmnR) sinmθ sinmΘ
λ2

mn[Jm+1(λmna)]2

5.G(r, θ;R,Θ) =
−4
a2L

∞∑

m=1

∞∑

n=1

Jν(λmnr)Jνm
(λmnR) sin

mπθ

L
sin

mπΘ
L

λ2
mn[Jνm+1(λmna)]2

6.G(x, y, z;X,Y,Z) =
−8

LL′L′′

∞∑

n=1

∞∑

j=1

∞∑

m=1

sin
nπX

L
sin

jπY

L′ sin
mπZ

L′′ sin
nπx

L
sin

jπy

L′ sin
mπz

L′′

n2π2

L2
+
j2π2

L′2 +
m2π2

L′′2

7.G(r, θ, z;R,Θ, Z) = − 2
πa2L

∞∑

n=1

∞∑

j=1

J0(µ0nr)J0(µ0nR)
(µ2

0n + j2π2/L2)[J1(µ0na)]2
sin

jπz

L
sin

jπZ

L

− 4
πa2L

∞∑

m=1

∞∑

n=1

∞∑

j=1

Jm(µmnr)Jm(µmnR)
(µ2

mn + j2π2/L2)[Jm+1(µmna)]2
sin

jπz

L
sin

jπZ

L
cosm(θ − Θ)

8.G(r, θ, φ;R,Θ,Φ) = − 1
2πa2

∞∑

m=0

∞∑

n=1

Jm+1/2(λmnr)Jm+1/2(λmnR)
λ3

mnr[Jm+3/2(λmna)]2
(2m+ 1)∗

P0m(cosφ)P0m(cosΦ)

− 1
πa2

∞∑

j=1

∞∑

m≥j

∞∑

n=1

Jm+1/2(λmnr)Jm+1/2(λmnR)
λ3

mnr[Jm+3/2(λmna)]2
(2m+ 1)(m− j)!

(m+ j)!
∗

Pjm(cosφ)Pjm(cosΦ) cos j(θ − Θ)

9.G(r, θ, φ;R,Θ,Φ) =
−1

4π
√
r2 + R2 − 2Rr[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

+
a

4π
√
R2r2 + a4 − 2a2Rr[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

+
1

4π
√
r2 + R2 − 2Rr[− cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]
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− a

4π
√
R2r2 + a4 − 2a2Rr[− cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]

10.G(r, θ;R,Θ) =
1
4π

ln
{
a2

[
r2 +R2 − 2rR cos (θ − Θ)

a4 + r2R2 − 2a2rR cos (θ − Θ)

]}

11.G(r, θ;R,Θ) =
1
4π

ln
[a4 + r2R2 − 2a2rR cos (θ + Θ)][R2 + r2 − 2rR cos (θ − Θ)]
[a4 + r2R2 − 2a2rR cos (θ − Θ)][R2 + r2 − 2rR cos (θ + Θ)]

12.G(x, y;X,Y ) =
∞∑

m=−∞

∞∑

n=−∞

(−1)n+m+1

4π
ln [(x− xn)2 + (y − ym)2]

13. (d) G(r, θ;R,Θ) =
1
2π





ln (R/a) +
∞∑

n=1

{[(
rR

a2

)n

−
( r
R

)n
]

cosn(θ − Θ)
n

}
, 0 ≤ r ≤ R

ln (R/a) +
∞∑

n=1

{[(
rR

a2

)n

−
(
R

r

)n] cosn(θ − Θ)
n

}
, 0 ≤ r ≤ R

14.G(r, θ;R,Θ) =
1
2π





∞∑

n=1

1
n

[(
rR

a2

)n

−
( r
R

)n
]

[cosn(θ − Θ) − cosn(θ + Θ)], 0 ≤ r ≤ R

∞∑

n=1

1
n

[(
rR

a2

)n

−
(
R

r

)n]
[cosn(θ − Θ) − cosn(θ + Θ)], R < r ≤ a

15.G(r, θ;R,Θ) =
1

4L
ln




(
a4 + r2R2 − 2a2rR cos π(θ+Θ)

L

)(
R2 + r2 − 2rR cos π(θ−Θ)

L

)

(
a4 + r2R2 − 2a2rR cos π(θ−Θ)

L

)(
R2 + r2 − 2rR cos π(θ+Θ)

L

)




16.G(x, y, z;X,Y,Z) =
∞∑

n=1

∞∑

m=1

1
−λmn sinhλmnL′′ [sinh λmnz sinhλmn(L′′ − Z)h(Z − z)

− sinhλmnZ sinhλmn(L′′ − z)h(z − Z)]
2√
LL′

sin
nπX

L
sin

mπY

L′ ,

where λ2
mn =

n2π2

L2
+
m2π2

L′2

18.G(x, y;X,Y ) =
4
LL′

∞∑

n=1

∞∑

m=1

sin
nπX

L
sin

mπY

L′ sin
nπx

L
sin

mπy

L′

k2 − n2π2

L2
− m2π2

L′2

19.G(r, θ;R,Θ) =
1
πa2

∞∑

n=1

1
k2 − λ2

0n

J0(λ0nR)J0(λ0nr)
[J1(λ0na)]2

+
2
πa2

∞∑

m=1

∞∑

n=1

1
k2 − λ2

mn

Jm(λmnR)Jm(λmnr) cosm(θ − Θ)
Jm+1(λmna)]2

20.G(r, θ;R,Θ) =
4
πa2

∞∑

m=1

∞∑

n=1

Jm(λmnR)Jm(λmnr) sinmΘsinmθ
(k2 − λ2

mn)[Jm+1(λmna)]2

21.G(r, θ;R,Θ) =
4
a2L

∞∑

m=1

∞∑

n=1

1
k2 − λ2

mn

Jν(λmnR)Jν(λmnr)
[Jν+1(λmna)]2

sin
mπΘ
L

sin
mπθ

L

22.G(x, y, z;X,Y,Z)

=
8

LL′L′′

∞∑

n=1

∞∑

j=1

∞∑

m=1

sin
nπX

L
sin

jπY

L′ sin
mπZ

L′′ sin
nπx

L
sin

jπy

L′ sin
mπz

L′′

k2 − n2π2

L2
− j2π2

L′2 − m2π2

L′′2
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23.G(r, θ, z;R,Θ, Z) =
2

πa2L

∞∑

n=1

∞∑

j=1

1
k2 − µ2

0n − j2π2/L2

J0(µ0nR)J0(µ0nr)
[J1(µ0na)]2

sin
jπZ

L
sin

jπz

L

+
4

πa2L

∞∑

m=1

∞∑

n=1

∞∑

j=1

1
k2 − µ2

mn − j2π2/L2

Jm(µmnR)Jm(µmnr)
[Jm+1(µmna)]2

∗

sin
jπZ

L
sin

jπz

L
cosm(θ − Θ)

24.G(r, θ, φ;R,Θ,Φ) =
1

2πa2

∞∑

m=0

∞∑

n=1

1
k2 − λ2

mn

Jm+1/2(λmnR)Jm+1/2(λmnr)(2m+ 1)P0m(cosΦ)P0m(cosφ)
λmnr[Jm+3/2(λmna)]2

+
1
πa2

∞∑

j=1

∞∑

m≥j

∞∑

n=1

Jm+1/2(λmnR)Jm+1/2(λmnr)(2m+ 1)(m− j)!
(k2 − λ2

mn)(m+ j)!λmnr[Jm+3/2(λmna)]2
∗

Pjm(cosΦ)Pjm(cosφ) cos j(θ − Θ)

26. (d) G(r; 0) =
1

2πr
+D

Exercises 13.3

3. u(x, y) =
∫ L′

0

∫ L

0

G(x, y;X,Y )F (X,Y ) dX dY

+
2
L′

∞∑

n=1

sin
nπy

L′ sinh
nπx

L′

sinh (nπL/L′)

∫ L′

0

g(Y ) sin
nπY

L′ dY

+
2
L

∞∑

n=1

sin
nπx

L
sinh

nπy

L
sinh (nπL′/L)

∫ L

0

f(X) sin
nπX

L
dX

4. u(r, θ) =
∫ π

0

∫ a

0

F (R,Θ)G(r, θ;R,Θ)RdRdΘ

+
ar(a2 − r2)

π

∫ π

0

f(Θ)
{

cos (θ − Θ) − cos (θ + Θ)
[a2 + r2 − 2ar cos (θ + Θ)][a2 + r2 − 2ar cos (θ − Θ)]

}
dΘ

+
r(a2 − r2) sin θ

π

∫ a

0

[g1(R) + g2(R)]
{

a2 −R2

[a4 + r2R2 − 2a2rR cos θ][r2 +R2 − 2rR cos θ]

}
dR

6. u(x, y, z) =
∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV +
∫∫
⊂⊃

β(V )

K(X,Y,Z)
∂G(x, y, z;X,Y,Z)

∂N
dS

7. (d) G(x, y;X,Y ) =
[ √2y
π
√
L

cos
πy

L
sin

πX

L
sin

πY

L
+A(X) sinπy

−
√

2L
π

sin
πX

L
sin

π(y − Y )
L

h(y − Y )
]√ 2

L
sin

πx

L

−
∞∑

n=2

√
2L sin (nπx/L)

π
√
n2 − 2 sinh

√
n2 − 2π

[
sinh

√
n2 − 2πy
L

sinh
√
n2 − 2π(L− Y )

L
h(Y − y)

+ sinh
√
n2 − 2πY

L
sinh

√
n2 − 2π(L− y)

L
h(y − Y )

]√
2
L

sin
nπx

L

(e) u(x, y) =
∫∫

A

G(X,Y ;x, y)F (X,Y ) dA+ Cw(x, y)
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Exercises 13.4

