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Chapter 1

LOGARITHM



Consider the relation a* = N. Imagine that we are asked to find one of the three numbers a,
x or N given the other two numbers. Three examples of this are shown below.

Case Solution Method

P=p 32 raise 2 to the 5th power
pP=27 3 take the 3rd root of 27
=5 ? ?

We can see that we cannot solve the last example with the algebra we have studied so far. We
need to introduce a new concept: a logarithm.

A. BASIC CONCEPT

Definition

T

Solution

The logarithm of a number N to a base a is the power to which a must be raised in order to
obtain N. We write this as log; N. In other words,

| =
a*%N =N where a* =N and x = log, N.

This equation is called the fundamental identity of logarithms. In this equation, the base of
the logarithm () is always positive and different from 1, and the number whose logarithm is
taken (N) is positive. In other words, negative numbers and zero do not have logarithms.

logarithm, argument, base, exponential form, logarithmic form

Fora>0,a#1 and x>0, the real number y which is defined by
y=loggxeoa =x

is called the logarithm of x to the base a. In this notation, x is called the argument of the log-
arithm.

We say that the equation a* = x is in exponential form and log, x = y is the same equation

in logarithmic form.

Write the equalities in logarithmic form.

a P=8 b. 5°=1 c. 31:%

By the definition of a logarithm, a* = x & y = log, x. Therefore,

a.2°=8c3 =logy 8. b.5"=1&0=logs 1.
1 1

c3?'=—9=log, -
B o gy



m 2 Write the equalities in exponential form.

a. logjp100=2  b. log, %=—3 ¢ logg1=0
Solution Again we use the definition log, x =y & x = a.
1 1 ;
a. log1n 100 = 2 & 100 = 10? b g, —=-3cs—=3"
B10 % o7 97

e loggl=01=2

SN 3 Solve each equation for x.
1

a. log, 27 =3 b. log,x= 5 c. logg 16 = x
i

a log27T=3ex" =2 x=3 b. log,x=1 42 =x > x=2
Solution 2

c. log,16=x4=1604=4x=2

EXAMPLE 4 Calculate the logarithms.
|

a. logg 4 b. log, o c. logg(logz 9)

Solution a. Letlogg4 =y.
Thenloggd=y o 2=42' =2y =2 s0loggd = 2.

e e e e e b. Similarly, logaé=y¢>3’=l¢>3’=32¢>y=—2.

Remember: 2
=aex=y c. Letlogg 9 =m. Then3" =9 3" = 3* & m = 2. So we need to calculate logg 2. Starting

by the bijective property with logg 2 = n, we get 2" = 2 which gives us n = 1. Thus, logg(logg 9) = 1.
of exponential functions.

B Calculate the logarithms,

a. logaé b. logli‘fﬁ c. log, Yava d. logg(logy(logg 81))
3

a. By the definition of a logarithm, we can write log, 1 =god= 1 a¥F=Toy=
Solution 1 3 3
So log, §= -1.

! ' 1
b log, Bl =y () =B 37 =) @37 =3 y=-3
3



, 1 11 31 1
c. log, v =yeoa' =(@ay oa' =@ @) =@ ed=d ey=

So log, Yava =—;—.

d. Starting from the innermost logarithm, we have
logg8l=rx9=81c9=Fox=2

NJ_I —

So we have to calculate logg (logg 2), andlogg 2 =y &2 =2y = 1.
So the given expression becomes logg 1, which is equal to zero:

logg1 =263 =1¢2z=0. Inconclusion, logz(logg (logg 81)) = 0.

Notice that in these examples we were able to find the desired logarithm by writing the argument
as a rational power of the base. This is not always possible, however: many logarithms (for ex-
ample: logg 3 and logg 5) are irrational, and cannot be calculated in this way.

m 6 Evaluate the expressions.

g 2eut b. 253 c. JHlog2

P

By the fundamental identity of logarithms, =N and so 2% ® will be equal to 8. However,
let us try to evaluate the expression in a different way:

Solution

Let logg 8 = t. Then we have to calculate 2",
By definition we have logg 8 = t <> 2' = 8. S0 2"%* = 8.
. Let logg 3 = t. Then we have to calculate 25'. By definition, log5 3 = t & 5' = 3. So
25 = (5% = ("2 = (3’ =9,i.e. 253 =9,
c. In a similar way, let logg 2 = t and let us calculate 3*. By definition, logg 2 = t < 3' = 2,
ie3%=(3)P=2"=8 502" =8,

(am)n - {au)ll = gnn

Check Yourself

1. Write the equalities in logarithmic form.

1 2
a.2=16 b.10°=1000 c.3=1 d. 125°=5 e 3‘*=% f-(ﬂﬁﬁ%

2. Write the equalities in exponential form.

a.logy 0.01 = -2 b. log1%= 4 c. logyp 10000 = 4
2



d. log3$=—4 e. logg32=5 £ log,125=-3

5

3. State whether each statement is true or false.

2 1 3
a.log 729 = 6 b. log, Y4=-2 & be o
. . TN T
L e. log,yayava =+ (@>0,a#1
'0g34'5§__§ . log, aau—g @>0,a+1)
4. Determine the logarithms of each set of numbers to the given base.
1 i1 1 1 1
7, to base 3 b. 2, 4, , 32, —64 to base —
9 B . B by r el
5. Solve for x.
a log,4=2 b log, x=—% ¢ loggs 125 =x
6. Calculate the logarithms,
a. logs 25 b. logg 1296 ¢ log, % d. logg(logg (logg 256))
7. Evaluate the expressions.
1 1
a. 3wt h, Qmd c 950w g, 49?}”’1 @, 92og, 5+log, 3
Answers
l. a logg 16 =4 b. logjp 1000 =3 c. logg1=0
1 1 1. 2
d. lﬂg|255=§ e. IOESE=—3 f logm §=—§
9. a 10° = 0,01 b e ¢. 10° = 10000
2" 16
d. 3"=l e =32 f (l)3=125
81 5
3. a. true b. true c. true d. false e. true
4, a 3,0,-2, —~Iv, E, ! b. -1,-2,0, 1,2, 5, -5, undefined
33 4
1 3
5. & b. = .=
a 2 5 c 3
6. a 2 b. 4 c = d1
' 2
1 1



B. TYPES OF LOGARITHM

1. Common Logarithms

Our counting system is based on the number 10. For this reason, a lot of logarithmic work
uses the base 10. Logarithms to the base 10 are called common logarithms. We often write
log x or to mean logy() x. In this module, we will use log x to mean logy) x.

Common logarithms are widely used in computation. Mathematicians have compiled  ex-
tensive and highly accurate tables of common logarithms for use in these calculations. These
tables and their use will be discussed later in this module.

