

Outline for Solving Separable Equations

Problem Statement: A first order ordinary differential equation of the form y' = f(x)g(y)

is called a *separable equation*. The objective is to solve such equations, i.e., find a one parameter family of functions that define solutions of the given differential equation. If an initial condition is given, say $y(x_0) = y_0$, then the pair

$$y' = f(x)g(y), y(x_0) = y_0$$

is called an Initial Value Problem (IVP).

Step 1: Separate the variables.

This step is accomplished by recalling from calculus that dy = y'dx. If one multiplies both sides of the equation by dx, divides both sides by g(y) and uses dy = y'dx, one obtains

$$\frac{1}{g(y)}dy = f(x)dx,$$

for $g(y) \neq 0$.

Step 2: Integrate both sides of the equation from Step 1.

Assuming both f and $\frac{1}{g}$ are continuous, this step is possible, at least theoretically. The actual computations depend on integration techniques from calculus. So if G and F are functions such that $\frac{d}{dy}G(y) = \frac{1}{g(y)}$

and $\frac{d}{dx}F(x) = f(x)$, then G(y) = F(x) + C, where C is a constant of integration. So the one-parameter family of functions that define solutions of the given equation is G(y) = F(x) + C. Note that y is defined <u>implicitly</u> by the equation. To express y <u>explicitly</u>, that is, $y = \phi(x)$, depends on your ability to solve the equation for y.

Step 3: (only if an IVP is given) Evaluate C using the initial condition. If the initial condition is $y(x_0) = y_0$, then solve for C in the equation $G(y_0) = F(x_0) + C$.

Problem Statement: Solve $y' = \frac{x^2}{y(1+x^3)}$.

Notice that $y \neq 0$ and $x \neq -1$ and $\frac{dy}{dx} = \frac{x^2}{y(1+x^3)} = \left(\frac{1}{v}\right)\left(\frac{x^2}{1+x^3}\right)$.

Step 1: Separate the variables.

$$ydy = \frac{x^2}{1+x^3}dx$$

Step 2: Integrate both sides of the equation from Step 1.

$$\int y dy = \int \frac{x^2}{1+x^3} dx = \frac{1}{3} \int \frac{du}{u} \qquad [u = 1+x^3, du = 3x^2 dx]$$
$$\frac{1}{2} y^2 = \frac{1}{3} \ln|u| = \frac{1}{3} \ln|1+x^3| + C$$

So the one parameter family is
$$\frac{1}{2}y^2 = \frac{1}{3}\ln|1+x^3| + C,$$

Or multiplying through by $\overline{6}$ and setting K=6C,

$$3y^2 = 2\ln|1 + x^3| + K.$$

An Example

Problem Statement: Solve the IVP $y' = 2(1+x)(1+y^2)$, y(0) = 0.

Step 1: Separate the variables.

$$\frac{dy}{1+y^2} = \left(2+2x\right)dx$$

Step 2: Integrate both sides of the equation from Step 1.

$$\int \frac{dy}{1+y^2} = \int (2+2x)dx$$
$$\tan^{-1} y = 2x + x^2 + C$$

Step 3: (only if an IVP is given) Evaluate C using the initial condition.

To solve the IVP, apply the initial condition y(0) = 0:

$$\tan^{-1} 0 = 2(0) + 0^2 + C = C$$

So the solution is $\frac{C=0}{\tan^{-1} y = 2x + x^2}$, or, taking the tangent of both sides, $y = \tan(2x + x^2)$.