2. (a) V (x, y) = D − 2
π

∞∑

n=1

cosh
nπ(L− x)

L′

n sinh (nπL/L′)

[∫ L′

0

f(Y ) cos
nπy

L′ dY

]
cos

nπy

L′

(b) V (x, y) = − 2
π

∞∑

n=1

cosh
nπ(L− x)

L′

n sinh (nπL/L′)

(
cos

nπ

4
− cos

3nπ
4

)
cos

nπy

L′ V (x,L′/2) = 0

3. V (x, y) = D − 2y + L′

2L

∫ L

0

f(X) dX

+
2
π

∞∑

n=1




cosh
nπy

L
n sinh (nπL′/L)

∫ L

0

cos
nπX

L
f(X) dX


 cos

nπx

L

− 2
π

∞∑

n=1

coshnπ(L′ − y)
n sinh (nπL′/L)

[∫ L

0

cos
nπX

L
g(X) dX

]
cos

nπx

L

4.U(x, y) = E +
L

4κ
(x+ y) − y2

2κ
, or U(x, y) = F +

L

4κ
(x+ y) − x2

2κ
, or better

U(x, y) = D +
L

4κ
(x+ y) − 1

4κ
(x2 + y2)

5. (e) u(r, θ) = C − a

2π

∫ π

−π

K(Θ) ln
{

[r2 + a2 − 2ra cos (θ − Θ)]
ar

}
dΘ

+
1
4π

∫ π

−π

∫ a

0

RF (R,Θ) ln [H(r, θ;R,Θ)] dRdΘ, where

H(r, θ;R,Θ) =
[r2 +R2 − 2rR cos (θ − Θ)][a4 + r2R2 − 2ra2R cos (θ − Θ)]

a4r2

6. (b) u(x, y) =
∫∫

A

N (x, y;X,Y )F (X,Y ) dA−
∫
©

β(A)

N(x, y;X,Y )K(X,Y ) ds+ C

7. u(r, θ) = C − a

2π

∫ π

−π

ln
[
r2 + a2 − 2ra cos (θ − Θ)

ar

]
K(Θ) dΘ

+
1
4π

∫ π

−π

∫ a

0

RF (R,Θ) ln [H(r, θ;R,Θ)] dRdΘ

H(r, θ;R,Θ) =
[r2 +R2 − 2rR cos (θ − Θ)][a4 + r2R2 − 2ra2R cos (θ − Θ)]

a4r2

8. (b) u(x, y, z) =
∫∫∫

V

N(x, y, x;X,Y,Z)F (X,Y,Z) dV

−
∫∫
⊂⊃

β(V )

N(x, y, z;X,Y,Z)K(X,Y,Z) dS + C

9. (a)∇2N = δ(x−X, y − Y, z − Z), (x, y, z) in V,

∂N

∂n
=

1
areaβ(V )

, (x, y, z) on β(V )

(b) u(x, y, z) =
∫∫∫

V

N (x, y, z;X,Y,Z)F (X,Y,Z) dV

−
∫∫
⊂⊃

β(V )

N (x, y, z;X,Y,Z)K(X,Y,Z) dS + C
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Exercises 13.5

3. u(x, y) =
∫∫

A

G(X,Y ;x, y)F (X,Y ) dA+
∞∑

n=1

an sinh
(2n− 1)π(L− x)

2L
cos

(2n− 1)πy
2L

,

where an =
2

L sinh [(2n− 1)π/2]

∫ L

0

f(y) cos
(2n− 1)πy

2L
dy

Exercises 13.6

2. u(x, y) =
∫ ∞

−∞

∫ ∞

0

G(x, y;X,Y )F (X,Y ) dY dX +
1
2π

∫ ∞

−∞
K(X) ln [(x−X)2 + y2] dX

3. u(r, θ) =
∫∫

A

G(r, θ;R,Θ)F (R,Θ) dA− a2 − r2

2π

∫ π

−π

K(Θ)
a2 + r2 − 2ar cos (θ − Θ)

dΘ (b) Yes

4. (a) u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
4xy
π

∫ ∞

0

XK(X)
[(x−X)2 + y2][(x+X)2 + y2]

dX

+
4xy
π

∫ ∞

0

Y H(Y )
[x2 + (y − Y )2][x2 + (y + Y )2]

dY (b) Yes

5. (a) u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA+
1
2π

∫ ∞

0

K(X) ln
[
(x−X)2 + y2

(x+X)2 + y2

]
dX

+
x

π

∫ ∞

0

H(Y )
[

1
x2 + (y − Y )2

+
1

x2 + (y + Y )2

]
dY

(b) The first term is simpler.

6. u(r, φ, θ) =
∫∫∫

V

G(r, φ, θ;R,Φ,Θ)F (R,Φ,Θ) dV

−a(a
2 − r2)
4π

∫ π

−π

∫ π

0

K(Φ,Θ) sinΦ
{R2 + a2 − 2aR[cosφ cosΦ + sinφ sin Φ cos (θ − Θ)]}3/2

dΦ dΘ

Yes
7. u(x, y, z) =

∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV

+
1
2π

∫∫

A

K(X,Y )
[(x−X)2 + (y − Y )2 + z2]3/2

dA

8. u(x, y, z) =
∫∫∫

V

G(x, y, z;X,Y,Z)F (X,Y,Z) dV − 1
2π

∫∫

A

K(X,Y )√
(x−X)2 + (y − Y )2 + z2

dA

9. u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA

− 1
π

∞∑

n=−∞

∫ ∞

−∞

K(X)[y(4n2L′2 − y2) − y(x−X)2]
[(x−X)2 + (Y − y − 2nL′)2][(x−X)2 + (y + Y − 2nL′)2]

dX

+
1
π

∞∑

n=−∞

∫ ∞

−∞

H(X)[y(L′2 − y2 + 4n2L′2 − 4nL′2) − y(x−X)2]
[(x−X)2 + (Y − y − 2nL′)2][(x−X)2 + (y + Y − 2nL′)2]

dX

10. u(x, y) =
∫∫

A

G(x, y;X,Y )F (X,Y ) dA

+
1
4π

∞∑

n=−∞

∫ ∞

−∞
K(X) ln [(x−X)2 + (y + 2nL′)2][(x−X)2 + (y − 2nL′)2] dX

− 1
4π

∞∑

n=−∞

∫ ∞

−∞
H(X) ln [(x−X)2 + (L′ − y − 2nL′)2][(x−X)2 + (L′ + y − 2nL′)2] dX

11. (a) G(x, y;X,Y )=
1
4π

∞∑

n=−∞
ln
{

[(x−X)2 + (y − Y − 2nL′)2][(x+X)2 + (y + Y − 2nL′)2]
[(x−X)2 + (y + Y − 2nL′)2][(x+X)2 + (y − Y − 2nL′)2]

}
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(b) G(x, y;X,Y )=
1
4π

∞∑

n=−∞
ln
{

[(x−X)2 + (y − Y − 2nL′)2][(x+X)2 + (y − Y − 2nL′)2]
[(x−X)2 + (y + Y − 2nL′)2][(x+X)2 + (y + Y − 2nL′)2]

}

(c) G(x, y;X,Y )=
1
4π

∞∑

n=−∞
ln
{

[(x−X)2 + (y − Y − 2nL′)2][(x−X)2 + (y + Y − 2nL′)2]
[(x+X)2 + (y − Y − 2nL′)2][(x+X)2 + (y + Y − 2nL′)2]

}

12. (a)G(x, y, z;X,Y,Z) =
1
4π

∞∑

n=−∞

[
−1√

(x−X)2 + (y − Y )2 + (z − Z − 2nL′′)2

+
1√

(x−X)2 + (y − Y )2 + (z + Z − 2nL′′)2

]

(b)G(x, y, z;X,Y,Z) = − 1
4π

∞∑

n=−∞

[
1√

(x−X)2 + (y − Y )2 + (z − Z − 2nL′′)2

+
1√

(x−X)2 + (y − Y )2 + (z + Z − 2nL′′)2

]

Exercises 13.7

1.G(x, t;X,T ) =
2k
κL

∞∑

n=1

e−n2π2k(t−T )/L2
sin

nπx

L
sin

nπx

L

2.G(x, t;X,T ) =
k

κ

[
1
L

+
2
L

∞∑

n=1

e−n2π2k(t−T )/L2
cos

nπX

L
cos

nπx

L

]

3.G(x, t;X,T ) =
2k
κL

∞∑

n=1

e−(2n−1)2π2k(t−T )/(4L2) cos
(2n− 1)πX

L
cos

(2n− 1)πx
L

4.G(x, t;X,T ) =
k

κ

∞∑

n=1

1
N2

e−kλ2
n(t−T ) sinλnX sinλnx, where

2N2 = L+
h2/l2

λ2
n + (h2/l2)2

and eigenvalues satisfy cotλL = − h2

l2λ

5. (a) U(x, t) =
kL2

κ(m2π2k − αL2)