2. Natural Logarithms

Logarithms to the base e are called natural logarithms or Euler logarithms, We often write
Inx to mean the natural logarithm log,x.

Natural logarithms are widely used in mathematical analysis in the study of limits, derivatives
and integrals.

C. PROPERTIES OF LOGARITHMS

Property 1

Proof

Proof

If the argument and the base of a logarithm are equal, the logarithm is equal to 1. Conversely,
if the logarithm is 1 then the argument and the base are equal:

:a:b@lggabzl (ﬂ)ﬂ,ﬂ#l). bh>0

By the fundamental identity of logarithms we have a"«" = N. Setting N = a gives us
a"¢ = g = a', which gives us log, a = 1.

For example, logg 3 =1, log10=1,Ine =1 and log1%= !
2

The logarithm of 1 to any base is zero:
loga L)

a"!'=1=qa" Soa"' = a°, which gives us log, 1 = 0.

For example, logg 1 =0, log, 1=0 and log, 1 = 0.
2
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Property 3 The logarithm of the product of two or more positive numbers to a given base is equal to the
sum of the logarithms of the numbers to that base:

log,(x - y) = log, x + log, y | (x,y>0).

Proof g =y .y, Substitutingx = a"&* and y = @& gives us

ety = glog,x , gl y = glog, x+logy
Comparing the exponents of the expressions on both sides gives us the required equation:

log,(x - y) =log, x + log, y.
For example,
E e E E e logg 6 =1logg(2-3) =logg 2 + logg 3 =1 + logy 3
Be carefull

logg 30 = loga(3 - 10) = logg 3 + logg 10 = 1 + logg 10
log,(x + y) # log,x + log,y %83 0g3( ) 5 "R %3

log 30 = logy(6 - 5) = logg 6 + logg 5
logg 5 + logg 3 = logg(5 - 3) = logg 15.

Notice that we can generalize this property as follows:

log,(x1 - xg - x3 - .- xp) =log, x +log, xg + ... +log, xp, (1, X9, X3, ., X > 0).

For example, we can write

logg 30 = logg(2 -3+ 5) =logg 2 + logg 3 + logg 5 = 1 + logy 3 + logy 5.

m 1 Calculate logy 2 + logy 8.

Solution logs2 +logq 8 = log(2-8) =log4(4-4) =logg4 +loggd=1+1=2

8 Calculatelogy 3 + logy 5 + 1%%.

Solution log, 3+log, 5+log, %=log2(3-5-%)= log, 1=0

12



Property 4 The logarithm of the power of a positive number is equal to the product of the power and the

logarithm of the number.

log;(x™) =m -logs x (meR, x>0).

AAANDAN

» P9 H®H
Be careful
(loggx)™ #m - log, x

Proof  A™= a8, After substituting x = a“* on the left side, we get (a*&*)" = a*&"), which gives
us @™ r = glat™  Since the bases are the same on both sides, we can conclude

m - log, x = log, (x™).

For example,

lg32 iﬂgd 7

» b h lng28 10g2(23) 3-log,2=3-1=3
=log,(3°)=-5-log,3=-5-1=-5

log; 125 = g, V5" =1og, (5§}=%-10g25.

ANANDNMAND
b+ L ¢ Note

m 9 Write each sum as a single logarithm.

a. (2-logga) + (3-logg b) -logg c

= 4a, log, xi"= -n-log, x

This property gives us the following special cases:

4b. log, Va" = =2 log, x.
m

Solution We apply the property log, (x™) = m - log, x.

AN N

R

1 3
b. (‘2‘ -log, a)+(3 - log, b) ‘(E - log, )

a. (2-logya) + (3 -logy b) - logg ¢ = logz(a?) + logg(b*) + (-1) - logg c &

logz(a®) + logg(h’) + logg(c™') = logg(a®- b* - ¢™) = Jog,(

ab’

b. (%-log2a)+(3-logzb)—(%-logzc)=lug2a5+lug2b3+(—§)-log2c<:>

A
log:: JE + lﬂgz b’ + logz C( ? ™ logz \{& + lﬁg2 b+ logx(%) &

log,(Va - b° -

c

Ja - b’

J—)la(J—)

13



EX3 10 Calculate log, ;fz-Js-%F

l

Solution log, §2- 8- 16 logﬂ/ﬂ 8- 163—1%1!2 9. @'y
1B 1 12
1og2d2 2“3 1og2d2 21 =log, {227 ) =log, ¥2" ¢

19
=log, \ 9% = 1%(224)-9-1 2-5

Property 5 The logarithm of the quotient of two positive numbers is equal to the difference between the
logarithms of the dividend and the divisor to the same base:

loga(§3=log,x—logny | A e

s log, ¥ =
log.y#lugux log, y
x_ () s e .
Z=g W, Ifwe substitute x = @~ and y = a~¥ on the left side, we-orram
Proof Y
Eax g, (%) log, (%) X
O OANAQD =t ¥ odwrmrag Y & log(2)=log,x-log,y.
ST 18] o y
T
a
For example,

logﬂg= log, 5-log, 3
log (0.12) = log, (- 1;}) Iog; (_) log, 3- log, (5%) = log, 3- 2

logg 10 + logg 4 -logy 5 = logg(](} 4) -logy 5 = logy 40-logy 5 = logz—— log, 8 =3.

Notice that we can combine properties 4 and 5 to write expressions with addition and sub-
traction of logarithms as the logarithm of a single fraction. The addends form the numerator of

the fraction and the subtrahends form the denominator, for example:

log, b + log, ¢ - log, d + log, e -log, f = logﬂ(bdcfe).

As a numerical example, consider

loga 15 - logg 5 + logg 6 - logg 2 = mgs(%) = logg 9 = logg(3) = 2.

Remember that this property only applies to logarithms with a common base.

14



m I I Express log 30 and log 3.3 in terms of p given log 3 = p.

Solution Since 30 = 3 - 10, we get log 30 = log(3 - 10) = log 3+log 10=p+1.
& 3

Since 35—*}39, we have log 33=1 %“logl{]—log 3=1-p.

m I 2 Given log 300 = 2.47712, calculate log(0.0027).

27
log(0.0027) = log(ﬁ) = log 27 - log 10* = log 3*- 4 - log 10

=3-log3)-4 (1)
log 300 = log(3 - 100) = log 3 + log 10> = log 3 + 2 -log 10 = 2 + log 3. So log 3 = log 300 - 2.
Using log 300 = 2.47712, we get log 3 = 2.47712 - 2 = 0.47712. (2)
log 10 =logpl0=1 | Combining (1) and (2) gives us log(0.0027) = (3 - 0.47712) - 4 = - 2.56864.

Solution

m .I 3 Write each logarithm as a sum or difference of logarithms to base a.

b*c* | m

Jog. —  b.log,—
a Ogad-les Ugﬂ (d_e)fi

3 .4
a. loga(%—'—c-:-) = log, b* + log, c*-log, d*-log, e® = 3log, b + 2 log, c -4 log, d-5log,
Solution d e p

5 2 2
b. We have log, ((; ic (;Z =log, §/(b+c)* ~log,(d-e)’ =log,(b+c)® -3log, (d—e)

- %log,(b+c)—310g,(d—e),

Notice that logarithms cannot be distributed over addition or subtraction, and also that ~ log-
arithms enable us to perform simpler operations (addition and subtraction) instead of multi-
plication and division. This is why logarithms are so useful in computation.

15



A. Basic Concept

1. Calculate the logarithms.

a. lﬂgua% b. lu&z% ¢ Ine
d. logug 1 e. logg2 £ log1000
g logl h. logne) i Inde

5

j logg@ne’) k In(log 107) In(log 10)

2. Solve each equation for x.

b, 2%+1=3 ¢ 32=9

a. 3*=4

d Ver=4 e 10°=5 £ 10+1=2
3. Simplify the expressions.

a, en* b. 103 C 4o’

d. 5-Ing352 e. 27Ing|,34 f (xl%ﬁ)lng,:i

g' xbgu:!' + yl[g”'U3 + zhgelJ'S _t]lgmlfs
b ~log,(og, 1) i (16"

B. Types of Logarithm

4, Calculate the logarithms, using log 2 = 0.30103
and log 3 = 0.4771.

a. log 18 b. log 30

c. logé

5. Find the number of digits in each number if
log 2 = 0.30103 and log 3 = 0.4771.

a2 b9 2P d 180

C. Properties of Logarithms

6. Write each expression as a single logarithm.
a. %Iug x-log y+log 2*

1 1 1
b, ——log x+~log y+~1
9 0g x 9 0g Yy 9 0g 2

16

7. Write each expression as the sum or difference of
the logarithms of a, b and c.

b. log(Yabe)
8. Evaluate the expressions.
a. 10g24 4+ log24 6

a. log(a’b’c)

b. log 8 + log 25 + log 5
c logw%+lﬂg5625+log,,381+log4g-;

d. logg 1000 - logg 125
9. Calculate each logarithm in terms of the variable(s)
provided, using the given relation(s).
a. logg 3;logg2=a b. log25;log2 =a
c. log721;logg 7=p d. log318;logz312=a
GGe. logyg 60; logg 30 = a and log 524 = b

10. log, y = a is given. Express each logarithm in
terms of a.

a. log,, 'y’ b. log, . °y'

11. Simplify the expressions.

1
a. (log,625-log,; 9)+ (1034 logwr 1024)

b. log, b’ -log,, ¢* -log , d’ -log‘;, a
12. Find x in each case.
a. logg x =3-(2-logg 3) + (3 -logy 5)
b. log,x=2+(3-log,5)-(2-log, 4)
13. Prove each equality.
a. log, x,-log, x,-..-log, x =1
L i

b. xlﬂgx -y vz v =]

14, Show that if a®> + b = 7ab (a, b > 0) then

00 a+b

logT~—(loga+logb)
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An interesting unsolved prob]em in mathematics concerns the ‘hailstone sequence’, which is defined as
follows: Start with any positive integer. If that number is odd, then multiply it by three and add one. If it is
even, divide it by two. Then repeat. For example, starting with the number 10 we get the hailstone sequence
10, 5, 16, 8, 4, 2, 1, 4, 2, 1... . Some mathematicians have conjectured (guessed) that no matter what

number you start with, you will always reach 1. This conjecture has been found true for all starting values up
to 1,200,000,000,000. However, the conjecture, which is known as the ‘Collatz Problem’, ‘3n+1 Problem’, or
‘Syracuse Algorithm’, still has not been proved true for all numbers.

Number sequences have been an interesting area

for all mathematicians throughout history.

Geometric sequences appear on Babylonian

tablets dating back to 2100 BC. Arithmetic

sequences were first found in the Ahmes Papyrus

which is dated at 1550 BC. The reason behind

the names ‘arithmetic’ and ‘geometric’ is that

each term in a geometric (or arithmetic)

sequence is the geometric (or arithmetic) mean of its successor and predecessor. If we think of a rectangle
with side lengths x and y, then the geometric mean vxy is the side length of a square that has the same area
as this rectangle. Finding the dimensions of a square with the same area as a given rectangle was considered
in those days as a very geometric problem. Although the arithmetic mean (x + y)/2 can also be interpreted
geometrically (it is the length of the sides of a square having the same perimeter as the rectangle), lengths
were viewed more as arithmetic, because it is easier to handle lengths by addition and subtraction, without
having to think about two-dimensional concepts such as area. Although both problems involve arithmetic and
can be interpreted geometrically, in ancient times one was viewed as much more geometric than the other,
therefore the names.

Zeno (490-425 B.C.) was a mathematician whose paradoxes about
motion puzzled mathematicians for centuries. They involved the sum of
an infinite number of positive terms to a finite number. Zeno wasn't the
only ancient mathematician to work on sequences. Several of the

ancient Greek mathematicians used sequences to measure areas and

volumes of shapes and regions. By using his reasoning technique called the ‘method’, Archimedes (287-212
B.C.) constructed several examples and tried to explain how infinite sums could have finite results. Among
his many results was that the area under a parabolic arc is always two-thirds the base times the height.

18



The next major contributor to this area of mathematics was Fibonacei (1170-1240). He discovered a \ “ _
sequence of integers in which each number is equal to the sum of the preceding two numbers (1, 1, 2, 3, 5, | |
8, ...), and introduced it as a model of the breeding population of rabbits. This sequence has many remarkable - | .
properties and continues to find applications in many areas of modern mathematics and science. During this
same period, Chinese astronomers developed numerical techniques to analyze their observation data and

used the idea of finite differences to help analyze trends in their data.

Oresme (1325-1382) studied rates of change, such as velocity and acceleration, using sequences. Two hundred
years later, Stevin (1548-1620) understood the physical and mathematical conceptions of acceleration due

to gravity using series and sequences. During that time Galileo (1564-1642) applied mathematics to the

sciences, especially astronomy. Based on his study of Archimedes, Galileo improved our understanding of
hydrostatics. He developed equations for free-fall motion under gravity and the motion of the planets. Up | .-

until the middle of the 17th century, mathematicians developed and analyzed series of numbers.