(
e−αt − e−m2π2kt/L2

)
sin

mπX

L

(b) U(x, t) =
kt

κ
e−m2π2kt/L2

sin
mπX

L

6.U(x, t) =
4kL2

κπ

∞∑

n=1

e−αt − e−(2n−1)2π2kt/L2

(2n− 1)[(2n− 1)2π2k − αL2]
sin

(2n− 1)πx
L

+
40
π

∞∑

n=1

e−(2n−1)2π2kt/L2

2n− 1
sin

(2n− 1)πx
L

7.U(x, t) =
ULx

L
+

∞∑

n=1

Cne
−n2π2kt/L2

sin
nπx

L
, where

Cn =
2
L

∫ L

0

f(X) sin
nπx

L
dX +

2(−1)nUL

nπ

8.U(x, t) =
1
L

∫ L

0

f(X) dX +
k

κL

∫ t

0

∫ L

0

g(X,T ) dX dT

+
∞∑

n=1

[
2
L

∫ L

0

f(X) cos
nπX

L
dX

]
e−n2π2kt/L2

cos
nπx

L
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+
2k
κL

∞∑

n=1

[∫ t

0

∫ L

0

e−n2π2k(t−T )/L2
g(X,T ) cos

nπX

L
dX

]
cos

nπx

L

9. (a) U(x, t) = U0 +
q(L− x)

κ
− 8qL
π2κ

∞∑

n=1

e−(2n−1)2π2kt/(4L2)

(2n− 1)2
cos

(2n− 1)πx
2L

(b) U(x, t) = U0 +
8qL
π2κ

∞∑

n=1

1
(2n− 1)2

[
e−(2n−1)2π2k(t−t0)/(4L2) − e−(2n−1)2π2kt/(4L2)

]
∗

cos
(2n− 1)πx

2L
(c) U = U0

12.U(x, y, t) =
∞∑

n=1

∞∑

m=1

[∫ L′

0

∫ L

0

f(X,Y )fn(X)gm(Y ) dX dY

]
e−(n2/L2+m2/L′2)π2ktfn(x)gm(y)

+
2
√
LL′

π2

∞∑

n=1

∞∑

m=1

1 − e−(n2/L2+m2/L′2)π2kt

n2L′2 +m2L2

{
L′2n

m

[
U1 + U2(−1)n+1

] [
1 + (−1)m+1

]

+
L2m

n

[
U3 + U4(−1)m+1

] [
1 + (−1)n+1

]
}
fn(x)gm(y)

where fn(x) =

√
2
L

sin
nπx

L
and gm(x) =

√
2
L′ sin

mπy

L′

13.U(x, y, t) =
2

π3L′

∞∑

n=1





√
L′π2n2[U1 + U2(−1)n+1] − L2

(
φ1

κ1
+
φ2

κ2

)
[1 + (−1)n+1]

n3





∗

(1 − e−n2π2kt/L2
) sin

nπx

L

−8L2L′

π3

∞∑

m=1

∞∑

n=1

[
φ1

κ1
+
φ2

κ2
(−1)m

] [
1 − e−[(2n−1)2/L2+m2/L′2]π2kt

]

(2n− 1)[(2n− 1)2L′2 +m2L2]
∗

sin
(2n− 1)πx

L
cos

mπy

L′

14.U(r, t) =
2k
κa

∞∑

n=0

[∫ t

0

e−kλ2
n(t−T )f1(T ) dT

]
J0(λnr)
J0(λna)

15. (a) U(r, t) =
k

κ

∞∑

n=1

[∫ t

0

∫ a

0

Rg(R, T )fn(R)e−kλ2
n(t−T )dRdT

]
fn(r)

+
∞∑

n=1

[∫ a

0

Rf(R)fn(R) dR
]
e−kλ2

ntfn(r)

(b) U(r, t) =
2g
κa

∞∑

n=1

1 − e−kλ2
nt

λ3
n

J0(λnr)
J1(λna)

Exercises 13.8

1.G(x, t;X,T ) =
1
ρ

[
t− T

L
+

2
πc

∞∑

n=1

1
n

sin
nπc(t− T )

L
cos

nπx

L
cos

nπx

L

]

2.G(x, t;X,T ) =
4
ρπc

∞∑

n=1

1
2n− 1

sin
(2n− 1)πc(t− T )

2L
cos

(2n− 1)πX
2L

cos
(2n− 1)πx

2L
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3.G(x, t;X,T ) =
4
ρπc

∞∑

n=1

1
2n− 1

sin
(2n− 1)πc(t− T )

2L
sin

(2n− 1)πX
2L

sin
(2n− 1)πx

2L

4. y(x, t) = − 2kL2

ρπ3c2

∞∑

n=1

1
n3

(
1 − cos

nπct

L

)
[1 + (−1)n+1] sin

nπx

L

+
2
πc

∞∑

n=1

1
n

sin
nπct

L

[∫ L

0

g(X) sin
nπX

L
dX

]
sin

nπx

L

+
2
L

∞∑

n=1

cos
nπct

L

[∫ L

0

f(X) sin
nπX

L
dX

]
sin

nπx

L

5. y(x, t) =
8LF
π2E

∞∑

n=1

(−1)n+1

(2n− 1)2

(
1 − cos

(2n− 1)πct
2L

)
sin

(2n− 1)πx
2L

6. y(x, t) =
kL

2
+
c2Ft2

2LE
+

2L
π2

∞∑

n=1

1
n2

{
F

E

(
1 − cos

nπct

L

)
− k[1 + (−1)n+1] cos

nπct

L

}
cos

nπx

L

7. (a) y(x, t) =
2
ρπc

∞∑

n=1

1
n

[∫ t

0

∫ L

0

F (X,T ) sin
nπc(t− T )

L
sin

nπx

L
dX dT

]
sin

nπx

L

(b) y(x, t) =
2F0L

ρπ2c2

∞∑

n=1

1
n2

(
1 − cos

nπct

L

)
sin

nπx0

L
sin

nπx

L

(c) y(x, t) =
2F0L

ρπ2c2

∞∑

n=1

(−1)n+1

(2n− 1)2

(
1 − cos

(2n− 1)πct
L

)
sin

(2n− 1)πx
L

(d) y(x, t) =
2F0L

ρπ2c2

∞∑

n=1
n6=m

1
n2

(
1 − cos

nπct

L

)
sin

nπx0

L
sin

nπx

L

9. z(x, y, t) =
16AL2

ρπ2

∞∑

n=1

∞∑

m=1

cosωt− cos cπ
√

(2n− 1)2 + (2m− 1)2t
(2n− 1)(2m− 1){c2π2[(2n− 1)2 + (2m− 1)2] − ω2L2}∗

sin
(2n− 1)πx

L
sin

(2m− 1)πy
L

10. z(r, t) =
2Ac
a

∞∑

n=1

cλn sinωt− ω sin cλnt

c2λ2
n − ω2

J0(λnr)
J1(λna)

When ω = cλm for some m,

z(r, t) =
A

aλm
(−cλmt cos cλmt+ sin cλmt)

J0(λmr)
J1(λma)

+
2A
a

∞∑

n=1
n6=m

−λm sin cλnt+ λn sin cλmt

λ2
n − λ2

m

J0(λnr)
J1(λna)

Exercises 14.2

1. 2(3n−1), no limit 2. 3(−2/3)n, 0 5. 8/3 + 11(−1)n/[3(2n−1)], 8/3
6. 5/2 + (9/2)(−1)n, no limit 7. (1/

√
3)[(1 +

√
3)n−1 − (1 −

√
3)n−1], no limit

8. (2n− 7)/5](−5/3)n−1, no limit 9. (1/
√

5){[(1 +
√

5)/2]n − [(1 −
√

5)/2]n}

Exercises 14.8

1.Un,m,p+1 =
(

1 − 2ks
h2

1

− 2ks
h2

2

)
Un,m,p +

ks

h2
1

(Un+1,m,p + Un−1,m,p)
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+
ks

h2
2

(Un,m+1,p + Un,m−1,p) where h1 = L/N and h2 = L′/N ′.

∆t ≤ 1

2k
[

1
(∆x)2

+
1

(∆y)2

]

Exercises 14.10

1. yn,m+1 = 2
(

1 − c2s2

r2

)
yn,m − yn,m−1 +

c2s2

r2
(yn+1,m + yn−1,m) − gs2

2. yn,m+1 =
(

1 +
βs

2ρ

)−1 [
2
(

1 − c2s2

r2

)
yn,m −

(
1 − βs

2ρ

)
yn,m−1 +

c2s2

r2
(yn+1,m + yn−1,m)

]

3. yn,m+1 = 2
(

1 − k

2ρ
− c2s2

r2

)
yn,m − yn,m−1 +

c2s2

r2
(yn+1,m + yn−1,m)

Exercises 14.11

1. Vn,m =
1
4
(
Vn+1,m + Vn−1,m + Vn,m+1 + Vn,m−1 − r2fn,m

)

2. Vn,m =
r2(Vn,m+1 + Vn,m−1) + s2(Vn+1,m + Vn−1,m) − r2s2fn,m

2(r2 + s2)

Exercises 15.3

1. (a) YN (x) = 2 + x+
N∑

n=1

bnx[xn − (n+ 1)Ln]

(b) YN (x) = c0 +
N−1∑

n=1

bnx
2[2xn − (n+ 2)Ln]

(c) YN (x) =
3

L+ 1
(1 + x) +

N+1∑

n=2

bn[(L+ 1)xn − Ln(1 + x)]

(d) YN (x) = 1 − hx

1 + hL
+

N∑

n=1

bnx[(1 + hL)xn − Ln(n+ 1 + hL)

3. (c)(i) U1(x) = x+ (3 −
√

11)(x2 − x) (ii) U1(x) = x− (1/3)(x2 − x)

(iii) U1(x) = x+

(
15− 7

√
5

2

)
(x2 − x)

(d)(i) U2(x) = x− 0.599208(x2 − x) + 0.191623(x3 − x)
(ii) U2(x) = x− 0.740482(x2 − x) + 0.244289(x3 − x)
(iii) U2(x) = x− 3

4 (x2 − x) + 1
4 (x3 − x)