Newton (1642-1727) and Leibnitz (1646-1716) developed several series representations for functions.
Maclaurin (1698-1746), Euler (1707-1783), and Fourier (1768-1830) often used infinite series to develop - -
new methods in mathematics. Sequences and series have become standard tools for approximating functions B ]

" and calculating results in numerical computing.

The self-educated Indian mathematician Srinivasa Ramanujan (1887-1920) used sequences and power
series to develop results in number theory. Ramanujan's work was theoretical and produced many important

results used by mathematicians in the 20th century.
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Real number sequences are strings of numbers. They play an important role in our everyday
lives. For example, the following sequence:
20,205, 21, 22,234, 238, ..

gives the temperature measured in a city at midday for five consecutive days. It looks like the
temperature is rising, but it is not possible to exactly predict the future temperature.

The sequence:

64, 32, 16, 8, ...
is the number of teams which play in each round of a tournament so that at the end of each
game one team is eliminated and the other qualifies for the next round. Now we can easily
predict the next numbers: 4, 2, and 1. Since there will be one champion, the sequence will

end at 1, that is, the sequence has a finite number of terms. Sequences may be finite in
number or infinite.

Look at the following sequence:
1000, 1100, 1210, ...

This is the total money owned by an investor at the end of each successive year. The capital
increases by 10% every year. You can predict the next number in the sequence to be 1331.
Each successive term here is 110% of, or 1.1 times, the previous term.

Real number sequences may follow an
easily recognizable pattern or they may
not. Recently a great deal of mathematical
work has concentrated on deciding
whether certain number sequences follow
a pattern (that is, we can predict consecutive
terms) or whether they are random (that
is, we cannot predict consecutive terms).
This work forms the basis of chaos theory,
speech recognition, weather prediction
and financial management, which are
just a few examples of an almost endless
list. In this book we will consider real
number sequences which follow a

Can you recognize the pattern? pattern.

20



SEQUENCES

NANn

N A

" " P e H
By the set of natural
numbers we mean all

positive integers and
denote this set by [,

Thatis, N ={1,2,3,..}.

0 pANn

» ®» v wh

A function is a relation
between two sets A and
B that assigns to each
element of set A exactly
one element of set B.

Definition
If someone asked you to list the squares of all the natural numbers, you might begin by writing
1,4,9, 16, 25, 36, ...

But you would soon realize that it is actually impossible to list all these numbers since there
are an infinite number of them. However, we can represent this collection of numbers in
several different ways.

For example, we can also express the above list of numbers by writing

f1), f2), f3), f4), f15), f16), ... f{m), ..

where f(n) = n*. Here f(1) is the first term, f(2) is the second term, and so on. f(n) = n’isa
function of n, defined in the set of natural numbers.

sequence
A function which is defined in the set of natural numbers is called a sequence.

However, we do not usually use functional notation to describe sequences. Instead, we
denote the first term by a,, the second term by a,, and so on. So for the above list

2

a,=l,a,=4,a,=9,a,=16,a,=254,=36,..,a, =10, ..

Here, a, is the first term,
a, is the second term,

a, is the third term,

a,is the nth term, or the general term.

Since this is just a matter of notation, we can use another letter instead of the letter a. For example,
we can also use b,, c,, d,, etc. as the name for the general term of a sequence.

We denote a sequence by (a,), where a, is written inside brackets. We write the general term
of a sequence as a,, where a, is written without brackets. For the above example, if we write
the general term, we write a, = n".

If we want to list the terms, we write (a,) = (1,4, 9, 16, ..., n’, ...).
Sometimes we can also use a shorthand way to write a sequence:

(@) = (0’ + 4n + 1) means the sequence (a,) with general term a, = n* + 4n + 1.

21



Solution

Solution

Solution

Note

An expression like a, , is nonsense since we cannot talk about the 2.6th term of a sequence.
Remember that a sequence is a function which is defined in the set of natural numbers, and
2.6 is not a natural number. Clearly, expressions like a,, @ , are also meaningless. We say that
such terms are undefined.

Note
In a sequence, n should always be a natural number, but the value of a, may be any real
number depending on the formula for the general term of the sequence.

Write the first five terms of the sequence with general term q, = l
n

Since we are looking for the first five terms, we just recalculate the general term for

n=1,2,3, 4,5, which gives 1, l

1

:
5

Cad | =
..|:-.|._¢

4n-5

e find a, a_,, a,y

Given the sequence with general term a, =

We just have to recalculate the formula for a, choosing instead of n the numbers 5, -2, and

100. So a =%, and a,,, = = E Clearly, a , is undefined, since -2 is not a natural

07900 40
number.

Find a suitable general term b, for the sequence whose first four terms are

L] ¥ L]

w | b2
= | oo
U | o

2
2
We need to find a pattern. Notice that the numerator of each fraction is equal to the term

position and the denominator is one more than the term position, so we can write b, = -
n

Check Yourself

1. Write the first five terms of the sequence whose general term is ¢, = (~1)".

2. Find a suitable general term a, for the sequence whose first four terms are 2, 4, 6, 8.
3. Given the sequence with general term b, = 2n + 3, find b,, b, and b,;.

Answers

1.-1,1,-1,1,-1 2.2n 3. 13, undefined, 89
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| Example

Solution

Solution

| Example )

Solution

|_Example [y

Solution

Criteria for the Existence of a Sequence
If there is at least one natural number which makes the general term of a sequence
undefined, then there is no such sequence.

Is a.= A general term of a sequence? Why?

L P

No, because we cannot find a proper value for n = 2.

Is a = 2 i general term of a sequence? Why?
2n+1
Note that the expression v is only meaningful when x > 0. So we need :'fl >0 to be true
n

for any natural number n. If we solve this equation for n, the solution set is (—%, 4], ie.nis

between -% and 4, inclusive. When we take the natural numbers in this solution set, we get

{1, 2, 3, 4}, which means that only a,, a,, a,, a, are defined. So a_ is not the general term of
a sequence.

Is a, = : a general term of a sequence? If yes, find a, + a, + a..

n+l
2n-1
it is the general term of a sequence. Choosingn = 1,2, 3 we geta, =2, a,=1,a,=0.8.
Soa, +a,+a,=38.

is not meaningful only when n =%e N. Since a, is defined for any natural number,

Given b, = 2n + 5, find the term of the sequence (b,) which is equal to

& 25 b. 17 c 96
a b, =25 b. b, =17 C. b, = 96
Mm+5=25 M+5=17 In+5=96
n=10 n==6 n=455¢ N
10th term 6th term not a term
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The sequence in the previous example is called the
Fibonacci sequence, named after the 13th century Italian
mathematician Fibonacci, who used it to solve a problem
about the breeding of rabbits. Fibonacci considered the
following problem:

Suppose that rabbits live forever and that every month
each pair produces a new pair that becomes productive at
age two months. If we start with one newborn pair, how

many pairs of rabbits will we have in the nth month?
As a solution, Fibonacci found the following sequence:
1,1,2, 35,8, 13, 21, 34, 55, 89, 144, 233, ...

This sequence also occurs in numerous other aspects of
the natural world.

he planets in our solar system are spaced in a Fibonacci
The planets in our solar sy ]
sequence.

We can make a picture showing the Fibonacci numbers if we start with two small squares whose sides are each one

unit long next to each other. Then we draw a square with side length two units (1 + 1 units) next to both of these.

We can now draw a new square which touches the square with side one unit and the square with side two units,

and therefore has side three units. Then we draw another square touching the two previous squares (side five

units), and so on. We can continue adding squares around the picture, each new square having a side which is as

long as the sum of the sides of the two previous squares. Now we can draw a spiral by connecting the quarter

circles in each square, as shown on the next page. This is a spiral (the Fibonacci Spiral). A similar curve to this

occurs in nature as the shape of a nautilus.




A nautilus has the same shape as the Fibonacci spiral.

145
2

The ratio of two successive Fibonacci numbers Jun gets closer to the number =1.618 as the value of n gets

bigger. This number is a special number in mathematics and is known as the golden ratio.
The ancient Greeks also considered a line segment divided into two parts such that the ratio of the shorter part of
length one unit to the longer part is the same as the ratio of the longer part to the whole segment.

1 X
1++45
2

. T (SR = o
This leads to the equation — = —— whose positive solution is x =

= . Thus, the segment shown is divided into
X X

the golden ratio!

A rectangle in which the ratio of one side to the other gives the golden ratio is called a golden rectangle. The Golden
Rectangle is a unique and a very important shape in mathematics. It appears in nature and music, and is also often
used in art and architecture. The Golden Rectangle is believed to be one of the most pleasing and beautiful shapes
for the human eve.

The golden ratio is frequently used in architecture. Thé #atit of the leagth, of yoir a7 1o the ioiighh

from the elbow down to the end of your hand is
approximately equal to the golden ratio.




Sequences

1. State whether each term is a general term of a
sequence or not.

n+2 2n-1
4 13
d. e — -1
n* -4 £ )

g Yn-5 h. vn*+2n

. Find a suitable formula for the general terms of
the sequences whose first few terms are given.

a 1,3,5 b. -1,3,-5

¢ 0,3,8,15 .1 3 &
57 78

e. 2,6,12,20, 30

. Find the stated terms for the sequence with the
given general term.

a. a, = 2n + 3, find the first three terms and a,,

3n+1
n+7’

b 4=

, find the first three terms and a,,

=n’ +6n, find the first three terms and a,

4. How many terms of the sequence with general
term a, = n’ - 6n - 16 are negative?

5. How many terms of the sequence with general

term an=3n"7 are less than 17
3n+5 5

26



At the beginning of this book we looked at the sequence 1, 4, 9, 16, 25, 36, ... . We
call the numbers in this sequence square numbers. We can generate the square
numbers by creating a sequence of nested squares like the one on the right.
Starting from a common vertex, each square has sides one unit longer than the
previous square. When we count the number of points in each successive
square, we get the sequence of square numbers

(first square = 1 point, second square = 4 points, third square = 9 points, etc.).

named these numbers after the polygons that defined them.

-
-

Square numbers . “

1 4 9 16
Pentagonal numbers B O @
1 5 12 22

—— A&A&

ct————r

I+ [

16
e
4 L

1

-
>

Polygonal numbers are numbers which form sequences like the one above for different polygons. The Pythagoreans

21

25

35

:;%--'I""""-I-«\
< A\ A

Polygonal numbers have many interesting relationships between them. For example, the sum of any two consecutive
triangular numbers is a square number, and eight times any triangular number plus one is always a square number.

Can you find any more patterns? Can you find the general term for each set of polygonal numbers?

aoliol) dolell daol
bl yaslll qus
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A. ARITHMETIC SEQUENCES

1. Definition
Let’s look at the sequence 6, 10, 14, 18, ...

Obwiously the difference between each term is equal to
4 and the sequence can be written as a,,, = a, + 4
where a, = 6.

For the sequence 23, 21, 19, ... the formula will be
a,, =a,-2 where a, = 23,

In these examples, the difference between consecutive
terms in each sequence is the same. We call sequences

with this special property arithmetic sequences.

oefinition arithmetic sequence

If a sequence (a,) has the same difference d between its consecutive terms, then it is called
an arithmetlc sequence,

In other words, () is arithmetic if a,,, = a, + d such thann & N, d & E. We call d the
common difference of the arthmetic sequence. In this book, from now on we will use
a, to denote general term of an arithmetic sequence and d (the first lester of the Latin word
differentia, meaning difference) for the common difference.

If d is positive, we say the arithmetic sequence is increasing. If d is negative, we say the
arithmetic sequence s decreasing. What can you say when d is zero?

8 State whether the following sequences are arithmetic or not. If a sequence is arithmetic, find
the common difference.

a 7,10,13,16,.. b 3-2,-7.-19,.. e 1,49,16,.. & 688686, ..

Solution a. arithmetic,d =3 b. arithmetic, d =-5 ¢ not arithmetic  d. anthmetic, d = 0

" State whether the sequences with the following general terms are arithmetic or not. If a
sequence is arithmetic, find the commen difference.

d o M Hn+d

a a, =4n-3 bhoa =9 coa,=n-n
n+4

28



Solution a

a,,, =4Mm+1)-3 =4n + 1, so the difference between each consecutive term is

a,.,-a,= (4n + 1) - (4n - 3) = 4, which is constant. Therefore, (a,) is an arithmetic

n+l

sequence and d = 4.

a,,, = 2", so the difference between each consecutive term is a,,, —a, = 2" - 2" = 2',
which is not constant. Therefore, (a ) is not an arithmetic sequence.

a,,, = (n+1)*-(n + 1), so the difference between two consecutive terms is

a, -a =|[n+1)7-m+1)]- (@ -n) = 2n, which is not constant.

Therefore, (a,) is not an arithmetic sequence.

By rewriting the general term we have a, =w. Since n # -4 (since we are
n

talking about a sequence), we have a, = n + 1. Therefore, a,,, = (n + 1) + 1, and the

n+l

difference between the consecutive terms is a,,, - a, = 1, which is constant. Therefore,

(a,) is an arithmetic sequence and d = 1.