(iv) U2(x) = x− 0.643726(x2 − x) + 0.207311(x3 − x)
4. (a) U2(x) = x+ 0.407585x(1− x) − 0.191623x2(1− x)

(b) U2(x) = x+ 0.496193x(1− x) − 0.244289x2(1 − x)
(c) U2(x) = x+ 1

2x(1 − x) − 1
4x

2(1− x)
(d) U2(x) = x+ 0.440592x(1− x) − 0.215178x2(1 − x)

5. (a) 20 + 80e−0.03t

(b) 100−2.25974t+0.0233766t2, 100−2.29325t+0.0237232t2, 100−2.2245t+0.0216672t2

6. (a) U(x) = sin x− (3 + sin 1)x+ 1
(c) U1(x) = 1−3x+0.233773x(1−x), U2(x) = 1−3x+0.161938x(1−x)+0.14367x2(1−x)

U3(x) = 1− 3x+ 0.157998x(1− x) + 0.16337x2(1 − x) − 0.0197002x2(1 − x)
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(d) 1.08091, 0.955701, 0.955701
(e) −0.007848, −0.007848, −0.000032

7. (b) Y1(x) = −x(1 − x)/6, Y2(x) = −0.10687x(1− x) − 0.0381679x(1− x2)
(c) Y1(x) = −x(1− x)/6, Y2(x) = −0.145038x(1− x) − 0.0381679x2(1− x)

8. (b)(i) −(3/4)(r− 1)(2− r), −(7/9)(r− 1)(2− r), −(23/30)(r− 1)(2− r)
9.R1(r) = (252/311)(r− 1)(2− r) + r
10. (b)(i) V2(x) = 1

4 (9− x) + 2.209925(x− 1)(x− 3)− 0.35600(x− 1)(x2 + x− 11)
(ii) V2(x) = 1

4 (9 − x) + 2.54167(x− 1)(x− 3)− 0.425926(x− 1)(x2 + x− 11)
(iii) V2(x) = 1

4 (9− x) + 2.55723(x− 1)(x− 3)− 0.429385(x− 1)(x2 + x− 11)
(iv) V2(x) = 1

4 (9 − x) + 2.13777(x− 1)(x− 3) − 0.347697(x− 1)(x2 + x− 11)
(c) V (x) = 2/x+ (1/2) lnx

11. (a) R =
N−1∑

n=0

cn(xφ′′n + φ′n)− 2
x2

(e)V3(x) = 2 − 2.21937(x− 1) + 1.64097x(x− 1) − 0.342326x2(x− 1)

12. (a) Y2(x) =
x

3
+ 0.0515489x

(
x− 4

3

)
− 0.0650936x

(
x2 − 5

3

)

(b) Y2(x) =
x

3
− 0.0727162x

(
x− 4

3

)
− 0.0392097x(1− x)2

(f) Y2(x) = 0.0759494x+ 0.256329x2

13. (b) Y2(x) = (1 + sin 1)x− 0.525022x(1− x) + 0.508138x(1− x2)
(c) Y2(x) = Z2(x) + (1 + sin 1)x = (1 + sin 1)x− 0.0234727x(1− x) + 0.521078x2(1 − x)

16. (b) T1(r) =
Da2(28 + 5ah)

21(5 + ah)

[(
1 +

2
ah

)
− r2

a2

]

(c) T3(r) =
Da2

60

[(
13 +

32
ah

)
− 10r2

a2
− 3r4

a4

]

17. (b) Y2(x) = 2 − x+ 0.8068(x− 1)(x− 2) − 0.2120x(x− 1)x− 2)
(d) Y2(x) = 2 − x+ 0.7858(x− 1)(x− 2)− 0.1992x(x− 1)x− 2)

21. (c) YN (x) =
4w
πk

N∑

n=1

1

(2n− 1)
[
1 +

(2n− 1)4π4EI

kL4

] sin
(2n− 1)πx

L

22. 3εc3 + 4(1− ω2)c− 4 = 0

Exercises 15.4

1. 5.161 2. 13.76, 13.49 3. (a) 5.239 (b) 5.294, 5.253
4. (a) 5.609/a2 (b) 6.790/a2 (c) 5.830/a2

5. (a) 4/a2, 6/a2, 6/a2 (b) 9/(2a2), 6/a2, 5.858/a2

6. (b) 17.14/a2 (c) 14.73/a2, 64.73/a2 7. (b) 2.667 (c) 2.562, 21.17 8. 9.26, 9.12

Exercises 15.5

1. (a)
−20

6L2 + 5L′2 (b)
sinh [

√
10(L′ − y)/L]

sinh (
√

10L′/L)
(c)

4L2[1 + (−1)n+1]
π3n3 sinh (nπL′/L)

sinh
nπ(L′ − y)

L
Yes

2. (a)
A

sinh (
√

10L′/L)
sinh

√
10(L′ − y)

L
where A =

30
L5

∫ L

0

f(x)x(L− x) dx

3. (a) A cosh
√

10y
L

+B sinh
√

10y
L

where A =
30
L5

∫ L

0

f(x)x(L− x) dx and
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B =
30

L5 sinh (
√

10L′/L)

[∫ L

0

g(x)x(L− x) dx− cosh
√

10L′

L

∫ L

0

f(x)x(L− x) dx

]

4. (a) No (b) −0.2812kL2

5. (a) cnm =
−4LL′

π2(n2L′2 +m2L2)

∫ L

0

∫ L′

0

F (x, y) sin
nπx

L
sin

mπy

L′ dy dx

6.
2

3L2(1 + ε2)
5

8L2(1 + ε2)

7.A cosh
√

10y
L

+B sinh
√

10y
L

− Ly

4
where where A =

30
L5

∫ L

0

g(x)x(L− x) dx and

B =
30
L5

[
csch

√
10L′

L

∫ L

0

h(x)x(L− x) dx− coth
√

10L′

L

∫ L

0

g(x)x(L− x) dx

]

8. V1(x, y) = g(x)
(

1 +
L− x− y

L

)
+ c11xy(L− x− y) where

c11 =
30
7L6

∫ L

0

g(x)(x− L)(x2 − 8Lx+ 4L2) dx− 90
7L5

∫ L

0

∫ L−x

0

F (x, y)xy(L− x− y) dy dx

9. (a)
5

8L2
(b) c =

1295
2216L2

, d =
525

4432L4
(c)

(
1 − sech

√
5√
2

cosh
√

5x√
2L

)
(L2 − y2)

(d)
128L2

π4

N∑

n=1

M∑

m=1

(−1)n+m

(2n− 1)(2m− 1)[(2n− 1)2 + (2m− 1)2]
cos

(2n− 1)πx
2L

cos
(2m− 1)πy

2L
(e) 1.1111L4, 1.1231L4, 1.1171L4

10. (a) e−2
√

2y/Lx(L− x) (b) e−2
√

3y/Lx(L− x) (c) e−
√

10y/Lx(L− x)
11. V2(x, y) = (0.803488e−3.14162y/L + 0.196512e−10.1060y/L)x(L− x)

+0.910465(e−3.14162y/L − e−10.1060y/L)x2(L− x)2

12. (b)
L2

4
e−πy/L sin

πx

L
(c)

L2π

12
e−πy/L sin

πx

L

13. (a) Be−
√

10y/Lx(L− x) where B =
30
L5

∫ L

0

g(x)x(L− x) dx

(b) (Be−
√

10y/L +De−2
√

7y/L)x(L− x) − 1
8L

(7Be−
√

10y/L + 16De−2
√

7y/L)x2(L− x)

B =
160
3L5

∫ L

0

g(x)x(L− x) dx, D =
420
L6

[
4L
3

∫ L

0

g(x)x(L− x) dx−
∫ L

0

g(x)x2(L− x) dx

]

15. (b) V1(x, y) = g(L/2)e−πy/L sin
πx

L

V2(x, y) =
1√
3

{
[g(L/3) + g(2L/3)]e−πy/L sin

πx

L
+ [g(L/3)− g(2L/3)]e−2πy/L sin

2πx
L

}

(c) c1 =
π

2L

∫ L

0

g(x) dx

c1 =
L

6π

[
2
∫ L/2

0

g(x) dx+
∫ L

L/2

g(x) dx

]
, c2 =

L

6π

[
4
∫ L/2

0

g(x) dx−
∫ L

L/2

g(x) dx

]

(d) c1 =
π

2L

∫ L

0

g(x) dx; c1 =
π

2L

∫ L

0

g(x) dx, c2 =
π

L2

∫ L

0

(L− 2x)g(x) dx

Exercises 15.6

2. (a) U1(x, y) = − 3
32
x(L2 − y2)
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3. (a) 0.181k1 + 0.204k2 (b) 0.128k1 + 0.256k2

(c) U2(x, y) =
9

332
(9k1 + 5k2)x(1− y2) +

3
1328

(−29k1 + 30k2)x2(1− y2)

(d) 0.178k1 + 0.203k2 (e) Q1 = (39k1 − 30k2)/44, Q2 = (473k1 + 120k2)/664

4.U1(x, y) = cx(L′ − y) where c =
9

LL′(L2 + L′2)

[
L

∫ L′

0

f(y)(L′ − y) dy − L′
∫ L

0

x g(x) dx

−
∫ L

0

∫ L′

0

x(L′ − y)F (x, y) dy dx

]

5.U4(x, y) = (L2 − x2)(L2 − y2)
[
0.276821k

L2
+

0.041015k
L4

(x2 + y2) +
0.0781539kxy

L4

]

6. d = 8L′/171, f = 8L/171
8. d = L′2/18, f = L/24, g = 0

Exercises 15.7

1.U1(x, y) = cy(L− x)(L′ − y) where c =
90

LL′3(10L2 + 3L′2 + 9LL′2)