With the help of the above example we can notice that if the formula for general term of a

sequence gives us a linear function, then it is arithmetic.

Note
The general term of an arithmetic sequence is linear.

2. General Term

Since arithmetic sequences have many applications, it is
much better to express the general term directly, instead of

= =
=

recursively. The formula is derived as follows: Arithmetic growth is linear

If (a,) is arithmetic, then we only know that a,,, = a, + d. Let us write a few terms.

i, =4q

a,=a,+d
@, =a,+d=(@,+d)+d=a,+2d
a,=a,+d=(@+2)+d=a,+3d
a,=a, +4d

a,=a,+(n-1)d

This is the general term of an arithmetic sequence.
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GENERAL TERM FORMULA

The general term of an arithmetic sequence (a,) with common difference d is.
a, = a,(n - 1)d.

m I o -3, 2, 7 are the first three terms of an arithmetic sequence (a,). Find the twentieth term.

Solution

Solution

T 12

Solution

Solution

We know thata, = -3 and d = a, - a, = a, - a, = 5. Using the general term formula,
a,=a,+(n-1)d
Ay =-3+(20-1)-5=92.

(a,) is an arithmetic sequence with a, = 4, a, = 25. Find the common difference and a,,.

Using the general term formula,
a,=a,+@m-1)d
a;=a,+7d
25 =4 + 7d. So we have d = 3.
Ay =a,+(101-1)d =4 + 100 -3 = 304

(a,) is an arithmetic sequence with a, = 3 and common difference 4. Is 59 a term of this
sequence?

For 59 to be a term of the arithmetic sequence, it must satisfy the general term formula such
that n is a natural number.

a,=a,+n-1)d
59=3+(m-1)-4
59=4n-1
n=15

Since 15 is a natural number, 59 is the 15th term of this sequence.

Find the number of terms in the arithmetic sequence 1, 4, 7, ..., 91.

Here we have a finite sequence. Using the general term formula,
a,=a,+m-1)d
91=14+m-1)-3
n =31

Therefore, this sequence has 31 terms.
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B. SUM OF THE TERMS OF AN ARITHMETIC SEQUENCE

1. Sum of the First n Terms

Let us consider an arithmetic sequence whose first few terms are 3, 7, 11, 15, 19.

The sum of the first term of this sequence is obviously 3. The sum of the first two terms is
10, the sum of the first three terms is 21, and so on. To write this in a more formal way, let
us use S, to denote the sum of the first n terms, i.e., S, = a, + a, + ... + a,. Now we can
write:

$ =3
8§ =347=1D
§,=3+7+11=21
§5,=3+7+11+15=236
S;=3+7+11+15+ 19 =55.

I 8 Given the arithmetic sequence with general term g = 3n + 1, find the sum of first three terms.

Solution §,=a,+a +a,=4+7+10=21

How could we find S, in the above example? Calculating terms and finding their sums takes
time and effort for large sums. Since arithmetic sequences are of special interest and
importance, we need a more efficient way of calculating the sums of arithmetic sequences.
The following theorem meets our needs:
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The sum of the of first n terms of an arithmetic sequence (a,) is §, = h ; % n.
Proof S =a,+*a,+..+a _,ta or

S,=a,+a, ,+..+a +a,

Adding these equations side by side,

28, =(aT+an)+(a2+an_l}+...+(au_l+ a2)+(an+ a,)

28, =(a,+a,)+(a,+d+a,-d)+..+(a,- d+ a,+ d)+(a,+ a)

25, =(q+a)+(a+a,)+..+(a+a)+(a+a,)
T imes e

23:1 - (ﬂ-} + a’n) n
a,ta,
=—n

S
v 2

I’ Given an arithmetic sequence with @, = 2 and a, = 17, find S,

Solution Using the sum formula,

ss=“1;“ﬁ 6=(2+17) 3=57.

m 20 Given an arithmetic sequence with a, = -14 and d = 5, find §,..

Solution Using the sum formula,

sg?_:%.g'? requires a,. = a, + 26d = -14 + 26 - 5 = 116.

-14+116

Therefore, S, = -27=1377.
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2' Given an arithmetic sequence with a, = 56 and a,, = -14, find S,..

Solution Using the sum formula,

S

5 = %45, so we need to find a,.. Let us calculate using a,:
a, = a+ 10d

-14 =56 + 10d, sod = -7 and

a;=a,+14d =56 + 14 - (-7) = -42.

Therefore, S, = 56;—42 15=105.

EXAMPLE 22 If -5 + ... + 49 = 616 is the sum of the terms of a finite arithmetic sequence, how many
terms are there in the sequence?

Solution Let us convert the problem into algebraic language:
a,=-5, a,=49, and §, = 616, and we need to find p.
Using the sum formula,

+
g -0 s

P

.p, s0 p = 28. So 28 numbers were added.

Since a, = a, + (n - 1)d, we can also rewrite the sum formula as follows:

Check Yourself

1. Given an arithmetic sequence witha, =4 and a,, = 15, find§ ,
2. Given an arithmetic sequence with ¢, = 26 and d = -2, find §,.
3. Given an arithmetic sequence witha, = 9 and S, = 121, find d.
4. Find the sum of all the multiples of 3 between 20 and 50.
Answers

1.95 2.494 3175 4.345
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A. Arithmetic Sequences

1. State whether the following sequences are
arithmetic or not.

(@)= @) b. (v2,v2, 2, ..) ¢ (@) = (4n+7)

2. Find the formula for the general term a_ of the
arithmetic sequence with the given common

difference and first term.
o d=9u =3 b d=+3,4,=1
e.d=-1,a,=0 b deta=

g d=b+3,a,=20+7

3. Find the common difference and the general
term a, of the arithmetic sequence with the given

terms.

a. a,=3a=>5 b. a,=4,a,=10
2, =V2,a,=6\2 d. a,=-12 a,=-24
a;=8,a,=8 f a,=6,a,=-34

g a,=1,a,=2

h ay=2x-y,0,=x+2%

4. Find the general term of the arithmetic sequence
using the given data.

. anH

b a,=41,d=4

=a,+7,a,=-2

5. Fill in the blanks to form an arithmetic sequence.

d. PR, G G R 3! T ¥ 32.
b‘ 13} ey _,45
\._V__J

34

6. In an arithmetic sequence the first term is -1 and
the common difference is 3. Is 27 a term of this
sequence?

7. Given that the following sequences are arithmetic,
find the missing value.

a,+?
2

a M‘L:? b.

9 %=

B.Sum of the Terms of an Arithmetic
Sequence

8. For each arithmetic sequence (a,) find the
missing value.

a a=-5 a=18 §,=?
b.a,=-3, a, =27, §,="?
¢ a,=7 8,=3% d=?

g S, = 10000, a,, =199, a,, =?
h.a,=-5n-10, §, =7

i a,=5 4a,=20,§,=250, p="?
j S4=3840, a, =5, a, =7

k. a,=3 a,-a,=-6, S§;,=?

L a,=1, §,-5,=238, a,=?

md=5 S;-8,=308 a,=?



A magic square is an arrangement of natural numbers in a square matrix so that the sum of the
numbers in each column, row, and diagonal is the same number (the magic number). The
number of cells on one side of the square is called the order of the magic square.

It is a third

row, column, an

square Was

The famous Lo-Shu is the oldest known magic square in the
world. According to the legend, the figure above was found on
the back of a turtle which came from the river Lo. The word

“Shu’ means ‘book’, so ‘Lo-Shu’ means ‘The book of the river Lo’.

finite arithmetic




What kind of relation exists between the sequence and the magic number? Given any finite arithmetic sequence
of n” terms is it always possible to construct a magic square? If the numbers do not form an arithmetic sequence,
is it possible to construct a magic square?

Try constructing your own magic square of order three using the numbers 4,8,12, ...,36.

There are many unsolved puzzle ning . The puzzle of Yang-Hi was solved in the
year 2000, was one of them. According to the legend the 13th century e m: n Yang-Hui gave
the emperor € - ' gift. This is -

a0 18

ic sequence with

1 rs when 1 was
subtracted f
Unfortunate!
calculated 7

189116130 294101010 399085890
320347230 215362350
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A. GEOMETRIC SEQUENCES

1. Definition

In the previous section, we learned about
arithmetic sequences, i.e. sequences whose
consecutive terms have a common difference.
In this chapter we will look at another type of
sequence, called a geometric sequence.
Geometric sequences play an important role in
mathematics.

A sequence is called geometric if the ratio between each consecutive term is common. For
example, look at the sequence 3, 6, 12, 24, 48, ...

Obviously the ratio of each term to the previous term is equal to 2, so we can formulize the
sequence as b,,, = b, - 2. The consecutive terms of the sequence have a common ratio (2),
so this sequence is geometric.

For the sequence 625, 125, 25, 5, 1, ... the formula willbe b ,, =b, % The common ratio
in this sequence is é

geometric sequence

If a sequence (b,) has the same ratio q between its consecutive terms, then it is called a
geometric sequence.

In other words, (b,) is geometric if b,,, = b, - g such that n € N, ¢ € R. g is called the
common ratio of the sequence. In this book, from now on we will use b, to denote the
general term of a geometric sequence, and ¢ to denote the common ratio.

If ¢ > 1, the geometric sequence is increasing when b, > 0 and decreasing when b, < 0.
If 0 < g < 1, geometric sequence is increasing when b, < 0 and decreasing when b, > 0.
If g < 0, then the sequence is not monotone.

What can you say if ¢ = 1? What about ¢ = 0?

EXAMPLE 23 State whether the following sequences are geometric or not. If a sequence is geometric, find

the common ratio,
a 1,248 .. 32333 c. 1,4,9 16, ... d 5~ L_ —-1—
5 95

Solution a. geometric, g =2 b. geometric,q = 1 c. not geometric d. geometric, q-=_%
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m 24 State whether the sequences with the given general terms are geometric or not. If a sequence

Solution

is geometric, find the common ratio.

a b =3 b. b,=n+3 & h=3i d b=3n+5
n+l
a. b,,, = 3" so the ratio between each consecutive term is h=33—“=3, which is

constant. So (b,) is a geometric sequence and g = 3. _
b. b,., = (n + 1)* + 3, so the ratio between each consecutive term is
b, _(n+1)’+3 n’+2n+4

b n+3 n+3

]

» which is not constant. So (b,) is not a geometric sequence.

by 32"

¢. b,,, =3-2"" so the ratio between each consecutive term is o

=2, which is

constant. So (b,) is a geometric sequence and g = 2. '

d. Since the general term has a linear form, this is an arithmetic sequence. It is not geometric.

With the help of the above example we can see that if the formula for the general term of a
sequence gives us an exponential function with a linear exponent (a function with only one
exponent variable), then it is geometric.

Note

The general term of a geometric sequence is exponential.

Geametric growth is exponential

2. General Term

We have seen that for a geometric sequence, b,,, = b, - q. This formula is defined recursively.
If we want to make faster calculations, we need to express the general term of a geometric
sequence more directly. The formula is derived as follows:

If (b,) is geometric, then we only know that b,,, = b, - q. Let us write a few terms.
by =b

b,=b,-q

b,=b,-q=(b,-q)-q=b,-q"

by=b,-q=(b-q")-q=b-¢’

b, =b,-q"

bn = b] .qn—i

This is the general term of a geometric sequence.
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Cexaneie B1

Solution

Cexanrie B3

Solution

exampLe ') |

Solution

BT 28

Solution

GENERAL TERM FORMULA

The general term of a geometric sequence (b,) with common ratio ¢ is
I’;, =b,-q""

If 100, 50, 25 are the first three terms of a geometric sequence (b,), find the sixth term.

We can calculate the common ratio as g = b—3= b—2= l, so b, =100, g= l.
b, b 2 2
2 -1 lg, 25
Using the general term formula, b, =b,-¢"", so b; =100 '(E) ma

(b,) is a geometric sequence with b, = %, ¢=3. Find b,

Using the general term formula,

bﬁ = bl .q"-l. Therefore, bxl = %.34-[ =

(b,) is a geometric sequence with b, =-15, g= é Find the

general term.

Using the general term formula, b, = b, - ¢" .

1 wl 1 1 l 1 How can you relate this building
'Iherefﬂre, bn =-15 (g] =-15 [E]‘ [g] =-75 [—T to a geometric sequence?

Consider the geometric sequence (b,) with b, =é and g=3. Is 243 a term of this
sequence?
Using the general term formula,
b, =b,-q" " andso b, = % v
i v
Now 243 = 53 and so 3" = 3" Therefore, n=8.

Since 8 is a natural number, 243 is the eighth term of this sequence.
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29 In a monotone geometric sequence b, -b. =12, E—"’: 3. Find b,.
4

o

L =3, thatis 54 = Soq=ii.

b_a b] ;: qﬂ \f§

; . 1
Since the sequence is monotone, we take ¢ = —.

V3

Solution

b,-b, =12, thatish, - b, - ¢* = 12.

b,z-é=12, thatis b, = 6¥3, Sob, = b, -q = 6v3 - —— = 6.