[
L

∫ L′

0

y(L′ − y)f(y) dy

−
∫ L

0

∫ L′

0

y(L− x)(L′ − y)F (x, y) dy dx

]

2.U1(x, y) =
(9− 2L2)xy
6(2 + 3L)

3. (a) 0.0489k (b) U1(x, y) =
15k
19

xy(1 − x), 0.0987k

(c) U3(x, y) = −30k
127

xy(1 − x) +
150k
127

xy2(1 − x), 0.0443k

Exercises 15.8

2. (b) c1(t) =

[
16

√
2Lε

3kπ3
(1− e−kπ2t/L2

)− π

2
√

2L
e−kπ2t/L2

]−1

3.U1(r, t) =
5

4a2
e−5kt/a2

(a2 − r2)

4. (a) U1(x, t) =
20
27
e−20t/27

(
1 + x− x2

2

)

(b) U2(x, t) = (0.5861e−0.7402t + 2.444e−11.77t)
(

1 + x− x2

2

)

+(0.1445e−0.7402t − 2.291e−11.77t)
(

1 + x− x3

3

)

5. (a) U1(x, t) = De−π2t/L2
sin

πx

L
where D =

2
L

∫ L

0

f(x) sin
πx

L
dx

(b) U1(x, t) = De−10t/L2
x(L− x) where D =

30
L5

∫ L

0

f(x)x(L− x) dx
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Exercises 16.2

3. T1(r) =
37
60

− 7r
20

, T2(r) =





0.5256
(
r − 1/2
−1/2

)
+ 0.4568

(
r

1/2

)
, 0 ≤ r ≤ 1/2

0.4568
(
r − 1
−1/2

)
+ 0.2667

(
r − 1/2

1/2

)
, 1/2 < r ≤ 1

5. (a) V1(x) = −2(x− 2) +
1
3
(1 + 4 ln 2)(x− 1)

V2(x) =
{
−4(x− 3/2) + 2(1.551)(x− 1), 1 ≤ x ≤ 3/2
−2(1.551)(x− 2) + 2(1.365)(x− 3/2), 3/2 < x ≤ 2

(b) V1(x) = 2(2x− 3)(x− 2) − 4(1.541)(x− 1)(x− 2) + 1.350(2x− 3)(x− 1)
6. 2(4x− 1)(2x− 1)− 2.95826(8)x(2x− 1) + 3.74831(2)x(4x− 1), 0 ≤ x ≤ 1/2

3.74831(2)(4x−3)(x−1)−4.33622(8)(2x−1)(x−1)+4.70138(2x−1)(4x−3), 1/2 < x ≤ 1

7.




∫ x2

x1

[α(φ′1)
2 − β(φ1)2] dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

(αφ′2φ
′
1 − βφ1φ2) dx

∫ x2

x1

[α(φ′2)
2 − β(φ2)2] dx



(
c1
c2

)

=
({

αY ′
1φ1

}x2

x1{
αY ′

1φ2

}x2

x1

)
+




−
∫ x2

x1

Fφ1 dx

−
∫ x2

x1

Fφ2 dx




8.




∫ x2

x1

[α(φ′1)
2 − β(φ1)2] dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

(αφ′1φ
′
3 − βφ1φ3) dx

∫ x2

x1

(αφ′1φ
′
2 − βφ1φ2) dx

∫ x2

x1

[α(φ′2)
2 − β(φ2)2] dx

∫ x2

x1

(αφ′2φ
′
3 − βφ2φ3) dx

∫ x2

x1

(αφ′1φ
′
3 − βφ1φ3) dx

∫ x2

x1

(αφ′2φ
′
3 − βφ2φ3) dx

∫ x2

x1

[α(φ′3)
2 − β(φ3)2] dx






c1
c2
c3




=




{
αY ′

1φ1

}x2

x1{
αY ′

1φ2

}x2

x1{
αY ′

1φ3

}x2

x1


+




−
∫ x2

x1

Fφ1 dx

−
∫ x2

x1

Fφ2 dx

−
∫ x2

x1

Fφ3 dx




9. (a) No (b) R2(r) =
{

(3 − 2r) + 1.680(2r− 2), 1 ≤ r ≤ 3/2
1.680(4− 2r) + 2(2r − 3), 3/2 < r ≤ 2

Exercises 16.3

2. (a) (1 − ξ)/2, (1 + ξ)/2
3. (a) −(9/16)(ξ + 1/3)(ξ − 1/3)(ξ − 1), (27/16)(ξ+ 1)(ξ − 1/3)(ξ − 1),

−(27/16)(ξ + 1)(ξ + 1/3)(ξ − 1), (9/16)(ξ + 1)(ξ + 1/3)(ξ − 1/3)

Exercises 16.4

1. 5.01548 2. 3.11 3. (a) 3 (b) 2.60 (c) 1.49 4. (a) 3 (b) 2.59 (c) 1.49 5. (a) 6 (b)
5.86 (c) 4.86

Exercises 16.7

2. φ1(ξ, η) =
1
2
(1 − ξ − η)(2− 3ξ − 3η)(1− 3ξ − 3η), φ2(ξ, η) =

1
9
ξ(3ξ − 1)(3ξ − 2),
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φ3(ξ, η) =
1
9
η(3η − 1)(3η − 2), φ4(ξ, η) =

9
2
ξ(2 − 3ξ − 3η)(1− ξ − η),

φ5(ξ, η) =
9
4
ξ(3ξ − 1)(1− ξ − η), φ6(ξ, η) =

9
2
ξη(3ξ − 1),,

φ7(ξ, η) =
9
2
ξη(3η − 1), φ8(ξ, η) =

9
2
η(1 − ξ − η)(2 − 3ξ − 3η),

φ9(ξ, η) =
9
2
η(3η − 1)(1− ξ − η), φ10(ξ, η) = 27ξη(1 − ξ − η)

Exercises 16.8

1. φ1(ξ, η) =
1
32

(1− ξ)(1− η)(2 + 3ξ + 3η)(4 + 3ξ + 3η),

φ2(ξ, η) =
1
32

(1 + ξ)(1− η)(2− 3ξ + 3η)(4− 3ξ + 3η),

φ3(ξ, η) =
1
32

(1 + ξ)(1 + η)(2− 3ξ − 3η)(4− 3ξ − 3η),

φ4(ξ, η) =
1
32

(1 − ξ)(1 + η)(2 + 3ξ − 3η)(4 + 3ξ − 3η),

φ5(ξ, η) =
9
32

(1 − ξ2)(1− 3ξ)(1− η), φ6(ξ, η) =
9
32

(1 − ξ2)(1 + 3ξ)(1− 3η),

φ7(ξ, η) =
9
32

(1 + ξ)(1− η2)(1− 3η), φ8(ξ, η) =
9
32

(1 + ξ)(1− η2)(1 + 3η),

φ9(ξ, η) =
9
32

(1 − ξ2)(1 + η)(1 − 3ξ), φ10(ξ, η) =
9
32

(1− ξ2)(1 + η)(1 + 3ξ),

φ11(ξ, η) =
9
32

(1− ξ)(1 − η2)(1 + 3η), φ12(ξ, η) =
9
32

(1− ξ)(1 − η2)(1− 3η)
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APPENDIX F Problem Index

In this appendix, we have listed all examples and exercises from sections 4.2, 4.3,
6.2, 6.3, 6.4, 7.2, 7.3, 9.1, 9.2, 10.2, 10.4, 10.5, 11.4, 11.6, 11.7, and 12.4 that
pertain to analytic solutions of physical applications of second- and fourth-order
PDEs so that readers might be able to find problems of particular interest. Heat
conduction problems, vibrations of strings, bars, and plates, and potential problems
are classified first according to geometry:

One-dimensional
Rectangles
Boxes
Circles (including annuli)
Sectors (including quarter-circles and semicircles)
Spheres (including hemispheres)
Cylinders

Secondly, examples and exercises are sorted according to
Heat conduction
Vibration
Potential

The final sort is according to boundary conditions:
Dirichlet
Newmann
Robin
Mixed

At the end of the appendix, several specialized equations are referenced:
Vibrations of beams
Diffusion of Neutrons
Telegraphy equation
Heat conduction in thin wires
Oscillations of hanging cables
Helmholtz equation

One-dimensional Heat Conduction Problems in Rods

Dirichlet Boundary Conditions
1. Exercise 4.2–2 2. Exercise 4.2–3 3. Exercise
4. Exercise 4.2–5 5. Exercise 4.2–14 6. Exercise
7. Exercise 4.2–16 8. Example 4.5 9. Example

10. Problem 4.78 11. Exercise 4.3–1 12. Exercise
13. Exercise 4.3–3 14. Exercise 4.3–4 15. Exercise
16. Exercise 4.3–10 17. Exercise 4.3–12 18. Exercise
19. Exercise 4.3–14 20. Exercise 4.3–16 21. Problem
22. Exercise 7.2–1 23. Exercise 7.2–3 24. Exercise
25. Exercise 7.2–8 26. Exercise 7.2–9 27. Exercise
28. Exercise 7.2–11 29. Example ‘ex of infinite heat’ 30. Exercise ‘
31. Exercise ‘heat65’ 32. Exercise ‘heat as GaussiaN’ 33. Exercise ‘
34. Exercise ‘xge0 exercisE’ 35. Exercise 11.6–1 36. Exercise
37. Example 10.13 38. Example 10.15 39. Exercise
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40. Exercise 10.4–3 41. Exercise 10.4–4 42. Exercise
43. Exercise 10.4–7 44. Exercise 10.4–9 45. Exercise
46. Exercise 10.4–14 47. Exercise 10.4–15 48. Exercise
49. Exercise 13.7–5 50. Exercise 13.7–6 51. Exercise