V3
Why? Would the answer change if the sequence was not monotone? Why?
Check Yourself

.  [— .
1. Is the sequence with general term b, = 3 4" a geometric sequence? Why?

2

e 113" are the first three terms of a geometric sequence (b,). Find the eighth term.

[l

1

e b, =16. Find the common ratio

3. (b,) is a non-monotone geometric sequence with b, =
of the sequence and b,.

4. (b,) with is a geometric sequence with b, = -3, ¢ = -2. Is -96 a term of this sequence?

Answers

1. yes, because the general term formula is exponential 2.24 3.q=-2;b,=-2 4.no
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B. SUM OF THE TERMS OF A GEOMETRIC SEQUENCE

Cexaneis JE E

Solution

1. Sum of the First 7" Terms
Let us consider the geometric sequence with first few terms 1, 2, 4, 8, 16.

The sum of the first term of this sequence is obviously 1. The sum of the first two terms is
3, the sum of the first three terms is 7, and so on. To write this in a more formal way, let us
use S, to denote the sum of the firstn terms ie. S,=b,+ b, + ... + b,. Now,

S, =1

S,=1+2=3
S,=1+2+4=7
S,=1+2+4+8=15
S;=1+2+4+8+16=3L

Given the geometric sequence with general termb, =3 (-2)", find the sum of first three
terms.

S,=b +b+b=-6+12-24=-18

How could we find S, in the previous example? Calculating terms and finding their sums
takes time and effort for large sums. As geometric sequences grow very fast, we need a more

efficient way of calculating these sums. The following theorem meets our needs:
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, q# 1.

The sum of the first n terms of a geometric sequence (b,) is § =b, - 11_ q

Proof S, =b+b,+b,+..+b,,+b,
S =h+b,-q+b g’ +..+b -q"" +b, -¢" (1)
g8, =b,-q+b - +b - +..+b @ +h ¢ @)
Subtracting (2) from (1), we get
S,-q:S,=b,-b,q"

m 34 Given a geometric sequence with b, = % and g=3, find S,

Solution Using the sum formula,

1-g" 1 1-3° 364
. = by - , 80 §; =— =—
l1-g 81 1-3 8l

35 Given a geometric sequence with §; = 3640 and g = 3, find b,.

Solution Using the sum formula,

6 3
sﬁ=bl--11‘—‘3, 6 364U=b1-—1%, aFilEs B<10,
_q -—

m 36 Given a geometric sequence with ¢ = %, b,=5 and §,=1820, find b,

Solution Using the sum formula,

5B

gt Sl A BN e 8
g 1 g d=g 11

3

. Therefore, b, =1215.
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A. Geometric Sequences

L

State whether the following sequences are
geometric or not.

25

2 @-525.) b@)= )

e (b)=@n+7)

. Find the general term of the geometric sequence
with the given qualities.
a_b1=5'q=2 b. b1=_3,q=%
& b,:mm,:;:% d b=v3¢=43
1
. bh=4b=3 f.b,=3,b5=§
g b3=32,bs=% b=l B

. Fill in the blanks to form a geometric sequence.

a 3-2/2, ,3+2/8
b. _,_,3,_,4

. Find the general term of the geometric sequence

with b, = b, + 24 and b, + b, = 6.

. Write the first four terms of the non-monotone

geometric sequence that is formed by inserting
nine terms between -3 and -729.

. Given a geometric sequence with

b, = 4b, and b, - b, = 1152, find b,
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B.Sum of the Terms of a Geometric

Sequence
7. For each geometric sequence (b,) find the missing
value.
3
a, bl=_§’q=‘2’57=?

b. b,=6,b,=192,5,, =?
¢ b=1,b,-b,=64:.b,-b,8,=?
d S, =111,°=4,8,=7

. The general term of a geometric sequence is

b,=3-2.Find S,



1. Which terms can be the general term of a 5. How many terms of the sequence with general
?
sequence! term aq, =(2"‘+l) are less than %?
I Lz 1.3 ML '+ 2n + 3 *
n_
A0 B) 1 C)2 D)3 )4
IV. V7-n V.3 VL. »n"
A) LILIIL IV B) 11, 111, IV, VI
C) LII, III, VI D) 1L 111, V, VI
F) 10, IV, V, VI i
" 3n” -5n
6. Given q, ={n+k-3) and a; = 3, find k.
A)3 B)5 o) %
py 2 pH
2. Which of the following can be the general term of 3 3
the sequence with the first four terms 3, 5, 7, 9?
A)2n-1 B) 2n C)2m +1
Din+1 Eyn’*+2
7. How many of the following sequences are
decreasing?
3n-5
L = II. () = (n-3)°
(a,) (n+2) b,) = n-3)
2a,+5
3. Given ¢, = 2, and a,,=—— forn 2 1 1
w ’ 1L () = (- 1" V. (d)=(—
fiida, 2 ) =19 (d,) (n+1)
A) 27 B) 25 C) 22 V. (e)=(ﬂ)
) ) ) " 3n+2
27 25
05 03 N1 B2 O3 D4 B)S

4. How many terms of the sequence with general 8. What is the minimum value in the sequence

2 2n+3
g O .. are natural numbers? formed by ‘a, =(3n-7)?
n
A)5 B) 6 o7 D)8 E)9 A) -1 B) -3 C)-2 D) -7 E) -8
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9. Which one of the following is the general term of
an arithmetic sequence?
Arnt+ 2n B)dn+5 ) n?
Dy2"+3 E) &

10, If % i B B g

arithmetic sequence, finda + b + c.

are consecutive terms of an

A) l B) E ) E §)] Q E) @
24 24 16 16 49

11. (a,) is an arithmetic sequence with a,, = 8 and
a,, = 35. Find a,.

A}y -3 B) -6 ) =16 D) -29 E) -98

12. (a,) is arithmetic sequence with a, = 7 and

common difference % Find the general term.

n+7
3

D) n+4 E) n+20
) _3 ) 3

A)3n + 4 B)

) n-4
3

13. (a,) is an arithmetic sequence such that

a,+a, =23 and a, + a, = 37. Find a,,

A) 49 B) 47 C) 45 D) 44 E) 43

14. (a,) is a finite arithmetic sequence with first term
%, last term iﬁ’ and sum 9. How many terms
are there in this sequence?

A9 B) 16 C) 32 D) 48 L) 64

15. x -2, x + 8, 3x + 2 form an arithmetic sequence.
Find x.

A) 12 B) 11 C) 10 D)9 E)8

16. (a,) is an arithmetic sequence with

S, = 3(5, -85, and a;, = 1. Find the common

difference.
A 2 py 13 oy 2
51 51 Bl
B)) E E) E
51 51