Neumann Boundary Conditions
1. Example 4.2 2. Exercise 4.2–1 3. Exercise 4.2–6
4. Exercise 4.2–17 5. Exercise 4.3–6 6. Exercise 4.3–7
7. Exercise 4.3–8 8. Exercise 7.2–4 9. Exercise 7.2–7

10. Exercise 7.2–16 11. Exercise ‘heat81’ 12. Exercise ‘heat82’
13. Example 11.21 14. Exercise 11.6–2 15. Exercise 11.6–4
16. Exercise 10.4–2 17. Exercise 10.4–6 18. Exercise 10.4–8
19. Exercise 13.7–8

Robin Boundary Conditions
1. Exercise 4.3–9 2. Exercise 7.2–17 3. Exercise 11.6–5
4. Exercise 11.6–6

Mixed Boundary Conditions
1. Exercise 4.2–7 2. Exercise 4.2–8 3. Exercise 4.2–9
4. Exercise 4.2–10 5. Problem 6.2 6. Exercise 6.2–1
7. Exercise 6.2–2 8. Exercise 6.2–3 9. Example 7.3

10. Exercise 7.2–5 11. Exercise 7.2–12 12. Exercise 7.2–14
13. Exercise 7.2–15 14. Exercise 10.4–10 15. Example 13.12
16. Exercise 13.7–9

One-dimensional Problems for Transverse Vibrations of Strings

and Longitudinal Vibrations of Bars

Dirichlet Boundary Conditions
1. Problem 2.115 2. Exercise 2.7–1 3. Exercise 2.7–2
4. Exercise 2.7–3 5. Exercise 2.7–4 6. Exercise 2.7–5
7. Problem 2.166 8. Problem 2.169 9. Example 2.11

10. Example 2.12 11. Exercise 2.9–1 12. Exercise 2.9–2
13. Exercise 2.9–3 14. Exercise 2.9–4 15. Exercise 2.9–5
16. Exercise 2.9–6 17. Exercise 2.9–7 18. Exercise 2.9–8
19. Problem 2.171 20. Problem 2.173 21. Exercise 2.10–1
22. Exercise 2.10–2 23. Exercise 2.10–3 24. Exercise 2.10–4
25. Exercise 2.10–5 26. Problem 2.176 27. Exercise 2.11–2
28. Exercise 2.11–3 29. Exercise 2.11–4 30. Exercise 2.11–5
31. Exercise 2.11–6 32. Exercise 2.11–7 33. Exercise 2.11–8
34. Exercise 2.11–9 35. Exercise 2.11–10 36. Exercise 2.11–11
37. Problem 4.9 38. Exercise 4.2–18 39. Exercise 4.2–19
40. Exercise 4.2–20 41. Exercise 4.2–21 42. Exercise 4.2–22
43. Problem 4.35 44. Problem 4.58 45. Exercise 4.3–17
46. Exercise 4.3–18 47. Exercise 4.3–19 48. Exercise 4.3–21
49. Exercise 4.3–22 50. Exercise 4.3–23 51. Exercise 6.2–6
52. Exercise 6.2–8 53. Exercise 6.2–9 54. Exercise 6.2–12
55. Problem 7.4 56. Problem 7.18 57. Problem 7.47
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58. Exercise 7.2–19 59. Exercise 7.2–20 60. Exercise 7.2–21
61. Exercise 7.2–22 62. Exercise 7.2–23 63. Exercise 7.2–26
64. Exercise 7.2–28 65. Exercise 7.2–35 66. Exercise 7.2–39
67. Exercise 7.2–40 68. Exercise 7.2–41 69. Exercise 7.2–47
70. Exercise ‘fiXed enD’ 71. Exercise ‘vibrA’ 72. Problem 11.52
73. Problem 10.30 74. Exercise 10.4–17 75. Exercise 10.4–18
76. Exercise 10.4–19 77. Exercise 10.4–21 78. Exercise 10.4–22
79. Exercise 10.4–28 80. Exercise 10.4–29 81. Exercise 10.4–30
82. Exercise 10.4–34 83. Example 13.14 84. Exercise 13.8–4
85. Exercise 13.8–7

Neumann Boundary Conditions

1. Exercise 4.2–23 2. Exercise 4.2–27 3. Exercise
4. Exercise 7.2–25 5. Exercise 7.2–30 6. Exercise
7. Exercise 7.2–42 8. Example ‘semiinfinite string’ 9. Exercise ‘

10. Exercise ‘MOtion of ends’ 11. Exercise 11.6–8 12. Exercise
13. Exercise 10.4–33 14. Exercise 13.8–6

Robin Boundary Conditions

1. Exercise 4.3–26 2. Exercise 6.2–17 3. Exercise 7.2–44
4. Exercise 7.2–46

Mixed Boundary Conditions

1. Exercise 4.2–24 2. Exercise 4.2–28 3. Exercise 4.3–20
4. Problem 6.8 5. Exercise 6.2–7 6. Exercise 6.2–10
7. Exercise 6.2–11 8. Exercise 6.2–13 9. Exercise 6.2–15

10. Exercise 6.2–16 11. Exercise 7.2–24 12. Exercise 7.2–27
13. Exercise 7.2–29 14. Exercise 7.2–31 15. Exercise 7.2–33
16. Exercise 7.2–34 17. Exercise 7.2–37 18. Exercise 7.2–38
19. Exercise 10.4–20 20. Exercise 10.4–24 21. Exercise 10.4–25
22. Exercise 10.4–26 23. Exercise 10.4–27 24. Exercise 10.4–31
25. Exercise 10.4–32 26. Exercise 10.4–37 27. Exercise 10.4–38
28. Exercise 10.4–39 29. Exercise 13.8–5

Problems related to Rectangles

Heat Conduction Problems

Dirichlet Boundary Conditions

1. Exercise 4.2–36 2. Exercise 6.3–3 3. Exercise 6.4–1
4. Problem 6.50 5. Exercise 7.3–1 6. Example 11.23
7. Exercise 11.4–6 8. Exercise 13.7–12

Neumann Boundary Conditions

1. Exercise 6.3–4

Robin Boundary Conditions

1. Exercise 6.4–9 2. Exercise 7.3–4

Mixed Boundary Conditions
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1. Exercise 4.2–37 2. Exercise 4.2–38 3. Exercise 4.2–41
4. Exercise 4.3–29 5. Exercise 6.3–5 6. Exercise 6.4–2
7. Exercise 6.4–3 8. Exercise 6.4–4 9. Exercise 6.4–10

10. Example 7.5 11. Exercise 7.3–2 12. Exercise 7.3–3
13. Exercise 11.4–7 14. Exercise 11.6–16 15. Exercise 11.6–17
16. Exercise 11.6–18 17. Exercise 11.6–19 18. Exercise 11.6–20
19. Exercise 13.7–13

Vibration Problems

Dirichlet Boundary Conditions
1. Exercise 4.2–39 2. Exercise 6.3–6 3. Problem 6.35
4. Exercise 6.4–11 5. Exercise 6.4–13 6. Exercise 6.5–9
7. Exercise 7.3–5 8. Exercise 7.3–6 9. Exercise 7.3–7

10. Exercise 7.3–8 11. Exercise 7.3–9 12. Exercise 7.3–10
13. Exercise 7.3–11 14. Exercise 13.8–9

Robin Boundary Conditions
1. Exercise 7.3–12

Mixed Boundary Conditions
1. Exercise 6.4–12 2. Exercise 6.5–10

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Example 4.3 2. Exercise 4.2–30 3. Exercise 4.2–31
4. Exercise 4.2–32 5. Exerise 4.2–40 6. Exercise 4.3–27
7. Exercise 4.3–28 8. Exercise 6.3–1 9. Exercise 7.2–48

10. Exercise 7.2–49 11. Exercise 7.2–50 12. Exercise 7.2–51
13. Exercise 7.2–53 14. Example ‘channel pot’ 15. Example ‘Pot
16. Exercise ‘clOsed form solN’ 17. Exercise 11.6–9 18. Exercise 11.6–15
19. Exercise 11.6–21 20. Exercise 11.6–22 21. Exercise 11.6–23
22. Exercise 11.6–24 23. Exercise 11.4–8 24. Exercise 11.6–25
25. Example 13.6 26. Exercise 13.3–1 27. Exercise 13.3–2
28. Exercise 13.3–3 29. Example 13.10 30. Exercise 13.6–9

Neumann Boundary Conditions
1. Exercise 4.2–34 2. Exercise 4.2–35 3. Exercise 4.2–42
4. Exercise 4.3–30 5. Exercise 7.2–56 6. Example 13.8
7. Exercise 13.4–2 8. Exercise 13.4–3 9. Exercise 13.4–4

10. Exercise 13.6–10

Mixed Boundary Conditions
1. Exercise 4.2–33 2. Problem 6.29 3. Exercise 6.3–7
4. Exercise ‘pot16’ 5. Example 11.22 6. Exercise 13.5–3

Problems Related to Boxes

Heat Conduction Problems

Mixed Boundary Conditions
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1. Problem 6.40 2. Exercise 6.4–5 3. Exercise 6.4–6
4. Exercise 6.4–7 5. Exercise 6.4–8 6. Exercise 6.4–17
7. Exercise 6.5–11

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Exercise 6.4–15 2. Exercise 6.4–16 3. Example 7.6
4. Exercise 13.6–7

Neumann Boundary Conditions
1. Exercise 13.6–8

Problems Related to Circles (including annuli)

Heat Conduction Problems

Dirichlet Boundary Conditions
1. Exercise 6.3–2 2. Exercise 9.1–3 3. Example 9.5
4. Exercise 9.2–1 5. Exercise 9.2–10 6. Exercise 9.2–11
7. Exercise 10.5–4

Neumann Boundary Conditions
1. Exercise 9.2–2 2. Exercise 9.2–12 3. Example 10.16
4. Exercise 10.5–6 5. Exercise 13.7–14

Robin Boundary Conditions
1. Exercise 9.2–13

Vibration Problems

Dirichlet Boundary Conditions
1. Example 9.3 2. Exercise 9.1–21 3. Exercise 9.1–22
4. Exercise 9.1–23 5. Exercise 9.1–24 6. Example 9.6
7. Exercise 9.2–17 8. Exercise 9.2–18 9. Exercise 9.2–19

10. Exercise 9.2–20 11. Exercise 9.2–22 12. Exercise 9.2–23
13. Exercise 9.2–24 14. Exercise 9.2–25 15. Example 10.17
16. Exercise 10.5–8 17. Exercise 10.5–9 18. Exercise 10.5–10
19. Exercise 13.8–10

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Problem 6.29 2. Exercise 6.3–9 3. Exercise 6.3–13
4. Exercise 6.3–16 5. Exercise 6.3–22 6. Exercise 6.3–23
7. Exercise 6.3–29 8. Exercise 6.3–30 9. Exercise 6.3–31

10. Example 13.5 11. Exercise 13.6–3

Neumann Boundary Conditions
1. Exercise 6.3–11 2. Exercise 6.3–14 3. Exercise 6.3–17
4. Exercise 13.4–7

Robin Boundary Conditions
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1. Exercise 6.3–12 2. Exercise 6.3–15 3. Exercise 6.3–18

Mixed Boundary Conditions
1. Exercise 6.3–24 2. Exercise 6.3–25 3. Exercise 6.3–26
4. Exercise 6.3–27

Problems Related to Sectors of Circles

(including quarter-circles and semi-circles)

Heat Conduction Problems

Dirichlet Boundary Conditions
1. Exercise 11.7–2

Neumann Boundary Conditions
1. Exercise 9.2–29

Mixed Boundary Conditions
1. Exercise 6.3–10 2. Exercise 6.3–19 3. Exercise 6.3–20
4. Exercise 7.2–55 5. Exercise 9.1–9 6. Exercise 9.1–10
7. Exercise 9.1–11
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Vibration Problems

Dirichlet Boundary Conditions
1. Exercise 6.3–21

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Exercise 6.3–8 2. Exercise 13.3–4 3. Exercise 13.6–4

Mixed Boundary Conditions
1. Example 13.9 2. Exercise 13.6–5

Problems Related to Spheres (including hemispheres)

Heat Conduction Problems

Dirichlet Boundary Conditions
1. Exercise 4.2–12 2. Exercise 4.3–15 3. Exercise 9.1–14
4. Exercise 9.1–17 5. Exercise 9.1–38 6. Exercise 9.2–6
7. Exercise 9.2–9 8. Exercise 9.2–15

Neumann Boundary Conditions
1. Exercise 4.2–13 2. Exercise 9.1–15 3. Exercise 9.1–18
4. Exercise 9.2–7

Robin Boundary Conditions
1. Exercise 9.1–16

Mixed Boundary Conditions
1. Exercise 9.1–39 2. Exercise 9.2–16

Vibration Problems

Dirichlet Boundary Conditions
1. Exercise 4.2–25

Neumann Boundary Conditions
1. Exercise 4.2–26

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Example 9.4 2. Exercise 9.1–34 3. Exercise 9.1–35
4. Exercise 9.1–40 4. Exercise 9.1–41 5. Exercise 9.1–42
6. Exercise 9.1–43 7. Exercise 9.1–44 8. Exercise 9.1–45
9. Exercise 9.2–28 10. Example 13.7 11. Exercise 13.6–6

Neumann Boundary Conditions
1. Exercise 9.1–36 2. Exercise 9.1–46

Robin Boundary Conditions
1. Exercise 9.1–37 2. Exercise 9.1–47
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Problems Related to Cylinders

Heat Conduction Problems

Dirichlet Boundary Conditions
1. Exercise 9.1–1 2. Exercise 9.1–5 3. Exercise 9.1–48
4. Exercise 9.2–3 5. Exercise 9.2–14 6. Exercise 9.2–30
7. Exercise 11.7–1 8. Exercise 10.5–1 9. Exercise 10.5–2

10. Exercise 10.5–5 11. Exercise 10.5–7 12. Exercise 13.7–15

Neumann Boundary Conditions
1. Example 9.1 2. Exercise 9.1–2 3. Exercise 9.1–8
4. Exercise 9.2–4

Robin Boundary Conditions
1. Exercise 9.1–19 2. Exercise 9.1–13 3. Exercise 9.2–5

Mixed Boundary Conditions

1. Example 9.2 2. Exercise 9.1–4 3. Exercise 9.1–6
4. Exercise 9.1–7 5. Exercise 9.1–12 6. Exercise 9.1–20
7. Exercise 9.1–31 8. Exercise 9.1–33 9. Exercise 9.1–49

10. Exercise 9.2–8

Potential and Generic Problems

Dirichlet Boundary Conditions
1. Exercise 9.1–29 2. Exercise 9.1–30 3. Exercise 9.1–32
4. Exercise 9.2–26 5. Exercise 9.2–27

Problems Related to Vibrations of Beams

1. Example 4.4 2. Exercise 4.3–24 3. Exercise 4.3–25
4. Exercise 7.2–43 5. Exercise 10.4–36

Problems Related to Diffusion of Neutrons

1. Exercise 4.2–11

Problems Related to the Telegraphy Equation

1. Exercise 4.2–29 2. Example 11.16

Problems Related to Heat Conduction in Thin Wires

1. Exercise 4.3–11 2. Exercise 6.2–4 3. Exercise 6.2–5
4. Exercise 7.2–13 5. Exercise 7.2–18 6. Exercise 10.4–11

Problems Related to Oscillations of Hanging Cables

1. Exercise 9.1–26 2. Exercise 9.2–21

Problems Related to the Helmholtz Equation
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1. Problem 6.26 2. Exercise 9.1–28 3. Exercise 13.3–5
4. Exercise 13.3–6 5. Exercise 13.3–7 6. Exercise 13.3–8
7. Exercise 13.4–10 8. Exercise 13.4–11
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Abel’s test for uniform convergence,
147

Absolutely integrable function, 429,
436

Analytic function, 400
Analytic solution, 571
Angular vibrations of bar, 63
Associated Legendre

differential equation, 347
functions, 347

Asymptotic behaviour of Bessel
function, 473

Backward finite difference, 572
Base characteristic curves, 4
Basis functions for MWR, 609
Beam equation, 76
Beltrami equations, 96
Bessel functions

asymptotic behaviour, 473
generating function for, 329
modified, 329
of the first kind, 321
orthogonality of, 334
recurrence relations for, 326
second kind, 323, 325
spherical, 322, 328
zeros of, 327

Bessel’s differential equation, 321
Bessel’s inequality

for Fourier series, 151
for generalized Fourier series, 226

Bessel’s modified differential equation,
329

Boundary condition, 34
Dirichlet, 36
Neumann, 36
Robin, 37

Boundary value problem, 36

Canonical form
for second-order PDE, 90

Cantilevered beam, 77
Cauchy problem for first-order PDE,

3
Cauchy problem for wave equation

on finite interval, 115
on infinite interval, 100
on semi-infinite interval, 110

Cauchy’s residue theorem, 402
Cauchy-Euler equation, 245, 361
Cauchy-Riemann equations, 400
Causal fundamental solution, 520
Causal Green’s function, 562, 566
Central finite difference, 572
Characteristic curves

for first-order PDE, 2
for hyperbolic second-order PDE,

91, 102
Characteristic directions, 1
Characteristic equation

for difference equation, 574
Characteristic equations, 2, 18
Characteristic strips, 18
Clairaut equation, 21
Classical solution of ODE, 490
Classification of second-order PDEs,

88
Closed region, 147
Coefficient of heat transfer, 46
Collocation method, 610
Complementary error function, 396,

416, 461
Complete set of functions, 210
Complex form of Fourier series, 133
Complex inversion integral, 402
Conduction, 43
Conductivity, thermal, 44
Conjunct, 489
Consistency condition, 41, 279
Consistent

partial difference equation, 579
Convection, 43
Convergence in the mean, 148
Convolution

for Fourier transform, 444
for Laplace transform, 390

Cosine integral formula, 431
Coulomb’s law, 79
Courant-Friedrichs-Lewy condition,

604
Crank-Nicolson implicit scheme, 594,

597
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d’Alembert solution, 83, 104, 115
Delta function, 39, 481

multi-dimensional, 523
Difference equation

first order, 574
second order, 574

Differentiation of Fourier series, 150
Diffusion equation, 49
Diffusivity, thermal, 45
Dini’s integral, 248
Dirac-delta function, 39, 481

multi-dimensional, 523
Dirichlet boundary condition, 36

homogeneous, 37
nonhomogeneous, 37

Divergence theorem, 728
Domain of dependence, 105
DuFort-Frankel explicit scheme, 596
Dufort-Frankel explicit scheme, 593

Eigenfunction
normalized, 205

Eigenfunction expansion, 210
Eigenfunction of Sturm-Liouville system,

201
Eigenvalue of Sturm-Liouville system,

201
Eikonal equation, 26
Electric field displacement, 79
Electric field intensity, 79
Electrostatic potential, 79
Elliptic second-order PDEs, 88, 95

consistency condition, 279
maximum principle for, 278
minimum principle for, 278
properties of, 273

Energy equation
for membrane, 74
for string, 66

Error function, 416, 461

Fanlike base characteristic curves, 12,
30

Fick’s law, 50
Finite difference

backward, 572
central, 572
forward, 572

Finite differences, 571, 572
Finite Fourier transform, 285

inverse of, 286
Finite Hankel transform, 371
First harmonic, 235
First-order PDE, 1
Formal solution of PDE, 166
Forward finite difference, 572
Fourier Bessel series, 334
Fourier coefficients, 127
Fourier cosine integral formula, 431
Fourier cosine series, 137
Fourier cosine transform, 457

convolutions, 459
in partial differential equations, 463
linearity of, 459
of derivatives, 459
shifting property of, 459

Fourier integral formula, 429
Fourier Legendre series, 352
Fourier series

complex form of, 133
convergence in the mean of, 154
differentiation of, 150
generalized, 210
of a function, 127
uniform convergence of, 152

Fourier sine integral formula, 432
Fourier sine series, 137
Fourier sine transform, 457

convolutions, 459
in partial differential equations, 463
linearity of, 459
of derivatives, 459
shifting property of, 459

Fourier transform, 436
convolutions, 444
in partial differential equations, 450
inverse of, 440
linearity of, 442
of derivatives, 444
shifting property of, 442

Fourier’s law of heat conduction, 43
Frobenius solution, 317
Function

absolutely integrable, 436
error, 461
piecewise smooth, 436
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Fundamental equation of traffic flow,
28

Fundamental mode of vibration
for membrane, 254
for string, 235

Galerkin’s method, 611
Gamma function, 319
Gaussian, 429
General solution of PDE, 82
Generalized Fourier coefficients, 210
Generalized Fourier series

convergence in the mean of, 227
differentiation of, 228
of a function, 210
uniform convergence of, 226

Generalized functions, 477, 481
multivariable, 523

Gibb’s phenomenon, 132
Green’s first identity, 728, 729
Green’s formula, 489
Green’s function

causal, 562, 566
for initial value ODE, 520
for ODE, 490, 492, 500
for PDE, 526
for unbounded regions, 558
full eigenfunction expansion, 527
method of images for, 534
modified, 512
partial eigenfunction expansion, 528
splitting technique for, 530

Green’s second identity, 525, 728, 730

Hankel integral formula, 473
Hankel transform

finite, 371
infinite, 473

Heat flux vector, 43
Heat transfer coefficient, 46
Heaviside unit step function, 40
Heavy cable, 66
Helmholtz equation, 72, 243
Homogeneous boundary condition, 37
Homogeneous linear second-order

PDE, 157
Homogeneous material, 44
Horizontally built-in beam, 77

Hyperbolic second-order PDEs, 88, 90
properties of, 281

Images, method of, 534
Index of refraction, 26
Indicial equation, 317
Infinite problem for string, 58
Initial boundary value problem, 34
Initial condition, 34
Initial-value problem, 3
Interval of dependence, 105
Inverse finite Fourier transform, 286
Inverse Laplace transform, 385
Irregular singular point for ODE, 317
Isotropic, 43

Lagrange’s identity, 489
Laplace transform

and partial differential equations,
408, 421

complex inversion integral for, 402
convolutions in, 390
definition of, 384
initial value theorem, 394
inverse by residues, 402
inverse of, 385
of derivatives, 388
shifting properties of, 385

Laplace transforms
and partial differential equations,

395
Laplace’s equation, 39
Laplacian, 38
Lax equivalence, 587
Legendre functions of second kind,

344
Legendre polynomials, 343

generating function for, 344
orthogonality of, 350
recurrence relations for, 345

Legendre transform, 371
Legendre’s associated equation, 347
Legendre’s differential equation, 343
Length of a function, 125
Linear first-order PDE, 1, 12
Linear second-order PDE, 88, 157
Longitudinal vibrations of bar, 61
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Maximum principle
for elliptic equations, 278
for parabolic equations, 271

Maxwell reciprocity, 496
Maxwell’s equations, 79
Mean square error, 148
Mean square residual, 613
Method of characteristics, 4
Method of images, 534
Method of weighted residuals, 609

and PDEs, 644, 658, 663, 667
and reduction of dimensionality, 650
and Sturm-Liouville problems, 634
basis functions, 609
boundary method, 612
collocation method, 610
for ODEs, 614
Galerkin’s method, 611
interior method, 612
mean square residual, 613
mixed method, 612, 619
moment method, 611
residual, 610
subdomain method, 611

Minimum principle
for elliptic equations, 278
for parabolic equations, 271

Modes of vibration, 165, 366
Modified Bessel functions, 329
Modified Green’s function

for Helmholtz equation, 545
for ODE, 512, 515
for PDE, 547

Moment method, 611
Monge cone, 15
Multidimensional eigenvalue problem,

259

Neumann Bessel functions, 323, 325
Neumann boundary condition, 36

homogeneous, 37
nonhomogeneous, 37

Newton’s law of cooling, 46
Node of vibration, 236
Nonhomogeneous linear second-order

PDE, 157
Nonlinear first-order PDEs, 15
Normal derivative, 36

Normal mode of vibration
for membrane, 254
for string, 235

Normalized eigenfunction, 205

Odd harmonic function, 135, 143

One-dimensional wave equation, 57

Open region, 35

Order of a PDE, 1

Ordinary point for ODE, 317

Orthogonal functions, 125

Orthonormal functions, 126

Parabolic second-order PDEs, 88, 93
maximum principle for, 271
minimum principle for, 271
properties of, 265

Parseval’s relations for Fourier transform,
448

Parseval’s theorem
for Fourier series, 153
for generalized Fourier series, 227

Partial difference equation, 572, 596
Backward implicit scheme, 593, 597
classic explicit scheme, 578
conditionally stable, 587
consistent, 579
convergent, 586
Crank-Nicolson implicit scheme,

594, 597
DuFort-Frankel explicit scheme,

593, 596
for elliptic PDEs, 606
for hyperbolic PDEs, 602
for parabolic PDEs, 578, 586, 589,

590, 592, 600
Richardson explicit scheme, 592
stable, 587
Von Neumann stability, 587, 601
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Partial differential equation
boundary condition for, 34
boundary value problem, 36
d’Alembert solution, 83, 115
Dirichlet condition for, 36
elliptic second-order, 88, 95
first-order, 1
formal solution of, 166
general solution of, 82
homogeneous linear second-order,

157
hyperbolic second-order, 88, 90
initial condition for, 34
linear first-order, 1, 12
linear second-order, 88, 157
Neumann condition for, 36
nonhomogeneous linear second-

order, 157
order, 1
parabolic second-order, 88, 93
quasilinear, 1
Robin condition for, 37

Periodic boundary conditions for
ODE, 488

Periodic Sturm-Liouville system, 203
Permittivity, 79
Piecewise continuous function, 127
Piecewise smooth function, 128, 436
Poisson’s equation, 39, 72
Poisson’s integral formula

for a circle, 247, 541
for a sphere, 364, 544
for half plane, 456, 560

Proper Sturm-Liouville system, 211

Quasilinear PDE, 1

Radiation, 43
Range of influence, 105
Rayleigh quotient, 230, 264
Reduced wave equation, 72
Regular singular point for ODE, 317
Regular Sturm-Liouville system, 200
Residual, 610
Residue, 402
Resonance, 301, 305
Retarded time, 464
Richardson explicit scheme, 592

Robin boundary condition, 37
homogeneous, 37
nonhomogeneous, 37

Rodrigues’ formula, 346

Scalar product of functions, 124

Schwarz’s inequality, 153

Self-adjoint form of ODE, 488

Semi-infinite problem for string, 58

Separation of variables, 161

Separation principle, 161

Simply-supported beam, 77

Sine integral formula, 432

Singular point for ODE, 317

Singular Sturm-Liouville system, 203

Specific heat, 45

Static deflections
of beam, 77
of membrane, 72
of string, 60

Steady-state solution, 47

Stokes’s theorem, 728

Strip condition
for first-order PDE, 19
for hyperbolic second-order PDE,

101

Sturm comparison theorem, 228

Sturm-Liouville system, 200
and Bessel’s differential equation,

333
and Legendre’s differential equation,

350
periodic, 203
proper, 211
regular, 200
singular, 203

Subdomain method, 611

Superposition principle, 157, 158

Surface heat transfer coefficient, 46
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Telegraph equation, 67, 177
Tension

in string, 56
of membrane, 68

Thermal conductivity, 44
Thermal diffusivity, 45
Thin wire problem, 54, 196, 240, 303
Time-dependent nonhomogeneities,

186
Time-independent nonhomogeneities,

180
Traffic flow, 28

fundamental equation of, 28
Transverse vibrations

of beam, 75
of membrane, 68
of string, 56

Tricomi PDE, 98
Truncation error, 573, 579
Two-dimensinal wave equation, 70

Unidirectional wave equation, 23

Uniform convergence, 145
of Fourier series, 152
of generalized Fourier series, 226

Uniformly bounded sequence of functions,
147, 210

Unit pulse function, 480
Unit step function, 40
Unmixed boundary conditions for

ODE, 488

variation of constants, 187
Variation of parameters, 186
Vibrations

of beam, 75
of membrane, 68
of string, 56, 463

Von Neumann stability, 587, 601

Wave equation
one-dimensional, 57
two-dimensional, 70

Weber Bessel functions, 323, 325
Weber’s discontinuous integrals, 331
Weierstrass M-test, 145
Well-posed problem, 38


